
06302 Abstracts Collection

Aspects For Legacy Applications

� Dagstuhl Seminar �

Siobhán Clarke1, Leon Moonen2 and Ganesan Ramalingam3

1 Trinity College - Dublin, IE
Siobhan.Clarke@cs.tcd.ie

2 CWI - Amsterdam, NL
leon.moonen@computer.org

3 IBM TJ Watson Research Center, US
grama@microsoft.com

Abstract. From 26.07.06 to 29.07.06, the Dagstuhl Seminar 06302 �As-
pects For Legacy Applications� was held in the International Conference
and Research Center (IBFI), Schloss Dagstuhl. During the seminar, sev-
eral participants presented their current research, and ongoing work and
open problems were discussed. Abstracts of the presentations given dur-
ing the seminar as well as abstracts of seminar results and ideas are put
together in this paper. The �rst section describes the seminar topics and
goals in general. Links to extended abstracts or full papers are provided,
if available.

Keywords. Aspect orientation, software evolution, program analysis,
reverse engineering, aspect identi�cation, software reengineering

06302 Summary � Aspects For Legacy Applications

This paper provides a summary of the objectives, structure, and the outcome
of Dagstuhl seminar #06302 on Aspects For Legacy Applications, held from
July 26th to July 29th 2006 at Schloss Dagstuhl, Germany. The goal of the
seminar was to bring together researchers from the domains of aspect oriented
software development, software reengineering (with a focus on reverse engineer-
ing, program comprehension, software evolution and software maintenance) and
program analysis to investigate how aspects can help us to understand, maintain,
and transform legacy software systems.

Keywords: Aspect orientation, software evolution, program analysis, reverse
engineering, aspect identi�cation, software reengineering

Joint work of: Moonen, Leon; Ramalingam, Ganesan; Clarke, Siobhán

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/879

Dagstuhl Seminar Proceedings 06302
Aspects For Legacy Applications
http://drops.dagstuhl.de/opus/volltexte/2007/890

http://drops.dagstuhl.de/opus/volltexte/2007/879

2 S. Clarke, L. Moonen and G. Ramalingam

Face-o�:AOP+LMP vs. legacy software

Bram Adams (Gent University, B)

Our presentation relates on a �rst attempt to see if aspect-oriented programming
(AOP) can really help with the revitalisation of legacy business software. By
means of four realistic case studies covering reverse engineering, restructuring
and integration, we discuss the applicability of the aspect-oriented paradigm in
the context of two major programming languages for such environments: Cobol
and C. For each case, we consider both advantages and disadvantages.

Keywords: AOP, legacy software, reverse-engineering, re-engineering, Cobol, C

Joint work of: Adams, Bram; De Schutter, Kris

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/888

Mining Aspects from Version History

Silvia Breu (Cambridge University, GB)

As software evolves, new functionality sometimes no longer aligns with the orig-
inal design, ending up scattered across a program. Aspect mining identi�es such
cross-cutting concerns in order to then help migrating a system to a better de-
sign, maybe even to an aspect-oriented design. We address this task by applying
formal concept analysis to a program's history: method calls added across many
locations are likely to be cross-cutting. By taking this historical perspective, we
introduce a new dimension to aspect mining. As we only analyse changes from
one version to the next, the technique is independent of a system's total size and
scales up to industrial-sized projects such as Eclipse.

Keywords: Aspect mining, formal concept analysis, mining software repositories

Joint work of: Breu, Silvia; Zimmermann, Thomas

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/880

Full Paper:
http://www.cl.cam.ac.uk/ sb586/Site/Publications%20:%20ASE%202006_�les/
ase2006.pdf

See also:

See also: Silvia Breu, Thomas Zimmermann, Christian Lindig. Mining Eclipse
for Cross-Cutting Concerns. In Proceedings of the Third International Workshop
on Mining Software Repositories (MSR 2006), Shanghai, China, May 2006, pp.
94-97.

http://drops.dagstuhl.de/opus/volltexte/2007/888
http://drops.dagstuhl.de/opus/volltexte/2007/880
http://www.cl.cam.ac.uk/~sb586/Site/Publications%20:%20ASE%202006_files/ ase2006.pdf
http://www.cl.cam.ac.uk/~sb586/Site/Publications%20:%20ASE%202006_files/ ase2006.pdf

Aspects For Legacy Applications 3

HAM: Cross-cutting Concerns in Eclipse

Silvia Breu (Cambridge University, GB)

As programs evolve, newly added functionality sometimes does no longer align
with the original design, ending up scattered across the software system. Aspect
mining tries to identify such cross-cutting concerns in a program to support
maintenance, or as a �rst step towards an aspect-oriented program. Previous
approaches to aspect mining applied static or dynamic program analysis tech-
niques to a single version of a system.We leverage all versions from a system's
CVS history to mine aspect candidates with our Eclipse plug-in HAM: when a
single CVS commit adds calls to the same (small) set of methods in many unre-
lated locations, these method calls are likely to be cross-cutting. HAM employs
formal concept analysis to identify aspect candidates. Analysing one commit at
a time makes the approach scale to industrial-sized programs. In an evaluation
we mined cross-cutting concerns from Eclipse 3.2M3 and found that up to 90%
of the top-10 aspect candidates are truly cross-cutting concerns.

Keywords: Aspect Mining, Aspect-Oriented Programming, CVS, Eclipse, For-
mal Concept Analysis, Java, Mining Version Archives

Joint work of: Breu, Silvia; Zimmermann, Thomas; Lindig, Christian

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/884

Mining Additions of Method Calls in ArgoUML

Silvia Breu (Cambridge University, GB)

In this paper we re�ne the classical co-change to the addition of method calls.
We use this concept to �nd usage patterns and to identify cross-cutting concerns
for ArgoUML.

Keywords: Aspect Mining, Aspect-Oriented Programming, CVS, Eclipse, For-
mal Concept Analysis, Java, Mining Version Archives

Joint work of: Breu, Silvia; Zimmermann, Thomas; Lindig, Christian; Livshits,
Benjamin

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/886

Mining Eclipse for CrossCutting

Silvia Breu (Cambridge University, GB)

Software may contain functionality that does not align with its architecture.
Such cross-cutting concerns do not exist from the beginning but emerge over
time.

http://drops.dagstuhl.de/opus/volltexte/2007/884
http://drops.dagstuhl.de/opus/volltexte/2007/886

4 S. Clarke, L. Moonen and G. Ramalingam

By analysing where developers add code to a program, our history-based
mining identi�es cross-cutting concerns in a two-step process. First, we mine
CVS archives for sets of methods where a call to a speci�c single method was
added. In a second step, simple cross-cutting concerns are combined to com-
plex cross-cutting concerns. To compute these e�ciently, we apply formal con-
cept analysis-an algebraic theory. Unlike approaches based on static or dynamic
analysis, history-based mining for cross-cutting concerns scales to industrial-
sized projects: For example, we identi�ed a locking concern that cross-cuts 1284
methods in the open-source project Eclipse.

Joint work of: Breu, Silvia; Zimmermann, Thomas; Lindig, Christian

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/885

Info

Magiel Bruntink (CWI - Amsterdam, NL)

Hi, I'm with the CWI in Amsterdam. I work in a project focussing on the im-
provement of crosscutting concerns in legacy software. We're cooperating with a
manufacturing company in Holland (ASML) which maintains a huge (15 MLOC)
C sourcebase. That system is su�ering from crosscutting concerns that have
been implemented idiomatically, i.e., manually based on non-formal descriptions.
Problems include faulty error handling, code duplication and inconsistencies. I'm
interested in hearing other people's experiences with dealing with crosscutting
concerns in industrial settings, especially reports on actual code migrations to-
wards AOP. I'll also give a talk myself sharing our experience with migrating a
trivial-looking-but-not-quite-so-trivial concern, that is, tracing.

Some of our previous work on the subject:
Discovering Faults in Idiom-based Exception Handling (ICSE06)
http://homepages.cwi.nl/∼bruntink/papers/icse2006.pdf
Isolating Idiomatic Crosscutting Concerns (ICSM05)
http://homepages.cwi.nl/∼bruntink/papers/icsm05.pdf
See you at Dagstuhl!
Magiel

Adding Monitoring, Tuning and Autonomic Control
Aspects to Legacy Applications in the Absence of AOP

James R. Cordy (Queens University - Kingston, CA)

One part of autonomic computing is the ability to identify, separate and au-
tomatically tune parameters related to performance, security, robustness and
other properties of a software system. Often the response to events a�ecting
these properties consists of adjusting tunable system parameters such as table

http://drops.dagstuhl.de/opus/volltexte/2007/885

Aspects For Legacy Applications 5

sizes, timeout limits, restart checks and so on. One can think of these tunable
parameters as a set of knobs that can be tweaked or switched to adapt the sys-
tem to environmental or usage changes. In many ways these tunable parameters
correspond to the switches and potentiometers on the control panel of many
hardware devices.

While modern software systems designed for autonomic control may make
these parameters easily accessible, in legacy systems they are often scattered or
deeply hidden in the software source, cross-cutting both structure and semantics
of the application. Software Tuning Panels for Autonomic Control (STAC) is
a system for automatically re-architecting legacy software systems to separate
this aspect and facilitate autonomic control. STAC works to isolate tuneable
system parameters into one visible area of a system, producing a resulting ar-
chitecture that can be used in conjunction with an autonomic controller for
self-maintenance and tuning.

If AOP were available, then an obvious solution to this challenge would be
to use AOP to specify and weave the monitoring, tuning and control aspect
into the legacy program. However, our solution is constrained to work without
AOP, implementing the aspect using traditional pure Java contructs instead.
Somewhat surprisingly, the non-AOP implementation of this traditional aspect-
oriented example turns to be not only feasible, but to have signi�cant engineering
advantages over the AOP solution as well, leading to the question of whether
aspects may work better as a design concept than as a programming technique.

References
E. Dancy and J.R. Cordy, "STAC: Software Tuning Panels For Autonomic

Control", Proc. CASCON'06, 16th IBM Centre for Advanced Studies Interna-
tional Conference on Computer Science and Software Engineering, Toronto, Oc-
tober 2006, 15 pp. (to appear)

Joint work of: Cordy, James R.; Dancy, Elizabeth

Recovering Code Categories from Legacy Source Code

Rui Correia (University of Leicester, GB)

A short overview over a methodology for reengineering Software Systems and
change its architecture was presented. After that, a more detailed explanation
was given about our existing code categories and the ongoing work on how to
categorize Legacy Source Code. Finaly, some future wrok ideas and the hope
that Aspect Mining tecnhiques can be used in our work was expressed.

6 S. Clarke, L. Moonen and G. Ramalingam

Rule-based Model Extraction from Source Code

Rui Correia (University of Leicester, GB)

In the context of an approach for reengineering legacy software systems at the
architectural level, we present in this paper a reverse engineering methodology
that uses a model de�ned as a type graph to represent source-code subject to a
code categorization process. Two alternative methods for referencing the source
code are discussed: native vs. graphical. To represent the code, the native repre-
sentation uses the abstract syntax tree while the graphical uses a programming
language metamodel. Two options regarding the way that the graph can relate
to the source code reference model are also considered: association model vs.
direct link. The extraction of the program representation, complying to the type
graph, is based on rules that categorize source code according to its purpose.
The techniques to address this process, such as the code categorization rules,
are shown together with examples.

Keywords: Reverse engineering, Code categorization, Program representation

Joint work of: Correia, Rui; Matos, Carlos; El-Ramly, Mohammad; Heckel,
Reiko

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/881

Toward a Compositional Model for Data Update/Query in
Reactive Applications: A Datalog-Based Approach

John H. Field (IBM TJ Watson Research Center - Hawthorne, USA)

We describe preliminary work on candidate constructs for data query and data
update in _Collage_, a programming model under development at IBM Re-
search. Collage is intended for implementation of distributed, event-driven ("re-
active") applications, e.g., web commerce sites, supply chain management, por-
tals/aggregators, auctions, multi-party �nancial transactions, or work�ow. Col-
lage is organized around a collection of autonomous processes, or _services_.
The state of a service is updated in response to external _events_, such as
pushing a button on a web form, or receiving a message from a remote process.

Normally, independently-speci�ed state updates are di�cult to compose due
to sequencing and data dependence issues. In this talk, we describe a variant
of datalog that allows composition of independently-developed rules de�ning
distinct aspects of an application's behavior. In addition to de�ning reactive
state updates in a compositional way, rules can also be used to specify invariant
properties of a service state. Such properties are either checked after every state
update, or maintained constructively.

Joint work of: Field, John; Marinescu, Maria-Cristina; Stefansen, Christian

http://drops.dagstuhl.de/opus/volltexte/2007/881

Aspects For Legacy Applications 7

Issues and Topics for AOP in the Context of Model-Driven
Software Engineering

Kostas Kontogiannis (University of Waterloo, CA)

Model-driven Development (MDD) and Model-driven Evolution (MDE) are emerg-
ing areas in the software engineering community. Techniques pertaining to the
formalization of models for various software artifacts at di�erent levels of ab-
straction (requirements, architecture, design, code, testing), the infrastructure
for model transformation and model synchronization, as well as, techniques for
code generation from higher level of abstraction models, are issues currently
being investigated.

In this respect, Aspect Oriented Programming (AOP) is posing new chal-
lenges in the context of MDD and MDE. Some of the topics and issues to discuss
in this workshop could relate to the problems stemming from where and how
Model-driven techniques meet AOP for reverse engineering, and reengineering
purposes.

More speci�cally, interesting issues that arise from considering MDD/MDE
within the context of Aspect Oriented Programming, include the recovery and
modeling of Aspects from legacy systems, the transformation of Aspect models to
new forms to support evolution or reengineering, consistency checking of Aspect
models while these evolve as consequence of maintenance or evolution activities

Keywords: Model Driven Software Software Evolution, Model Driven Software
Development, Model Tranformations, Aspect Oriented Programming

Mining Control Flow Graphs for Crosscutting Concerns
(But Finding Delegation)

Jens Krinke (FernUniversität in Hagen, D)

There exist some approaches that analyse execution relations to identify cross-
cutting concerns. Execution relations express some recurring invocation pattern
between two methods. Depending on the speci�c relation, the approaches mine
speci�cally for join points that are already present in the system. However, all
approaches need some kind of �lter to distinguish crosscutting delegation from
crosscutting concerns. A simple �lter that ignores non-void methods results in
much better results with a low number of false positives. In a case study based
on JHotDraw, a set of identi�ed crosscutting concerns are discussed and com-
pared with previous work. Delegation has a major role in aspect mining and the
relation of delegation to crosscutting concerns can be compared to the relation
of delegation to inheritance.

Keywords: Aspect mining

8 S. Clarke, L. Moonen and G. Ramalingam

abstract

Kiarash Mahdavi (King's College - London, GB)

Background and Interests:
My background is in Software clustering as a means for software analysis

and comprehension. I also have an interest in Heuristic search algorithms. I
currently work as a Research Associate at Kings College London, UK, under the
CONTRACTS project(Concept Assignment to Raise the Abstraction Level of
Slicing). This project is headed by Professor Mark Harman and Dr Nicolas Gold.
It involves exploring comprehension techniques such as Concept Assignment as
a means to improve Slicing/Slicing criteria.

Aspects and concepts in software seem closely related, therefor one of our
current interest is in �nding ways to relate these two ideas. We think this maybe
achieved by �nding ways to identify aspects in software by using Concept Assign-
ment techniques or Alternatively by employing Aspect identi�cation techniques
to help us more accurately �nd Concepts in software.

Questions:
-Is there a Relationships between Concept and Aspects in code?
-If so, can this relationship be used to help with identi�cation of aspects or

concepts?
-Further more can techniques used to identify aspects and concepts be com-

bined to create more powerful concept or aspect identi�cation techniques? The
following refrences provide a good indication of our overall view and interest in
CONTRACTS:

Useful References:
[1] Mark Harman and Nicolas Gold and Robert M. Hierons and David Binkley

Code Extraction Algorithms which Unify Slicing and Concept Assignment
WCRE, pp. 11-21, IEEE Computer Society, 2002.

[2] N. E. Gold and M. Harman and D. Binkley and R. M. Hierons Unifying
program slicing and concept assignment for higher-level executable source
code extraction, Software�Practice and Experience, 35(10), pp. 977-1006,
August 2005.

[3] Nicolas Gold and Mark Harman and Zheng Li and Kiarash Mahdavi Allow-
ing Overlapping Boundaries in Source Code using a Search Based Approach
to Concept Binding to be published in the upcoming ICSM 2006 conference

[4] Dave Binkley and Nicolas Gold and Mark Harman and Zheng Li and Kiarash
Mahdavi An Empirical Study of Executable Concept Slice Size to be pub-
lished in WCRE 2006
The following are related to my previouse work in software clustering:

1. Kiarash Mahdavi and Mark Harman and Robert M. Hierons A Multiple
Hill Climbing Approach to Software Module Clustering ICSM, pp. 315-324,
IEEE Computer Society, 2003.

Aspects For Legacy Applications 9

2. Kiarash Mahdavi and Mark Harman and Robert Hierons Finding Building
Blocks for Software Clustering, Genetic and Evolutionary Computation �
GECCO-2003, pp. 2513-0, Springer-Verlag, 2003.

3. Mark Harman and Stephen Swift and Kiarash Mahdavi An empirical study
of the robustness of two module clustering �tness functions GECCO, pp.
1029-1036, ACM, 2005.

Steps towards Consistent Mining and Migration of
Crosscutting Concerns

Marius Marin (TU Delft, NL)

Crosscutting concerns are often de�ned and explained through a variety of ex-
amples ranging from logging to design patterns, to business rules, to policy en-
forcement, etc. These examples illustrate crosscutting behavior at di�erent levels
of granularity and give a rather intuitive de�nition of the crosscutting concerns.
Such heterogeneous examples and implicit de�nition re�ect on aspect mining
and migration e�orts, as they lack required consistency in describing (common)
�ndings and wider applicable solutions.

This presentation proposes a discussion about how to ensure consistency in
de�ning and describing crosscutting functionality, about how to provide com-
patibility between aspect mining results so we can compare and combine these
results and aspect mining techniques. It builds on previous and ongoing e�orts
on identifying common idioms in implementation of crosscutting concerns, and
describing these idioms as atomic, generic concerns, called *sorts*.

Keywords: Aspect identi�cation; crosscutting concern sorts; framework

Joint work of: Marin, Marius; Moonen, Leon; van Deursen, Arie

Full Paper:
http://arxiv.org/ftp/cs/papers/0606/0606113.pdf

A common framework for aspect mining based on
crosscutting concern sorts

Marius Marin (TU Delft, NL)

The increasing number of aspect mining techniques proposed in literature calls
for a methodological way of comparing and combining them in order to assess,
and improve on, their quality. This paper addresses this situation by proposing
a common framework based on crosscutting concern sorts which allows for con-
sistent assessment, comparison and combination of aspect mining techniques.
The framework identi�es a set of requirements that ensure homogeneity in for-
mulating the mining goals, presenting the results and assessing their quality.

http://arxiv.org/ftp/cs/papers/0606/0606113.pdf

10 S. Clarke, L. Moonen and G. Ramalingam

We demonstrate feasibility of the approach by retro�tting an existing aspect
mining technique to the framework, and by using it to design and implement
two new mining techniques. We apply the three techniques to a known aspect
mining benchmark and show how they can be consistently assessed and com-
bined to increase the quality of the results. The techniques and combinations
are implemented in FINT, our publicly available free aspect mining tool.

Keywords: Aspect identi�cation, crosscutting concern sorts, framework

Joint work of: Marin, Marius; Moonen, Leon; van Deursen, Arie

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/882

Delving source code with formal concept analysis

Kim Mens (Univ. cath. de Louvain, B)

Getting an initial understanding of the structure of a software system, whether it
is for software maintenance, evolution or reengineering purposes, is a nontrivial
task.

We propose a lightweight approach to delve a system's source code automati-
cally and e�ciently for relevant concepts of interest: what concerns are addressed
in the code, what patterns, coding idioms and conventions have been adopted,
and where and how are they implemented. We use formal concept analysis to
do the actual source-code mining, and then �lter, classify and combine the re-
sults to present them in a format that is more convenient to a software engineer.
We applied a prototype tool that implements this approach to several small
to medium-sized Smalltalk applications. For each of these, the tool uncovered
several design pattern instances, coding and naming conventions, refactoring
opportunities and important domain concepts. Although the tool and approach
can still be improved in many ways, the tool does already provides useful results
when trying to get an initial understanding of a system. The obtained results
also illustrate the relevance and feasibility of using formal concept analysis as
an e�cient technique for source code mining.

Keywords: Source-code mining, formal concept analysis, software classi�cation.

Joint work of: Mens, Kim; Tourwé, Tom

Full Paper:
http://www.info.ucl.ac.be/∼km/MyResearchPages/publications/journal_article/
JA_2005_CLSS.pdf

See also: K. MENS & T. TOURWE. Delving source code with formal concept
analysis. Elsevier Journal on Computer Languages, Systems & Structures, 31(3-
4) : 183-198. Special Issue: Smalltalk. Elsevier, October-December 2005. (Early
draft of the published version.)

http://drops.dagstuhl.de/opus/volltexte/2007/882
http://www.info.ucl.ac.be/~km/MyResearchPages/publications/journal_article/ JA_2005_CLSS.pdf
http://www.info.ucl.ac.be/~km/MyResearchPages/publications/journal_article/ JA_2005_CLSS.pdf

Aspects For Legacy Applications 11

Aspect Mining : An emerging research domain

Kim Mens (Univ. cath. de Louvain, B)

This invited presentation o�ers a �rst, in-breadth survey and comparison of cur-
rent aspect mining tools and techniques. It focuses mainly on automated tech-
niques that mine a program's static or dynamic structure for candidate aspects.
We present an initial comparative framework for distinguishing aspect mining
techniques, and assess known techniques against this framework. The results
of this assessment may serve as a roadmap to potential users of aspect mining
techniques, to help them in selecting an appropriate technique. It also helps as-
pect mining researchers to identify remaining open research questions, possible
avenues for future research, and interesting combinations of existing techniques

Keywords: Aspect mining

Cross-fertilisation between Software Evolution and AOSD

Tom Mens (Université de Mons, B)

My main research interest is the investigation of novel techniques, formalisms,
mechanisms and tools to gain a better understanding of, and improve support
for software evolution. (And this both at programming and modelling level.)

The main reason for me to attend this Dagstuhl Seminar is to establish a
cross-fertilisation between the research domain of Software Evolution on the one
hand, and AOSD on the other hand. In software evolution research, a whole
range of formal techniques are being explored and used (graph transformation,
description logics, dependency analysis, and many more).

It is likely that the same mechanisms can also be very helpful in AOSD
research as well.

The other way around, techniques, tools and formalisms used in AOSD may
be exploited to support software evolution. This can be summarised in the fol-
lowing two research questions:

� How and which techniques and formalisms that have already proven their
use in software evolution research can we apply to an AOSD context?

� How and which techniques and formalisms that have already proven their
use in AOSD research can we apply to a software evolution context?

The material I submitted are some papers I have written in the context of (model-
driven) software evolution. During the seminar, I hope to be able to discuss on
how these ideas can be applied in an AOSD context as well.

Another important issue that bothers me in AOSD research (and to a certain
extent also in OO research) is its usefulness. Until now, I didn't �nd a single
empirical study that e�ectively shows the bene�ts of AOSD as compared to
other programmingg paradigms. Just like in the good old OO days, everyone

12 S. Clarke, L. Moonen and G. Ramalingam

claims that aspects are supposed to make software more reusable, adaptable and
evolvable, but I have my doubts that this is actually the case. (I am deliberately
playing advocate of the devil here.) A scienti�c validation of these claims has
not yet been made, so I think it is important for the community to undertake
e�orts to do this. After all, what is the reason of migrating to aspect-oriented
software, if we don't even know whether it will be bene�cial? This is a topic I
would like to see discussed during the seminar as well.

Keywords: Software evolution, formal support, AOSD

Analysing dependencies between aspects (using
transformation technology)

Tom Mens (Université de Mons, B)

Analysing dependencies between aspects, or between the crosscutting concerns
they address is a major challenge in AOSD research. This is clearly exempli�ed
by the recent call for submissions of a special issue for the Transactions on AOSD
journal (see excerpt below).

In previous work, I have gained expertise in dependency analysis. In partic-
ular, I have explored the use of graph transformation theory and technology for
the purpose of analysing dependencies between model transformations (in the
context of inconsistency management) and refactoring. More speci�cally, the
formal notion of critical pair analysis was used for this purpose (see attached
papers).

It is my convictiopn that the same techniques can also be used and exploited
in an AOSD context, in order to analyse and reason about dependencies between
aspects.

=== EXCERPT FROM CALL FOR SUBMISSIONS === TRANSAC-
TIONS ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT SPECIAL
ISSUE ON DEPENDENCIES AND INTERACTIONS WITH ASPECTS

Special issue web site: http://www.aosd-europe.net/events/dia_taosd/
Crosscutting concerns exist throughout software development cycle - from

requirements through to implementation. Dedicated modularization units rep-
resenting these concerns are termed aspects. While crosscutting other concerns,
aspects often exert broad in�uences on these concerns, e.g. by modifying their
semantics, structure or behaviour. These dependencies among both aspectual
and non-aspectual elements may lead to either desirable or (more often) un-
wanted and unexpected interactions. We encourage submissions investigating
the problems of such dependencies and interactions and handling them at all
levels:

� starting from the early development stages (i.e., requirements, architecture,
and design), looking into dependencies among requirements (e.g. positive/
negative contributions between aspectual goals, etc.) and interactions or in-
terference caused by aspects (e.g. quality attributes) in requirements, archi-
tecture, and design;

Aspects For Legacy Applications 13

� analysing these dependencies and interactions both through modelling and
formal analysis;

� considering language design issues which help to handle such dependencies
and interactions (e.g. 'dominates' mechanism of AspectJ), and,

� studying such interactions in applications.

Keywords: Dependency analysis, critical pair analysis, aspects , model trans-
formation, crosscutting concerns

Using AOSD technology to support UML language
extensibility

Tom Mens (Université de Mons, B)

An interesting topic I would like to discuss the use of AOSD techniques to
support metamodeling. In particular, I would like to see how AOSD can be used
to better support the built-in language extensibility mechanism of the UML
modeling language.

In the UML 2.0 infrastructure document, UML Pro�les are de�ned as a
standard language extension mechanism to extend or further constrain the UML
syntax and semantics. In many ways, these pro�les can be considered as a kind
of aspects.

Indeed, each pro�le is a kind of independent stand-alone extension of the
UML metamodel. But since pro�les can be applied together, all of the problems
apparent in combining and weaving aspects also appear when trying to combine
pro�les:

� pro�les can be dynamically applied or retracted from a model
� ro�les can be dynamically combined
� it is not foreseen at pro�le de�nition time which pro�les will be applied
together

� the order in which pro�les are applied may be important
� some pro�les may be in mutual con�ict and cannot be applied together

All of these issues appear to be very important, but are not addressed at all in
the UML document. I believe that techniques exploited in AOSD research may
also be applicable to address the above problem.

Keywords: UML pro�les, metamodeling, language extensibility, modeling

14 S. Clarke, L. Moonen and G. Ramalingam

The Problem with Legacy Applications

Hausi Müller (University of Victoria, CA)

In the �rst part of the talk, we brie�y summarize major avenues of legacy sys-
tems research and highlight selected success stories. Despite all these research
results, dealing with (legacy) software systems does not seem to get easier. In
fact with the event of the Web, legacy systems seem to be morphing into sys-
tems of systems. According to a June 2006 SEI study, the software systems
will evolve into Ultra-Large-Scale (ULS) systems and socio-technical ecosystems
[http://www.sei.cmu.edu/uls]. The notion of an ecosystem connotes complexity,
decentralized control, hard-to-predict reactions to disruptions, and di�culty of
monitoring and assessment. Thus in many ways, legacy systems have already
morphed into ecosystems.

The presentation then concentrates on the software complexity problem in-
herent in ULS systems and how to use autonomic computing technology to
alleviate this problem.

References:
[1] L. Northrop et al., SEI; Ultra-Large-Scale Systems, 134 pages, June 2006

http://www.sei.cmu.edu/uls/
[2] A. Kluth. Information Technology, The Economist, Oct 28, 2004
[3] M. Shaw, Everyday Dependability for Everyday Needs, Procs 13th Inter.

Symposium on Software Reliability Engineering, pp. 7-11,2002
[4] IBM Systems Journal, Special Issue on Autonomic Computing, 24(1), 2003

Kephart, Chess, IEEE Computer, 36(1):41-50, Jan 2003
[5] IBM Research AC Web Site; http://www.research.ibm.com/autonomic/
[6] IBM, An Architecture Blueprint for Autonomic Computing, White Paper,

June 2005
[7] H. Müller, L. O'Brian, M. Klein, and B. Wood; Autonomic Computing, SEI

Tech Report, 61 pages, June 2006
[8] M. Shaw, Beyond Objects: A Software Design Paradigm based on Process

Control, ACM SEN, 20(11):27-38, 1995
[9] P. Bennett, In Rome's Basement, National Geographic, July 2006

Keywords: Legacy systems, systems of systems, ultra-large-scale systems,
ecosystems, autonomic systems

Managing Concern Interfaces

Martin Robillard (McGill University - Montreal, CA)

Programming languages provide various mechanisms to support information hid-
ing. One problem with information hiding, however, is that providing a stable
interface behind which to hide implementation details involves �xing in advance

Aspects For Legacy Applications 15

the services o�ered through the interface. We introduce a �exible approach to
de�ne and manage interfaces to achieve separation of concerns in evolving soft-
ware.

Our approach involves explicitly specifying interface and implementation
classes for individual concerns, and automatically classifying implementation
classes based on their relation to the interface. Our approach is supported by
JMantlet, a tool that provides advanced interface management within an inte-
grated development environment. We report on a case study of a large system
that provides evidence that �exible interface management is desirable and ade-
quately supported by our approach.

Keywords: Separation of Concerns, Dependency Anaysis, JMantlet, Applica-
tion Programming Interfaces

Joint work of: Boulanger, Jean-Sebastien ; Robillard, Martin

Full Paper:
http://www.cs.mcgill.ca/∼martin/papers/icsm2006b.pdf
See also: Jean-Sébastien Boulanger and Martin P. Robillard. Managing Con-
cern Interfaces. In Proceedings of the 22nd IEEE International Conference on
Software Maintenance, pages 14-23, September 2006.

Aspects - from Promise to Reality

Sabhah, Daniel

The concepts underpinning aspect oriented software development have been with
us for many years. The last couple of years have been particularly exciting, with
much of the promise brought into sharp reality. The timing for our industry
couldn't be more critical; urgent help is needed to address the growing software
complexity crisis. Deployment of uniform implementations of cross-cutting con-
cerns into a range of software products is now feasible, and large and complex
software can be factored and recomposed into simpler, better targeted, higher
quality o�erings. In this talk we describe how IBM plans to put this technology
into production to: simplify the delivery and service of high quality software,
deliver new solutions for our customers' development requirements, create op-
portunities for customers to add value to their software, and to accelerate new
initiatives at the heart of IBM's software strategy.

Mining Aspects in Legacy System Documentation

Americo Sampaio (Lancaster University, GB)

Aspect-Oriented Requirements Engineering (AORE) provides separation of con-
cerns at the requirements level. In order to cope with concern identi�cation and
structuring into di�erent requirements models, tool support is vital to e�ectively
reduce the burden of performing various AORE tasks such as aspect mining.

http://www.cs.mcgill.ca/~martin/papers/icsm2006b.pdf

16 S. Clarke, L. Moonen and G. Ramalingam

The EA-Miner tool provides automated support for mining various types of
concerns from a variety of early stage requirements documents (e.g., legacy spec-
i�cations, user manuals, interview transcripts, etc.) and structuring these con-
cepts into speci�c aspect-oriented requirements models (e.g., viewpoints-based,
use-case-based).

The key insight for early-stage requirements automation is the use of natural
language processing to reason about properties of the requirements as well as
the utilization of semantics revealed by the natural language analysis in building
the models.

Keywords: Early Aspects, Aspect Mining, AORE, NLP

Joint work of: Sampaio, Americo; Awais, Rashid

All about Andy...

Andy Zaidman (University of Antwerp, B)

Hi, I'm a PhD student at the University of Antwerp, Belgium. I'm in the last
phew months of my PhD, after which I will move to the Delft University of
Technology in the Netherlands.

My main research topic is trying to stimulate program comprehension by
extracting and analyzing run-time information from systems. This work is carried
out within the ARRIBA research project, where a number of universities and
industrial partners try to learn from each others needs and solutions. In this
framework we carried out an experiment in 2005 where we wanted to collect
runtime information from an industrial legacy C system. For this we used aspects,
more precisely Aspicere. This work was carried out in close collaboration with
Bram Adams and Kris De Schutter from the Ghent University, both of whom
are also attending this seminar.

I have two points of interest that are particularly relevant to this seminar, nl:
- the problems that arise when you try to deploy an aspect solution in a legacy
environment. How do you cope with legacy compilers, with the build process,
etc. - how to cope with a distributed, multi-system, multi-language environment
in which you want to deploy aspects.

See you soon at Dagstuhl!
Andy

Keywords: Abstract

Introduction to Aspects

Oege de Moor (Oxford University, GB)

This talk provides a gentle introduction to aspect-oriented programming. With
aspects, one can intercept events at runtime by writing patterns called "point-
cuts"; it is also possible to add new members to existing classes.

Aspects For Legacy Applications 17

We illustrate these mechanisms via a simple example, namely that of check-
ing that the use of the Enumeration interface is failsafe (Enumeration is an
outdated version of Iterator; while Iterator is expected to be failsafe, Enumer-
ation is not). After a brief discussion of the advantages and disadvantages of
aspects, I'll zoom in on two recent developments, namely pointcuts that match
on complete program traces, and pointcuts that capture semantic properties (as
opposed to pointcuts that are entirely name-based).

The attached "Paper.pdf" is a draft paper to be published at FATES/RV
2006 - it contains much of the introductory material I shall cover in my talk.
"Other.pdf" is a very recent paper, submitted to POPL, on the topic of giving a
semantics to pointcuts via a highly restricted form of logic programming called
"Datalog".

Full Paper:
http://aspectbench.org

http://aspectbench.org

	06302 Abstracts Collection Aspects For Legacy Applications --- Dagstuhl Seminar ---
	 Siobhán Clarke, Leon Moonen and Ganesan Ramalingam

