
Clone Detector Use Questions:
A List of Desirable Empirical Studies

Thomas Dean1, Massamiliano Di Penta2,
Kostas Kontogiannis3, and Andrew Walenstein4

1 Queen’s University, Department of Electrical & Computer Engineering,
Kingston, ON, Canada, K7L 3N6

tom.dean@queensu.ca
2 University of Sannio - Benevento, Department of Engineering,

Palazzo ex Poste, Via Traiano, I-82100 Benevento, Italy
dipenta@unisannio.it

3 University of Waterloo, Department of Electrical & Computer Engineering,
Waterloo, ON, Canada, N2L 3G1

kostas@swen.uwaterloo.ca
4 University of Louisiana at Lafayette, Center for Advanced Computer Studies,

P.O. Box 44330, Lafayette, LA 70504-4330, U.S.A.
walenste@ieee.org

Abstract. Code “clones” are similar segments of code that are fre-
quently introduced by “scavenging” existing code, that is, reusing code
by copying it and adapting it for a new use. In order to scavenge the
code, the developer must be aware of it already, or must find it. Little
is known about how tools—particularly search tools—impact the clone
construction process, nor how developers use them for this purpose. This
paper lists five outstanding research questions in this area and proposes
sketches of designs for five empirical studies that might be conducted to
help shed light on those questions.

Keywords. code clone, clone detector, code search, reuse, scavenging,
empirical study

1 Introduction

It is widely believed that code “scavenging” is a common practices, i.e., that
searching for source code and then consequently copying it is an activity that
many developers practice. In order to scavenge code, however, the developer must
first be aware of it. One way is through search tools, such as the text search tools
that are known to be well-used in development [1]. However these may not be
ideal for scavenging code. A different scavenging-support idea was brought out
in discussions at a recent Dagstuhl seminar [2]. The suggestion was to create a
kind of “auto-complete” feature within the software development environment.
In current auto-complete features the development envionment uses the current
typing context to determine possible completions of the partially-finished phrase

Dagstuhl Seminar Proceedings 06301
Duplication, Redundancy, and Similarity in Software
http://drops.dagstuhl.de/opus/volltexte/2007/969

2 T. Dean,M. Di Penta,K. Kontogiannis

or item, possibly allowing the developer to select from a menu. The basic idea for
scavenging auto-complete is to show the developer code fragments that might
match the code at the current focus.

Whether or not a code-scavenging auto-complete tool would work well or
not, a question is raised whether such scavenging-assisting tools could possibly
influence the presence of clones into source code, and whether this should be
subject of empirical studies. This question was discussed in a working session on
“Empirical Studies of Clone Detectors” at the DRASIS seminar [2]. Based on
these discussions, this paper presents: (1) an introductory overview of some code
search techniques known already to exist that could be used for code scavenging,
(2) a preliminary list of five research questions about these tools and their uses
and impacts, and (3) five sketches of empirical studies that might be used to
help answer these research questions.

2 Code Search Overview

During software development, developers may realize they need a piece of code, a
function, or a class that implements a particular feature. Experience in the field
suggests that, ordinarily, they would try to avoid reinventing the wheel and,
above all, to reduce their effort. Thus it is plausible that in many circumstances
they will search for pieces of code that provides what they need, or at least
something that could be easily adapted to that purpose.

Several different mechanisms or tools might be employed to search for such
code, including:

Component repositories: in many cases, it would be possible to find—either
on the Web or inside a component repository—a component that encapsu-
lates the needed feature. In other cases, a component realizing what needed
might not be available. Alternatively, the available might not be the right
solution for the particular problem; for example, the developer does not need
a component but rather a piece of source code to be templated for a partic-
ular purpose, e.g., handling synchronizations, interrupts, adapting another
component, visiting a data structure, etc.

Code search tools on the desktop: Information Retrieval (IR) techniques
have been successfully applied to source code analysis, for example for trace-
ability recovery [3,4] and for feature location [5,6]. The idea of IR-based fea-
ture location is to find source code fragments textually similar to a sentence
describing the feature. Recently, these techniques have been applied to sup-
port source code browsing and, in general, to search into source code files.
To this aim, Poshyvanyk et al. [7] developed an Eclipse plugin.

Web searching for source code: The simplest possible way is to use a search
engine (e.g., Google) and try to search whether the piece of functionality to
be realized is already somewhere on the Web. For example,

http://www.google.com/search?hl=en&q=Handling+interrupts+in+C

might be used to find interrupt handlers in C, or

http://www.eclipse.org/
http://www.google.com
http://www.google.com/search?hl=en&q=Handling+interrupts+in+C

Empirical Studies 3

http://www.google.com/search?hl=en&q=FFT+implementation+in+Java

may be used to find Fast Fourier Transform implementations in Java. These
queries would return, among other links, pointers to pages containing the
pieces of code the developer need. Now Google also provides a specific search
interface for code in their “Google Code Search” feature.

3 Empirically assessing the relationship between code
search and cloning

Little is known about the impact of code search tools on their use in scavenging,
or on their impact on clone construction. The following are questions that need
answering:

RQ1: To what extent does the use of source code searching tools impact devel-
oper effort?

RQ2: To what extent does the use of source code searching tools impact on the
presence of clones in the developed source code?

RQ3: To what extent does the use of source code searching tools impact the
source code quality, e.g. on the presence of defects in the source code?

RQ4: If a developer makes his or her source code available on the Web, how
frequently is the code found and used once it is indexed by search engines?

RQ5: How do developers actually go about searching for code? Are there dif-
ferences in the behaviour based on developer contexts?

These research questions (RQ) are labeled for ease of reference below. To
answer the aforementioned questions, a number of empirical studies would be
necessary. The following subsections briefly outline the designs of some possible
ones. These studies, clearly, are not the only possible ones. Rather, the point of
listing them is to provide a way of envisioning some of the more promising ways
of empirically exploring the research questions.

3.1 Study I - How developers use code search tools

The aim of this is to answer questions RQ1-3, and would, in general, help under-
stand how the developers’ behavior changes with the availability of source code
searching tools. The envisioned study is a controlled experiment in which sub-
jects will be asked to perform a series of development or maintenance/evolution
tasks. The treatments would be the different search tools, i.e., the subjects would
be divided into groups each having different search tools available (e.g., Internet
access or also code search tools); the control group would have no such a facilities
available.

The table below shows a possible, counter-balanced experiment design. To
implement such an experimental design, subjects need to be split into four groups

http://www.google.com/search?hl=en&q=FFT+implementation+in+Java
http://www.google.com/codesearch

4 T. Dean,M. Di Penta,K. Kontogiannis

(A, B, C, D) and they need to perform, over two labs, two different tasks (T1 and
T2) with (Search) and without (No Search) the availability of searching tools.

Group A Group B Group C Group D
Lab 1 T1:Search T1:NoSearch T2:Search T2:NoSearch
Lab 2 T2:NoSearch T2:Search T1:NoSearch T1:Search

The independent variables include: Task, the Lab, the subjects’ ability, and
the availability of the code searching tool (main factor). Different dependent
variables can be considered:

1. the effort;
2. the cloning percentage in the produced code; or
3. the code functionality and quality, e.g., assessed through some test suites.

To ensure the effects of scavenging are made plain it might be necessary to
carefully select tasks in which an easy solution is available by cloning some part
of the existing code.

3.2 Study II - How code posted on the Web is accessed or copied

This study is conceived of as a case study, and would aim to answer question
RQ4. The protocol would require some fragments of source code realizing differ-
ent functionalities to be posted on a Web server. Then, the server log is analyzed
for access to the code. At the same time, queries related to the code posted are
submitted to a search engine to analyze the hits related to the source code just
posted. To avoid biasing the study, such queries need to be formulated from
someone different from the code developers. For example, a pool of students
might be used from a class.

3.3 Study III - What queries are made to search engines to find
code to be cloned

This study, again a case study, aims to answer question RQ5. Search engine
access logs could be mined to investigate how developers use the engines to
search source code. Both search engine owners and researchers would benefit
from such a study, since it aims to answer our research questions and, also, helps
to tune the search engine to better search source code (which is for some search
engines a specific feature—Google Code Search, for example).

The study can be performed by asking search engine owners to provide sub-
sets of their logs that match some queries related to source code searching.
Clearly, confidentiality constitutes a major issue for this kind of study. Never-
theless, the study can also be performed in a simpler way, i.e., within an or-
ganization using a proxy to access the Web. In such a case, it would suffice to
properly configure the Web proxy and then use its log to perform the analysis.

Empirical Studies 5

4 Conclusions

At the present time it seems reasonable to suggest that the tools available can
have an important impact on the scavenging practices of developers and therefore
the properties of code clones within software systems. We presented five sketches
for empirical studies that might be conducted to gain more knowledge about this
topic. The hope of this paper is that these sketches can help organize the efforts
of the research community, and to prompt and inspire work in this area.

References

1. Singer, J.A., Lethbridge, T.C.: (Studying work practices to assist tool design in
software engineering) 173–179

2. Walenstein, A., Koschke, R., Merlo, E.: Duplication, redundancy, and similarity
in software: Summary of Dagstuhl seminar 06301, Dagstuhl, Germany, Dagstuhl
(2006) ISSN 1682–4405.

3. Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Transactions on Software
Engineering 28 (2002) 970–983

4. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: ICSE ’03: Proceedings of the 25th Interna-
tional Conference on Software Engineering, Washington, DC, USA, IEEE Computer
Society (2003) 125–135

5. Antoniol, G., Gueheneuc, Y.G.: Feature identification: A novel approach and a case
study. In: ICSM ’05: Proceedings of the 21st IEEE International Conference on
Software Maintenance (ICSM’05), Washington, DC, USA, IEEE Computer Society
(2005) 357–366

6. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.I.: An information retrieval ap-
proach to concept location in source code. In: WCRE ’04: Proceedings of the 11th
Working Conference on Reverse Engineering (WCRE’04), Washington, DC, USA,
IEEE Computer Society (2004) 214–223

7. Poshyvanyk, D., Marcus, A., Dong, Y.: JIRiSS - an eclipse plug-in for source code
exploration. In: ICPC ’06: Proceedings of the 14th IEEE International Conference
on Program Comprehension (ICPC’06), Washington, DC, USA, IEEE Computer
Society (2006) 252–255

	 Clone Detector Use Questions: A List of Desirable Empirical Studies
	Thomas Dean, Massamiliano Di Penta, Kostas Kontogiannis, and Andrew Walenstein

