Mining Eclipse for Cross-Cutting Concerns

Silvia Breu
Saarland University
Dept. of Computer Science
Saarbriicken, Germany

silvia@ieee.org

ABSTRACT

Software may contain functionality that does not align with
its architecture. Such cross-cutting concerns do not exist
from the beginning but emerge over time. By analysing
where developers add code to a program, our history-based
mining identifies cross-cutting concerns in a two-step pro-
cess. First, we mine CVS archives for sets of methods where
a call to a specific single method was added. In a second
step, simple cross-cutting concerns are combined to complex
cross-cutting concerns. To compute these efficiently, we ap-
ply formal concept analysis—an algebraic theory. Unlike ap-
proaches based on static or dynamic analysis, history-based
mining for cross-cutting concerns scales to industrial-sized
projects: For example, we identified a locking concern that
cross-cuts 1284 methods in the open-source project Eclipse.

1. INTRODUCTION

As object-oriented programs evolve over time, they may suf-
fer from “the tyranny of dominant decomposition” [16]: The
program can be modularised in only one way at a time. Con-
cerns that are added later and that no longer align with that
modularisation end up scattered across many modules and
tangled with one another. Aspect-oriented programming
(AOP) remedies this by factoring out aspects and weaving
them back in a separate processing step [8]. For existing
projects to benefit from AOP, these cross-cutting concerns
must be identified first. This task is called aspect mining.

We solve this problem by taking a historical perspec-
tive [4]: Our analysis is based on the hypothesis that cross-
cutting concerns are added to a project over time. A code
change in the history of a program is likely to introduce such
a concern if the modification gets introduced to various lo-
cations within a single code change.

Our hypothesis is supported by the following example: On
November 10, 2004, Silenio Quarti committed code changes
“76595 (new lock)” to the Eclipse CVS repository. These
changes fixed the bug #76595 “Hang in gfk_pixbuf new”

Dagstuhl Seminar Proceedings 06302
Aspects For Legacy Applications
http://drops.dagstuhl.de/opus/volltexte/2007/885

Thomas Zimmermann
Saarland University
Dept. of Computer Science
Saarbriicken, Germany

tz@acm.org

Christian Lindig
Saarland University
Dept. of Computer Science
Saarbriicken, Germany

lindig@cs.uni-sb.de

that reported a deadlock! and required the implementation
of a new locking mechanism for several platforms. The ex-
tent of Silenio Quarti’s modification was immense: He mod-
ified 2573 methods and inserted in 1284 methods a call to
the lock method, as well as a call to an unlock method. Ob-
viously AOP could have been used to weave in this locking
mechanism.

For the locking mechanism of Eclipse, it turns out that
the locations where calls to lock were inserted are exactly
the same as the locations where calls to unlock were added.
This is why we combine the two simple aspect candidates
into a complex aspect candidate: lock,unlock were added
in 1284 different locations. However, it is not obvious how
to find all such complex aspect candidates efficiently. We
propose to use formal concept analysis [5] for automatically
detecting complex aspect candidates, which is the contribu-
tion of this paper and detailed in the next section.

2. MINING CROSS-CUTTING CONCERNS

Previous approaches to aspect mining considered only a sin-
gle version of a program using static and dynamic program
analysis techniques. We introduce an additional dimen-
sion: the history of a project. Technically, we mine version
archives for aspect candidates.

‘We model the history of a program as a sequence of trans-
actions. A transaction collects all code changes between two
versions, called snapshots, made by a programmer to com-
plete a single development task. Motivated by dynamic ap-
proaches for aspect mining that investigate execution traces
of programs, we build our analysis on changes that insert
or delete method calls within a single transaction. Typi-
cally, these changes are the ones that have direct impact on
execution traces. However, since we are looking for the in-
troduction of cross-cutting concerns, we concentrate solely
on additions and omit deletions of method calls. We name
the method to which a call is inserted a method location.

Within the set of transactions we are searching for aspect
candidates. An aspect candidate represents a cross-cutting
concern in the sense that it consists of one or more calls to
certain methods that are spread throughout the source code
across several method locations.

Aspects are maximal Blocks. We can think of a trans-
action as a cross table with locations as rows and methods
as columns (Figure 1, left). The intersection of location I
and method m is marked with a cross when the transaction
inserted a call to m in location [. In this representation,

'https://bugs.eclipse.org/

Methods

XXX X simple aspect
«n X X candidate
S X X
2] XX complex aspect
g X X candidate
-1 XX X X

X
X X X

Figure 1: Maximal blocks represent aspect candi-
dates in a transaction (left). Here, 14 candidates
form a lattice of super and sub aspects (right).

each column is a simple aspect candidate; however, to cut
out noise, we only consider columns with at least 7 crosses.
Formally, a candidate is a pair (L, M) of locations L and
methods M with |M| = 1 and |L| > 7 for simple candi-
dates.

Given a specific simple aspect candidate (L, M), we can
arrange the table such that all rows from L are adjacent to
each other. Now a simple aspect candidate manifests itself
as a mazimal block in the table of width |M| = 1 and height
|L|. In Figure 1 such a block is marked by the grey-shaded
rectangle of size 1 x 7.

A complex aspect candidate (L, M) is a maximal block
with [M] > 1: At each location ! € L all methods m € M are
called. An example is the second dark-grey-shaded rectangle
of size 3 x 3 in Figure 1. However, to obtain such a block for
a complex aspect candidate in general, we have to re-order
not just rows but also columns. It is therefore not obvious
how to compute all blocks present in a transaction.

Identifying maximal blocks in a cross table (or transac-
tion) T' C £ x M is provided by the algebraic theory of
formal concepts [5]. A maximal block (or aspect candidate)
is a pair (L, M) where the following holds:

L = {ieLl|(m,]) forallme M}
M = {meM|(m,l)forallle L}

Each aspect candidate (L, M) is maximal in the following
sense: we can’t add another method m to M without shrink-
ing L to ensure that all locations in L call m. Likewise, we
can’t add another location [to L without shrinking M. The
definition allows for aspect candidates of any size—filtering
for candidates that meet certain requirements like |L| > 7 is
applied later.

The maximal blocks of a transaction may be computed
efficiently [10] and we us this to compute all aspect candi-
dates (L, M). To identify the most interesting ones, we take
the area |L| x |M| of each candidate’s block as a measure
and require |L| > 7.

The aspect candidates of a transaction form a lattice given
the following partial order: (L, M) < (L',M’)if LC L. A
sub aspect cross-cuts fewer locations than its super aspect
but calls more methods (c.f. Figure 1, right).

3. EXAMPLES

Figure 2 shows the lattice of all aspect candidates from
an Eclipse CVS commit transaction on 2004-03-01. In the

Figure 2: The lattice of aspect candidates from a
commit to Eclipse CVS on 2004-03-01 by developer
ptff. Candidate 6 contains 14 additions of calls to
unsupportedIn2().

lattice two aspects are connected if they are in a direct
super/sub-concept relation. Nodes are given the shape of
the corresponding block which gives prominence to large as-
pect candidates: For example, candidate 6 contains 14 lo-
cation where calls to unsupportedIn2() were added. This
method throws an exception if the operation called is not
supported at API level 2.0.

An even larger example for a crosscutting concerns is
the following: Eclipse represents nodes of abstract syn-
tax trees by the abstract class ASTNode and several sub-
classes. These subclasses fall into the following simplified
categories: expressions (subclass Expression), statements
(subclass Statement), and types (subclass Type). Addi-
tionally, each subclass of ASTNode has properties that cross-
cut the class hierarchy. An example for a property is the
name of a node: There are named (QualifiedType) and
unnamed types (PrimitiveType), as well as named expres-
sions (FieldAccess). Additional properties include the type,
expression, operator, or body that are associated with a node
in an abstract syntax tree.

This is a typical example for a role super-imposition con-
cern [13]. As a result of this cross-cut, every named subclass
of ASTNode implements the method setName which results in
duplicated code that is difficult to maintain. With aspect-
oriented programming the concern could be realised with
the method introduction mechanism.

public void setName(SimpleName name) {
if (name == null) {
throw new IllegalArgumentException();
}
ASTNode 01dChild = this.methodName;
preReplaceChild(01ldChild, name, NAME_PROPERTY);
this.methodName = name;
postReplaceChild(01dChild, name, NAME_PROPERTY);
}

Our mining approach revealed this cross-cutting concern
with several aspect candidates. The lattice for the corre-
sponding commit transaction is shown in Figure 3.

The methods preReplaceChild and postReplaceChild
are called in the aforementioned setName method and many
other methods. Node 10 contains 104 locations where calls
to both methods are added. The methods preLazyInit and
postLazyInit guarantee the safe initialisation of properties
and calls to them are added in 78 locations; node 11 is the
corresponding node in the lattice in Figure 3. The meth-
ods preValueChange and postValueChange are called when

Figure 3: The lattice of aspect candidates from a
commit to Eclipse CVS on 2004-02-25 by developer
ptff. Candidate 10, e.g., contains 104 additions of
calls to preReplaceChild(3), postReplaceChild(3).

a new operator is set for a node; calls to them have been
added in 26 locations, represented by node 12 in the lattice.

4. DATA COLLECTION

Our mining approach can be applied to any version control
system, however, we based our implementation on CVS since
most open source projects are using it. One of the major
drawbacks of CVS is that commits are split into individual
check-ins and have to be reconstructed. For this we use
a sliding time window approach [21] with 200 seconds as
time window. A reconstructed commit consists of a set of
revisions R where each revision r € R is the results of a
single check-in.

Additionally, we need to compute method calls that have
been inserted within a commit operation R. For this, we
build abstract syntax trees (ASTs) for every revision r € R
and its predecessor and compute the set of all calls Cy in r
and Cj for the preprocessor by traversing the ASTs. Then
Cr = C1 \ Cp is the set of inserted calls within r; the union
of all C\ for r € R forms a transaction T = C' which
serves as input for our aspect mining.

Unlike Williams and Hollingsworth [19, 20], our approach
does not build snapshots of a system to compute inserted
method calls. As they point out, such interactions with
the build environment (compilers, make files) are extremely
difficult to handle and result in high computational costs.
Instead, we analyse only the differences between single re-
visions. As a result our preprocessing is cheap, as well as
platform- and compiler-independent; the drawback is that
types cannot be resolved because only one file is investi-

reER

gated. In particular, we miss the signature of called meth-
ods. In order to avoid noise that is caused by this, we use
the number of arguments in addition to method names to
identify methods calls.

S. RELATED WORK

While this work is not the first that applies formal concept
analysis in a static analysis fashion in order to mine cross-
cutting functionality, it is the first that leverages software
repositories to do so. Furthermore, we overcome the prob-
lem of scalability: We scale to industrial-sized projects such
as Eclipse.

Static Aspect Mining. The Aspect Browser [6] iden-
tifies cross-cutting concerns with textual-pattern matching
(much like “grep”) and highlights them. The Aspect Min-
ing Tool (AMT) [7] combines text- and type-based analysis
of source code to reduce false positives. Ophir [15] uses a
control-based comparison, applying code clone detection on
program dependence graphs. Tourwé and Mens [18] intro-
duce an identifier analysis, that is based on formal concept
analysis for mining aspectual views such as structurally re-
lated classes and methods. Krinke and Breu [9] propose an
automatic static aspect mining based on control flow. The
control flow graph of a program is mined for recurring exe-
cution patterns of methods. The fan-in analysis by Marin,
van Deursen, and Moonen [14] determines methods that are
called from many different places—thus having a high fan-
in. Our approach presented here is similar to the fan-in
analysis. However, we mine several versions of a program,
and hence, we are more precise.

Dynamic Aspect Mining. DynAMiT (Dynamic Aspect
Mining Tool) [1, 3] is a dynamic approach that analyses
program traces reflecting the run-time behaviour of a sys-
tem in search for recurring execution patterns of method
relations. Tonella and Ceccato [17] suggest a technique that
applies concept analysis to the relationship between execu-
tion traces and executed computational units (methods).

Hybrid Techniques. Loughran and Rashid [12] investi-
gated possible representations of aspects found in a legacy
system in order to provide best tool support for aspect min-
ing. Breu also reports on a hybrid approach [2] where the
dynamic information of the previous DynAMiT approach is
complemented with static type information such as static
object types.

Mining Co-change. One of the most frequently used
techniques for mining version archives is co-change. The
basic idea is simple: Two items that are changed together
in the same transaction, are related to each other. Our ap-
proach is also based on co-change. However, we use a differ-
ent, more specific notion of co-change. Methods are part of
a (simple) aspect candidate when they are changed together
in the same transaction and additionally the changes are the
same, i.e., a call to the same method is inserted.

Mining Co-addition of Method Calls. Recently, re-
search extended the idea of co-change to additions and ap-
plied this concept to method calls: Two method calls that
are inserted together in the same transaction, are related to
each other. Williams and Hollingsworth used this obser-
vation to mine pairs of functions that form usage patterns

from version archives [20]. Livshits and Zimmermann used
data mining to locate patterns of arbitrary size and applied
dynamic analysis to validate their patterns and identify vi-
olations [11]. Our work also investigates the addition of
method calls. However, within a transaction, we do not
focus on calls that are inserted together, but on locations
where the same call is inserted. This allows us to identify
cross-cutting concerns rather than usage patterns.

6. CONCLUSIONS

We are the first who leverage version history to mine aspect
candidates. Previous approaches considered a program only
at a particular time, using traditional static and dynamic
program analysis techniques. One fundamental problem is
their scalability. In contrast, our history-based aspect min-
ing approach scales well to industrial-sized projects such as
Eclipse with million lines of codes.

Formal concept analysis provides a framework to mine and
understand aspect candidates: A transaction is a relation
over locations and methods where aspect candidates are the
maximal blocks of this relation. These form a lattice of super
and sub concepts and can be computed efficiently.

Besides general issues such as performance or ease of use,
our future work will concentrate on the following topics:

Measure precision We plan to evaluate our technique by
manually investigating the top-ranked aspect candi-
dates to check whether they are actual cross-cutting
concerns. The resulting precision will measure the ef-
fectiveness of our approach.

Combine several transactions Cross-cutting concerns
are frequently introduced within one transaction and
extended to new locations in later transactions. Al-
though such concerns are recognised by our technique
as several aspect candidates, these candidates may
be ranked low and missed. To locate such aspect
candidates, we will use localities. For instance, two
transactions are related if they changed the same
locations or were created by the same developer.

For future and related work regarding history-based aspect
mining, see

http://www.st.cs.uni-sb.de/softevo/

7. REFERENCES

[1] S. Breu. Aspect Mining Using Event Traces. Master’s
thesis, University of Passau, Germany, March 2004.

[2] S. Breu. Extending Dynamic Aspect Mining with
Static Information. In Proceedings of 5th International
Workshop on Source Code Analysis and Manipulation
(SCAM), pages 57-65. IEEE Computer Society, 2005.

[3] S. Breu and J. Krinke. Aspect Mining Using Event
Traces. In Proceedings of 19th International
Conference on Automated Software Engineering
(ASE), pages 310-315. IEEE Press, September 2004.

[4] S. Breu and T. Zimmermann. Mining Aspects from
History, 2006. Submitted to 20th European Conference
on Object-Oriented Programming (ECOOP).

[5] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer, Berlin —
Heidelberg — New York, 1999.

[6] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspect
Browser: Tool Support for Managing Dispersed
Aspects. TR CS99-0640, UC, San Diego, 1999.

[7] J. Hannemann and G. Kiczales. Overcoming the
Prevalent Decomposition of Legacy Code. In
Workshop on Advanced Separation of Concerns, 2001.

[8] G. Kiczales et. al. Aspect-Oriented Programming. In
Proceedings of 11th European Conf. on
Object-Oriented Programming (ECOOP), 1997.

[9] J. Krinke and S. Breu. Control-Flow-Graph-Based
Aspect Mining. In 1. Workshop on Aspect Reverse
Engineering (WARE) at Working Conference on
Reverse Engineering (WCRE), November 2004.

[10] C. Lindig. Fast concept analysis. In G. Stumme,
editor, Working with Conceptual Structures -
Contributions to ICCS 2000, pages 152-161, Aachen,
Germany, 2000. Shaker Verlag.

[11] B. Livshits and T. Zimmermann. DynaMine: finding
common error patterns by mining software revision
histories. In Proceedings of European Software
Engineering Conference/ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 296-305,
New York, NY, USA, 2005. ACM Press.

[12] N. Loughran and A. Rashid. Mining Aspects. In
Workshop on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design
(AOSD Sat. workshop), 2002.

[13] M. Marin, L. Moonen, and A. van Deursen. A
classification of crosscutting concerns. In ICSM, pages
673-676. IEEE Computer Society, 2005.

[14] M. Marin, A. van Deursen, and L. Moonen. Identifying
aspects using fan-in analysis. In 11th Working
Conference on Reverse Engineering (WCRE), pages
132-141. IEEE Computer Society, November 2004.

[15] D. Shepherd and L. Pollock. Ophir: A Framework for
Automatic Mining and Refactoring of Aspects.
Technical Report 2004-03, U Delaware, 2003.

[16] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.
N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In ICSE-21, 1999.

[17] P. Tonella and M. Ceccato. Aspect mining through
the formal concept analysis of execution traces. In
11th Working Conference on Reverse Engineering
(WCRE), pages 112-121. IEEE Computer Society,
November 2004.

[18] T. Tourwé and K. Mens. Mining aspectual views using
formal concept analysis. In Proc. of Workshop on
Source Code Analysis and Manipulation (SCAM),
pages 97-106. IEEE Computer Society, 2004.

[19] C. C. Williams and J. K. Hollingsworth. Automatic
mining of source code repositories to improve bug
finding techniques. IEEE Transactions on Software
Engineering, 31(6):466-480, June 2005.

[20] C. C. Williams and J. K. Hollingsworth. Recovering
system specific rules from software repositories. In
Proceedings of the International Workshop on Mining
Software Repositories, pages 7-11, May 2005.

[21] T. Zimmermann and P. Weiigerber. Preprocessing
CVS data for fine-grained analysis. In
Proc. Intl. Workshop on Mining Software Repositories
(MSR), Edinburgh, Scotland, May 2004.

