
06351 Abstracts Collection

Methods for Modelling Software Systems
(MMOSS)

� Dagstuhl Seminar �

Ed Brinksma1, David Harel2, Angelika Mader3, Perdita Stevens4 and Roel
Wieringa5

1 University of Twente, NL
brinksma@cs.utwente.nl

2 Weizmann Inst. - Rehovot, IL
3 University of Twente, NL

mader@cs.utwente.nl
4 University of Edinburgh, GB

perdita@inf.ed.ac.uk
5 University of Twente, NL

Abstract. From 27.08.06 to 01.09.06, the Dagstuhl Seminar 06351 �Meth-
ods for Modelling Software Systems (MMOSS)� was held in the Interna-
tional Conference and Research Center (IBFI), Schloss Dagstuhl. During
the seminar, several participants presented their current research, and
ongoing work and open problems were discussed. Abstracts of the pre-
sentations given during the seminar as well as abstracts of seminar results
and ideas are put together in this paper. The �rst section describes the
seminar topics and goals in general. Links to extended abstracts or full
papers are provided, if available.

Keywords. Modelling Methods, Design Models, Veri�cation Models,
Problem-solution co-re�nement

06351 Summary � Methods for Modelling Software
Systems (MMOSS)

We survey the key objectives and the structure of this Dagstuhl seminar, and
discuss common themes that emerged.

Keywords: Modelling Methods, Design Models, Veri�cation Models, Problem-
solution co-re�nement

Joint work of: Brinksma, Ed; Harel, David; Mader, Angelika; Stevens, Perdita;
Wieringa, Roel

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2007/957

Dagstuhl Seminar Proceedings 06351
Methods for Modelling Software Systems (MMOSS)
http://drops.dagstuhl.de/opus/volltexte/2007/958

http://drops.dagstuhl.de/opus/volltexte/2007/957

2 E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa

Comprehensibility of Model Representations: Designing
an Empirical Evaluation Framework

Jorge Aranda (University of Toronto, CA)

One of the main purposes of conceptual models is to serve as communication
artifacts in software development projects. However, their communication qual-
ities are rarely evaluated -and when they are, the empirical validity and the
theoretical support of the evaluations are often questionable.

I will present the progress and some of the obstacles we have found in the
design of an empirical framework to evaluate the comprehensibility of model rep-
resentations, as well as the issues we have identi�ed with other approaches to this
problem. Finally, I will brie�y cover the roadmap of our model comprehensibility
project.

Keywords: Conceptual models, modelling, comprehensibility, empirical study,
evaluation

Con�gurable Modelling Notations and Tools

Joanne Atlee (University of Waterloo, CA)

Semantically con�gurable modelling notations and tools would enable speci�ers
to create their own custom modelling notations, and yet have access to tools for
editing, manipulating, and analyzing models in those notations.

This talk builds on Jianwei Niu's talk on template semantics, which is a
parameterized (i.e., template) semantics de�nition for a family of notations. Each
notation in the family is de�ned in terms of parameter values that instantiate
the template. The result is a semantics de�nition that isolates as parameters the
semantic variation points in modelling notations.

I will talk about how we take advantage of this parameterization to create
tools that are con�gured by semantic parameter values. I will also talk about
how we use this formalism to compare notation variants.

Modelling with a grain of SALT

Andreas Bauer (TU München, D)

Creating suitable and correct models for systems veri�cation can quickly become
a cumbersome and error-prone activity. In this talk I will present some recent
results on the creation and implementation of the Structured Assertion Language
for Temporal logic (SALT), which was developed to facilitate the creation of
concise, human-readable, and unambiguous temporal speci�cations that can be
used in various veri�cation tasks, such as model checking or runtime veri�cation.

Methods for Modelling Software Systems (MMOSS) 3

SALT incorporates ideas of existing approaches, such as speci�cation pat-
terns, but also provides nested scopes, exceptions, support for regular expres-
sions and real-time. The latter is needed in particular for veri�cation tasks to do
with reactive systems imposing strict execution times and deadlines. However,
unlike other formalisms used for temporal speci�cation of properties, SALT does
not target a speci�c domain, such as veri�cation of integrated circuits and CPUs.

Keywords: Temporal logic, speci�cation languages, veri�cation

Full Paper:
http://home.in.tum.de/∼baueran/publications/tum-i0604.pdf

The Abstract State Machines Method for Modeling and
Analysis of Software-Based Systems

Egon Börger (Università di Pisa, I)

We survey the ASM system design and analysis method that within a single
precise yet simple conceptual framework supports and integrates - the major
software life cycle activities and - the principal modeling and analysis tech-
niques by linking ASM "ground models" seemlessly to executable code and its
maintenance via ASM-re�nement-driven design and analysis.

Ground models, in the International Technology Roadmap for Semiconduc-
tors also called golden models, are accurate concise high-level system bueprints
(system contracts), which are formulated in domain-speci�c terms and represent
the requirements in an application-oriented language that can be understood
by all stakeholders. Using various ways to make ASM speci�cations executable
yields simulations to validate ground models against the requirements ("user
scenarios").

ASM re�nements are an extension of Wirth's and Dijkstra's re�nement con-
cept. They support architectural and component design, re�ecting modular tech-
niques for accurately crossing system design levels in a way which makes the
transformation of ground models by piecemeal, systematically documented de-
tailing of abstract models to code controllable and well documentable for inspec-
tion, reuse and maintenance.

The veri�cation and validation reports of ASM re�nements contain explicit
descriptions of the software structure and of the major design decisions, thus
providing an economical way to achieve extendability and modi�ability for the
design of evolving systems.

The ASM method has been successfully used in a number of industrial
projects (in particular at IBM, Siemens, Microsoft and SAP) and of standard-
ization e�orts (e.g. at ISO, IEEE, ITU, ECMA) as well as in a variety of research
projects on design and analysis (covering both validation and veri�cation) of ar-
chitectures, languages, compilers, control systems, protocols, web services, etc.

We illustrate the method by a ground model construction for some funda-
mental web service interaction patterns.

http://home.in.tum.de/~baueran/publications/tum-i0604.pdf

4 E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa

References:
[1] E. Boerger and R. Staerk: Abstract State Machines. A Method

for High-Level System Design and Analysis. Springer 2003.
http://www.di.unipi.it/AsmBook/

[2] R. Staerk, J. Schmid, E. Boerger: Java and the Java Virtual Machine:
De�nition, Veri�cation, Validation. Springer 2001, re-
published 2003 in Springer's Textbook CD-ROM.
http://www.inf.ethz.ch/personal/staerk/jbook

[3] E. Boerger: Construction and Analysis of Ground Models and their Re�ne-
ments as a Foundation for the Veri�cation of Computer Based Systems. In
preparation

[4] M. Barros and E. Boerger: A Compositional Framework for Service Interac-
tion Patterns and Interaction Flows. Springer LNCS 3785 (2005), pp. 5-35.

Keywords: Modelling, Veri�cation, Validation, Ground Model, Re�nement,
Abstract State Machines

System model for UML � The interactions case

María Victoria Cengarle (TU München, D)

A system model for an OO speci�cation language is any timed state transition
system whose states are composed of a data store, a control store, and a message
pool. To de�ne a semantics for any OO speci�cation language (as e.g. UML) is
the art of de�ning the transition function ∆ depending on the current state and
on the input sofar that moreover observes certain rules.

Having de�ned what a system model is, the challenge now is to establish when
such a system model satis�es a message interchange speci�cation (expressed by
means of UML interactions).

Keywords: System model, UML, interaction

Partial Behavioural Models for Requirements and Early
Design

Marsha Chechik (University of Toronto, CA)

The talk will discuss the problem of creation, management, and speci�cally merg-
ing of partial behavioural models, expressed as model transition systems. We ar-
gue why this formalism is essential in the early stages of the software cycle and
then discuss why and how to merge information coming from di�erent sources us-
ing this formalism. The talk is based on papers presented in FSE'04 and FME'06
and will also include emerging results on synthesizing partial behavioural models
from temporal properties and scenarios.

Keywords: Requirements behavioural models

Joint work of: Chechik, Marsha ; Brunet, Greg ; Fischbein, Dario ; Uchitel,
Sebastian

Methods for Modelling Software Systems (MMOSS) 5

Writing formal speci�cations (models): a method for
di�erent languages (notations)

Christine Choppy (Université Paris-Nord, F)

While the issue is (as for many MMOSS participants) how to help writing spec-
i�cations, we address here the issue of �nding out "detail"/properties and ex-
pressing them in a formal speci�cation.

C. Choppy and G. Reggio addressed this issue in a JLAP paper (2006) where
the target language is CASL-LTL, an extension of CASL (Common Algebraic
Speci�cation Language) for dynamic systems (LTL = Labelled Transition Logic).
They also show that the proposed method could be used in conjunction with
problem frames.

The ideas developed there are general enough that they could be applied to
Petri nets, and a �rst attempt in this direction is presented.

Keywords: Speci�cation method, formal speci�cations, algebraic speci�cations,
CASL, Petri nets

Joint work of: Choppy, Christine; Reggio, Gianna; Petrucci, Laure

See also: Christine Choppy and Gianna Reggio, A Formally Grounded Software
Speci�cation Method, Journal of Logic and Algebraic Programming, Elsevier,
67(1-2):52-86, 2006.

A Taxonomy of Aspects in Terms of Crosscutting Concerns

Jorge Fox (TU München, D)

Aspect-orientation provides support for " Separation of Concerns" by means of
techniques that �rst isolate and then weave concerns.

Most work in aspect-orientation has achieved such goals at the programming
level, even also at the modeling level. Though, in some cases the application of
these techniques is independent of the problem itself. In other words, the tech-
niques for weaving either code or models are in principle applicable to a number
of problems without a clear criterion to answer questions like: in what software
processes we may actually discuss aspect-orientation? This also brings other
questions: what do we consider an aspect?, how do we deal with it?, are aspects
crosscutting concerns? The �rst notions of aspect-orientation relate to crosscut-
ting in code. We consider this a bottom-up approach. We believe though, that
aspect-orientation can be better understood from an architectural perspective.

We call this a top-down approach. We explore the question of "what makes
an aspect an aspect" and "when do aspects arise" from a top-down perspective.
This work relates to a de�nition of aspects in terms of requirements traceability,
proposes a classi�cation, and altogether a taxonomy.

Keywords: Aspect-orientation, Software Engineering, Taxonomy

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/860

http://drops.dagstuhl.de/opus/volltexte/2007/860

6 E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa

A Framework for Analyzing Composition of Security
Aspects

Jorge Fox (TU München, D)

The methodology of aspect-oriented software engineering has been proposed to
factor out concerns that are orthogonal to the core functionality of a system. In
particular, this is a useful approach to handling the di�culties of integrating non-
functional requirements such as security into complex software systems. Doing
so correctly and securely, however, still remains a non-trivial task. For example,
one has to make sure that the "weaving" process actually enforces the aspects
needed.

This is highly non-obvious especially in the case of security, since di�erent
security aspects may actually contradict each other, in which case they cannot
be woven in a sequential way without destroying each other.

To address these problems, this paper introduces a framework for the aspect-
oriented development of secure software using composition �lters at the model
level. Using an underlying foundation based on streamprocessing functions, we
explore under which conditions security properties are preserved when composed
as �lters. Thanks to this foundation we may also rely on model level veri�cation
tools and on code and model weaving to remedy security failures. Our approach
is explained using as case-studies a web banking application developed by a
major German bank and a webstore design.

Keywords: Aspects in software engineering, aspect interference, veri�cation,
semantics, formal methods

Joint work of: Fox, Jorge; Juerjens, Jan

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/859

Model Development in the UML-based Speci�cation
Environment (USE)

Martin Gogolla (Universität Bremen, D)

The tool USE (UML-based Speci�cation Environment) supports analysts, de-
signers and developers in executing UML models and checking OCL constraints
and thus enables them to employ model-driven techniques for software produc-
tion. USE has been developed since 1998 at the University of Bremen. This pa-
per will discuss to what extent and how USE relates to the questions and topics
(Model quality, Modelling method, Model E�ectiveness, Model Maintainability)
raised for this seminar.

Keywords: UML, OCL, Model-Driven Development, Validation, Animation,
Model Execution

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/861

http://drops.dagstuhl.de/opus/volltexte/2007/859
http://drops.dagstuhl.de/opus/volltexte/2007/861

Methods for Modelling Software Systems (MMOSS) 7

Model-Based Software Development for Embedded
Systems

Ursula Goltz (TU Braunschweig, D)

Model-based Software Development is currently an important issue in the area
of embedded systems. In this talk, modelling techniques, methods and tools are
presented and discussed using two larger applications.

The �rst application is the development and validation of a control system
for parallel robots, which we carry out together with electrical and mechani-
cal engineers in the context of a large research project (SFB 562) at the TU
Braunschweig. We show how we develop a generic modular control system in
a model-based approach, and which validation techniques we have developed
and used. For modelling, we use in particular interaction diagrams and state
diagrams (UML 2.0) for the representation and for the simulation of system
behaviour.

The second application project (STEP-X) is a cooperation in the automotive
area. With partners from electrical in mechanical engineering and the car man-
ufacturer VW, we work on the development of a seamless development process
for electronic control units. A huge part of nowadays innovations in the auto-
motive area is obtained by enlarging the software functionality; this requires
new qualities in the development processes. Aim of the project STEP-X was to
show a seamless tool-based development process for the whole range from the
requirements down to automatic code generation for ECUs. In the upper part of
this process, down to the level of architecture design, we propose to use UML.
We show the modelling approaches and discuss the experiences. An important
concern is again the modelling of system behaviour and executable speci�cations.

Finally, we discuss a light weight approach for modelling and simulating
behaviour using Harel/Marelly's Play Engine, which allows to generate a proto-
type for a system directly from the requirements, using Life Sequence Charts.
We present results of a case study from the automotive area.

Keywords: Model-based development, embedded systems, UML, automotive
software development

Joint work of: Goltz, Ursula; Florentz, Bastian; Huhn, Michaela; Knieke,
Christoph; Mücke, Tilo; Steiner, Jens

The Formal Speci�cation Language mCRL2

Jan Friso Groote (Eindhoven Univ. of Technology, NL)

We introduce mCRL2, a speci�cation language that can be used to specify and
analyse the behaviour of distributed systems. This language is the successor of
the mCRL speci�cation language. The mCRL2 language extends a timed basic
process algebra with the possibility to de�ne and use abstract data types. The

8 E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa

mCRL2 data language features prede�ned and higher-order data types. The
process algebraic part of mCRL2 allows a faithful translation of coloured Petri
nets and component based systems: we have introduced multiactions and we
have separated communication and parallelism.

Keywords: Speci�cation language, abstract data types, process algebra, oper-
ational semantics

Joint work of: Groote, Jan Friso; Mathijssen, Aad; Reniers, Michel; Usenko,
Yaroslav; van Weerdenburg, Muck

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/862

Are Speci�cation Methods Problem-Dependent?

Anthony Hall (Oxford, GB)

How can we classify problems and methods so that we can �nd a good method
for solving a particular kind of problem?

Problem Frames and Solution Composition

Maritta Heisel (Universität Duisburg-Essen, D)

To make use of problem frames, complex problems have to be decomposed into
simple ones. We have de�ned architectural patterns corresponding to Jackson's
problem frames, which provide solution structures for these simple problems.
Now the question arises how to combine the solution structures of the simple
subproblems to obtain a solution structure for the complex problem. The pre-
sentation addresses this question.

Di�erent subproblems of a complex problem can be related in various ways.
They can be independent of each other, they can exclude each other, or they may
have to be solved in a speci�c order. Such information can be used to combine
the solutions structures of the subproblem to a solution structure of the overall
problem.

Joint work of: Heisel, Maritta; Choppy, Christine; Hatebur, Denis

Modeling Embedded Systems

Jozef Hooman (Radboud University of Nijmegen, NL)

We report about experiences with the modeling of embedded systems in the
context of the Boderc project.

http://drops.dagstuhl.de/opus/volltexte/2007/862

Methods for Modelling Software Systems (MMOSS) 9

In this project, a number of academic and industrial partners collaborate
to improve multi-disciplinary development of mechatronic systems. Important
part of the approach is the use of high-level models. We present results and
observations of two activities in this project.

Part of a car radio-navigation system from Siemens VDO has been used to
experiment with a number of performance modeling techniques, such as MPA,
SymTA/S, Uppaal, POOSL, and VDM++. (Joint work with Marcel Verhoef.)

To support the design of printer/copiers at the company Océ, which is the
carrying industrial partner of the Boderc project, we made a coupling between a
UML tool (Rose RealTime) and Matlab/Simulink. To improve the introduction
at Océ, the framework has been adapted to a software-based simulation which
can be maintained more easily by software engineers. Currently, this frame is
used to test real-time software before the hardware is available. (joint work with
Nataliya Mulyar and Ladislau Posta, Lou Somers, and Sebastiaan van der Hoest)

Keywords: Embedded systems, Modeling, Multi-disciplinary, UML

Structural Relationships among Models

Michael Jackson (London, GB)

The basis of a problem-oriented view of software-intensive systems is the recogni-
tion of three fundamental roles to be played by models in a development: R, the
requirement; W, the given properties of the problem world; and S, the speci�ca-
tion of the machine's behaviour at its interface with the problem world. These
are (ideally) related by the entailment S,W |= R.

Decomposition of a problem into subproblems is analogous (but not identical)
to decomposition of a system into components. A subproblem has R, W and
S, its machine interacting with a subset of the problem world. Conceptually,
subproblems are initially considered in isolation, composition concerns being
deferred.

Composition of subproblems involves relationships among all three of their
models R, W and S; in general di�erent subproblems use di�erent models, even
of the same parts of the problem world. Problem world properties are not in
general compositional. Relationships among subproblems, and hence among their
models, may be complex.

Keywords: Composition, model, problem, requirement, speci�caiton, structure,
subproblem

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/863

http://drops.dagstuhl.de/opus/volltexte/2007/863

10 E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa

First ideas on how to use UML Sequence Diagrams in
probabilistic model checking

David N. Jansen (RWTH Aachen, D)

Probabilistic model checking is a method to prove or disprove that a given prob-
abilistic system had a given property. The property is mostly expressed in a
formal language like PCTL or CSL (probabilistic extensions of CTL). Software
engineers �nd using these formal languages di�cult.

In this talk, I will try to give �rst ideas about how UML Sequence Diagrams
could provide means to express a desired property, and I would like to receive
comments.

Modeling and Aspect Weaving

Jean-Marc Jezequel (IRISA - Rennes, F)

A model is a simpli�ed representation of an aspect of the world for a speci�c
purpose. Complex systems typically give rise to more than one model because
many aspects are to be handled. For software systems, the design process can be
characterized as a (partially automated) weaving of these aspects into a detailed
design model. While veri�cation is usually feasible on each of the aspects, it is
seldom possible on the resulting detailed design because of the size explosion.
Hence we need weaving processes that exhibit good composition properties from
the point of view of veri�cation. We present an example of such a weaving process
for behavioral models represented as scenarios.

Keywords: Model aspect weaving scenarios

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/864

MOCA project: Patterns for modeling workpieces
problems

Wouter Kuijper (University of Twente, NL)

Within the MOCA project we focus on the process of modelling embedded sys-
tems for the purpose of formal veri�cation.

I will present a case study on the modeling and veri�cation of a control
program for a brine plant. I will discuss the patterns that emerge when modeling
this kind of workpiece problems. Using these identi�ed patterns I propose a
method leading towards e�cient and truthful models, while preventing certain
common modeling errors.

http://drops.dagstuhl.de/opus/volltexte/2007/864

Methods for Modelling Software Systems (MMOSS) 11

Veri�cation models for embedded systems

Angelika Mader (University of Twente, NL)

Our goal is to derive veri�cation models for embedded systems, i.e. models that
can be analysed with a tool. In a stepwise manner of model derivation decisions
have to be taken concerning the environment, abstractions, decompositions, etc.
Lists containing possible decisions can help to make the modelling process more
e�cient and transparent. In the talk I will discuss a number of such possible
decisions.

MOCA project: Using problem framing technique in
modelling for formal veri�cation � a case study

Jelena Marincic (University of Twente, NL)

Within the MOCA project we are focused on the process of modelling for formal
veri�cation. More particularly, we are interested in embedded control systems,
which models consist of environment and software descriptions. When designing
a model, a modeller describes a part of the real, informal world and starts from
informal descriptions like, for example, domain experts diagrams and documents.
The process of model design is also informal, because we do not have a formal
proof that the model is truthful. Our goal is to �nd techniques that will guide
the modelling process in order to make it more e�cient, systematic and that will
help to enhance quality of the models.

I will describe a case study - an example of a simple control embedded system
for which we designed a veri�cation timed-automata (Uppaal) model. Starting
from the informal description, we used Michael Jackson's problem framing tech-
nique to classify the problem and to decompose the system. This was used as a
basis for the next step, state charts description, which was helpful for deriving
a Uppaal model. I will conclude with some observations about the techniques
used on this concrete example and ideas for future work.

Keywords: Modelling for formal veri�cation, problem frames

Maintainable Semantic Modelling of Programming
Languages

Peter D. Mosses (University of Wales - Swansea, GB)

A formal semantics of a programming language de�nes an abstract model of the
language's implementations. The model determines the primary functional re-
quirements regarding the observable e�ects of compiling and running programs,
independently of any details of compiler design.

12 E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa

Semantic modelling is supported by solid theoretical foundations, and com-
pilers are reasonably simple and well-understood examples of software systems.
In some major semantic modelling frameworks, however, the maintainability of
models can be quite poor.

This talk presents some semantic modelling techniques which signi�cantly
enhance maintainability, and which allow the development of libraries of reusable
semantic model components.

Perhaps these techniques might be applicable also when modelling more com-
plex software systems?

Keywords: Semantics, programming languages

Please draw me a model

Pierre-Alain Muller (IRISA - Rennes, F)

This talk presents modeling as the way to parameterize an hypothetical all-
purpose generic machine, which can transmute itself into the system to be built.

The machine is supposedly able to handle all aspects of a system, including
hardware and software. The parameterization is achieved by a multi-layer rep-
resentation, that includes data, models of these data, and metamodels (models
of the languages used to express the models).

The talk concludes by motivating the need for multiple metamodels, and
explains how metamodeling environments such as www.kermeta.org along with
programmable hardware such as FPGA might support this vision.

Keywords: Model-driven engineeering, language engineering, metamodeling

Template Semantics : A Parameterized Approach to
Structuring Semantics of Modeling Notations

Jianwei Niu (Univ. of Texas at San Antonio, USA)

Template semantics is a formalism to represent the semantics of a family of
modeling notations. Template semantics focuses on the similarities and di�er-
ences among notations: notations' common semantics is represented by a prede-
�ned parameterized template, and a notation's distinct semantics is speci�ed as
template parameters. The basic computation model of template semantics is a
non-concurrent, hierarchical transition system (HTS). Concurrency, synchroniza-
tion, and communication among HTSs are achieved via composition operators.
The de�nitions of these operators use the template parameters to preserve the
notation-speci�c behavior in composition. Template semantics can be used as an
input to a tool that automatically produces an analyzable model.

Keywords: Modeling notations, Semantics, Concurrency, Synchronization, Au-
tomated analysis

Methods for Modelling Software Systems (MMOSS) 13

Joint work of: Niu, Jianwei; Atlee, Joanne; Day, Nancy

See also: 1. Jianwei Niu, Joanne M. Atlee, and Nancy A. Day.�Template Seman-
tics for Model-Based Notations�, IEEE Transactions on Software Engineering,
vol. 29, no.10, pages 866-882, 2003. 2. Jianwei Niu, �Template Semantics: A
Parameterized Approach to Semantics-Based Model Compilation�, PhD thesis,
University of Waterloo, 2005.

Model Transformation Technologies in the context of
Modelling Software Systems

Óscar Pastor (Univ. Politèc. de Valencia, E)

Object-Oriented Methods, Formal Speci�cation Languages, Component-based
Software Production... During the last two decades, a lot of research and indus-
trial work has been oriented to the objective of generating code from a higher-
level system speci�cation, normally represented as a Conceptual Schema. Any-
way, many failures to reach the goal has created strong doubts to accept any
new proposals o�ering a "just press the key, and get all the code" strategy.

But currently, the apperance of proposals as MDA, Extreme Non-Programming,
Conceptual Schema-Centered Software Development and so on have given a new
push to all these strategies. New methods propose sound model transformations,
that have to cover all the di�erent steps of a rigorous software production process
from an Information Systems Engineering point of view. This must include Or-
ganizational Modeling, Requirements Engineering, Conceptual Modeling and
Model-Based Code Generation techniques, all of them properly integrated. In
any case, the required conceptual primitives must be precisely, formally de�ned,
and the conversion between the di�erent involved models and their correspond-
ing software counterpart must be done in a well-de�ned way, making possible
even the full automation of the process through the use of the corresponding
Model Compilers.

This is going to be central topic of the talk/colloquium. What conceptual
primitives should be present in a system speci�cation will be discussed. How to
use UML to represent them will be analyzed, reducing the current complexity of
the proposal by identifying just those diagrams and those modeling constructs
really required to create a correct and complete Conceptual Schema. Concretely,
how to accomplish the transformation process between the problem space and
the solution space will be presented. Finally, some tool support will be also
included in order to make more practical the discussion.

14 E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa

Model Transformation Technologies in the Context of
Modelling Software Systems

Óscar Pastor (Univ. Politèc. de Valencia, E)

Programming technologies have improved continuously during the last decades,
but from an Information Systems perspective, some well-known problems as-
sociated to the design and implementation of an Information Systems persists.
Object-Oriented Methods, Formal Speci�cation Languages, Component-Based
Software Production... This is just a very short list of technologies proposed to
solve a very old and, at the same time, very well-known problem: how to pro-
duce software of quality. Programming has been the key task during the last 40
years, and the results have not been successful yet. This work will explore the
need of facing a sound software production process from a di�erent perspective:
the non-programming perspective, where by non-programming we mainly mean
modeling. Instead of talking about Extreme Programming, we will introduce
a Extreme Non-Programming (Extreme Modeling-Oriented) approach. We will
base our ideas on the intensive work done during the last years, oriented to the
objective of generating code from a higher-level system speci�cation, normally
represented as a Conceptual Schema. Nowadays, though, the hip around MDA
has given a new push to these strategies. New methods propose sound model
transformations which cover all the di�erent steps of a sound software produc-
tion process from an Information Systems Engineering point of view. This must
include Organizational Modeling, Requirements Engineering, Conceptual Mod-
eling and Model-Based Code Generation techniques. In this context, it seems
that the time of Model Transformation Technologies is �nally here...

Keywords: Information Systems Design, Software Engineering, Model-Based
Code Generation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/865

A UML-Based Approach for Problem Frame Oriented
Software Development

Gianna Reggio (University of Genova, I)

We propose a software development approach that combines the use of the struc-
turing concepts provided by problem frames, the use of the UML notation, to-
gether with our methodological approach for well-founded methods. Problem
frames are used to provide a �rst idea of the main elements of the problem un-
der study. Then we provide ad hoc UML based development methods for some of
the most relevant problem frames together with precise guidelines for the users.
The general idea of our method is that, for each frame, several artifacts have
to be produced, each one corresponding to a part of the frame. The description

http://drops.dagstuhl.de/opus/volltexte/2007/865

Methods for Modelling Software Systems (MMOSS) 15

level may range from informal and sketchy, to formal and precise, while this
approach is drawn from experience in formal speci�cations.

Thus we show how problem frames may be used upstream of a development
method to yield an improved and more e�cient method equipped with the prob-
lem frames structuring concepts.

Joint work of: Choppy Christine, Reggio, Gianna

Modelling Software Product Lines by Feature Diagrams

Pierre-Yves Schobbens (University of Namur, B)

Whatever the method you use to model software systems, you will have to face
the evolution and variability of your models.

We propose to use the notion of feature. It originates from the telecommuni-
cation industry, but we advocate to apply it in any such domain, and to integrate
it with any re�nement-based development method.

A feature is formalized as a set of model transformations.
We use two techniques to support feature interference detection:
We check redundancy given by re�nement between the abstraction levels after

transformation, and we detect dependencies on the ordering of transformations.
To record the variabilities o�ered to the customer, we propose to use Feature

Diagrams. They currently exist in many variants. We gave them a formal prod-
ucts as set of features, and compared the semantics, that lead to a simple and
powerful variant based on multiplicity nodes only.

Keywords: Features, feature diagrams, software evolution

Joint work of: Bontemps, Yves; Heymans, Patrick; Ryan, Mark; Plath, Malte;
Schobbens, Pierre-Yves; Trigaux, Jean-Christophe

A Model-Based Approach To Requirements Analysis

Bernhard Schätz (TU München, D)

A major task in designing embedded systems is the systematic elaboration of
functional system requirements and their integration into the environment of the
complete technical system. The main challenge is to handle the versatile tasks
of coordinating a de�nition of behavior, which is appropriate to the problem.
The problem- and design-speci�cations of the customer related product de�ni-
tion have to be adjusted with and integrated into the manifold requirements of
the technical system design. Accordingly, the model-based requirements analy-
sis and system-de�nition presented here de�nes a well-structured modeling ap-
proach, which systematically aids the goal-oriented formulation and adjustment
of the di�erent stakeholder-requirements with the aid of views onto the system
and descriptive speci�cation techniques. Thus it allows a clear speci�cation of a

16 E. Brinksma, D. Harel, A. Mader, P. Stevens and R. Wieringa

consistent and complete system design. The central steps of this approach are
implemented in a requirements management (RM) tool prototype called Au-
toRAID.

Keywords: Requirements, model-based, tool support

Joint work of: Schätz, Bernhard; Geisberger, Eva; Grünbauer, Johannes

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/866

An Overview of CADP 2006 "Edinburgh"

Wendelin Serwe (INRIA Rhône-Alpes, F)

In this talk, we present the essential features of CADP 2006 Edinburgh, the
next stable version of the CADP (Construction and Analysis of Distributed
Processes) toolbox. CADP is rooted in concurrency theory and allows to design
and manipulate formal models of asynchronous systems. CADP 2006 Edinburgh
provides advanced veri�cation and performance evaluation features and, above
all, a uni�ed framework in which the major state space reduction techniques
can be combined (including compositional veri�cation, on-the-�y veri�cation,
partial order reduction, static analysis, and massively parallel veri�cation). We
summarize the main evolutions of the toolbox since 2001 and present the new
CADP tools as well as signi�cant enhancements brought to existing tools.

Developing models incrementally and interactively?

Perdita Stevens (University of Edinburgh, GB)

Working with models involves managing the tension between two imperatives:
1) to ensure that the models are fully thought-through, internally consistent,

and appropriately complete
2) to ensure that the models �exibly track external decisions and uncertain-

ties, avoiding spurious accuracy.
I will review my recent work with Jennifer Tenzer on using games for UML

software design, and will discuss future directions and challenges.

Analysis of Zeroconf Using Uppaal

Frits Vaandrager (Radboud University of Nijmegen, NL)

Formal methods have been applied frequently to analyze (critical parts of) stan-
dards for communication protocols and it has been demonstrated that their
application may help to improve the quality of these standards.

http://drops.dagstuhl.de/opus/volltexte/2007/866

Methods for Modelling Software Systems (MMOSS) 17

Nevertheless, despite several decades of formal methods research, formal
methods notations have rarely been included in the authoritative part of pro-
tocol standards. Also, the relationships between (abstract) formal models and
informal protocol standards are typically obscure. It is our ambition to improve
this situation. To establish the current state-of-the-art, we report in this paper
on a case study where we use Uppaal to formally model parts of Zeroconf, a
protocol for dynamic con�guration of IPv4 link-local addresses that is de�ned in
RFC 3927 of the IETF. Our goal has been to construct a model that (a) is easy
to understand by engineers, (b) comes as close as possible to the informal text
(for each transition in the model there should be a corresponding piece of text in
the RFC), and (c) may serve as a basis for formal veri�cation. Our conclusion is
that Uppaal, which combines extended �nite state machines, C-like syntax and
concepts from timed automata theory, is able to model Zeroconf in a faithful
and intuitive way, using notations that are familiar to protocol engineers. Our
modeling e�orts revealed some errors (or at least ambiguities) in the RFC that
no one else spotted before. We also identify a number of points where Uppaal
still can be improved. After applying a number of abstractions, Uppaal is able
to fully explore the state space of an instance of our model with three hosts, and
to establish some correctness properties.

Keywords: Protocol standards, formal methods, timed automata, zeroconf
protocol

Joint work of: Vaandrager, Frits; Gebremichael, Biniam; Zhang, Miaomiao

Full Paper:
http://www.ita.cs.ru.nl//publications/papers/fvaan/zeroconf/

Modeling for Testing

Margus Veanes (Microsoft Research - Redmond, USA)

The use of models in testing is becoming more and more important in the context
of industrial software development. We discuss an approach of modeling sup-
ported by a tool called Spec Explorer, developed at Microsoft Research, where
a tester can provide a high-level description of the system behavior under test
as a "model program". In this talk, we discuss the concept of model programs
and demonstrate their use by using the tool.

We brie�y discuss some internal customer experiences and issues, and men-
tion some future and current work in addressing those issues, in particular by
using composition of model programs.

Keywords: Model programs, model composition, conformance testing

http://www.ita.cs.ru.nl//publications/papers/fvaan/zeroconf/

	06351 Abstracts Collection Methods for Modelling Software Systems (MMOSS) --- Dagstuhl Seminar ---
	 Ed Brinksma, David Harel, Angelika Mader, Perdita Stevens and Roel Wieringa

