
System Model for UML
The Interactions Case

Maŕıa Victoria Cengarle

Institut für Informatik, Technische Universität München
85748, Garching bei München, Boltzmannstr. 3, Germany

cengarle@in.tum.de

Abstract. Previous works define the notion of system model, which
provides a formal basis for the definition of the semantics of a dis-
tributed object-oriented modelling language. This article addresses the
UML 2.0 interactions and their meaning in terms of a system model.
One denotational and two operational approaches are discussed. These
are based on existing proposals for the semantics of interactions, but in
principle alternative proposals can also be employed.

Keywords. UML, interactions, denotational semantics, operational se-
mantics, system model

1 Introduction

The Methods for Modelling Software Systems (MMOSS) seminar which took
place in Dagstuhl by the end of August’06 addressed, among others, the issue of
“right” level of abstraction for the task of modelling complex software systems.
Abstraction is indeed an indispensable tool for managing complexity. In many
cases, however,

formal proofs of the adequacy of such abstractions are infeasible because
they somehow rely on the availability of a non-existing model of the
“full” system

as stated in the motivation for the seminar. While convincing although informal
arguments cannot be ruled out, we can and should nevertheless try to enlarge
the applicability of formal methods.

The present article presents work in progress within the realm of the Unified
Modeling Language (UML). In a previous work the concept of system model
was defined, i. e., a precise notion of timed state transition system tailored for
the definition of a formal semantics of any distributed object-oriented modelling
language; see [1,2,3]. The claim is that system models allow the definition of an
all-encompassing semantics of UML. The challenge now, thus, consists in either
mapping any specification written in UML onto an adequate system model, or
giving accurate criteria to decide if a system model satisfies a given UML speci-
fication. General ideas and directions for work in the context of UML 2.0 inter-
action diagrams are presented below.

Dagstuhl Seminar Proceedings 06351
Methods for Modelling Software Systems (MMOSS)
http://drops.dagstuhl.de/opus/volltexte/2007/857

2 M. V. Cengarle

The overall goal, therefore, is to provide means for the formal proof or ade-
quacy of UML interactions on the basis of a system model for the “full” system.
(That is, and quoting the motivation of the seminar, to address complexity.)

This contribution presents some hints for mapping the UML interactions
(see [4,5]) onto the semantic framework of system models. The article is organised
as follows. In Sect. 2 the concept of system model is briefly presented, in Sect. 3
the same is done for the UML interactions. Sect. 4 addresses the central concern,
and proposes different possibilities: a denotational (Sect. 4.1) and an operational
approach (Sect. 4.2), the latter subdivided into a global and a local variant.
Finally Sect. 5 draws some conclusions and hints at a few directions for future
work. The Appendix presents a summary of the local operational semantics for
UML interactions, still unpublished and on which the local operational approach
of Sect. 4.2 can be based.

2 Preliminaries

In the present section the concept of system model is briefly introduced; see
e. g. [6,7]. Roughly speaking, a system model is a timed state transition sys-
tem whose states are composed of three parts, namely a data store, a control
store, and a message pool. Timed state transition systems are a special kind of
transition systems.

2.1 Ingredients

A system model for an object-oriented specification language defines, on the one
hand,

– a static part, basically values and store,
– a dynamic part, basically threads and control, and
– a finite number of message pools (in the simplest case, queues of incoming

messages like method invocations and signals).

These ingredients are combined into states of a timed state transition system,
and it “only” remains to define the transition function that suits the specification
language of interest.

The static part defines universe(s) of basic values unified in UVAL, interpreta-
tion mechanisms for sets, relations, records, etc., as well as for object identifiers
and classes, and a universe ULOC of locations.

A store is a partial function

DataStore : ULOC ↪→ UVAL

that maps locations onto values, with dom(DataStore) ⊆ ULOC the set of loca-
tions assigned by DataStore. DATASTORE denotes the universe of all possible data
stores.

The dynamic part defines a universe UTHREAD of threads and the universe
of execution frames as

System Model for UML — The Interactions Case 3

UFRAME = UOID× UMETH× UVAL× UVAL× UPC× UOID.

That is, a frame contains the identifier of the executing object, the method
invoked, arguments and return values packed in a record, values of the local
variables likewise packed in a record, the program counter, and the identifier of
the caller object. To each thread corresponds then a stack of frames.

CONTROLSTORE denotes the universe of all possible control states. A con-
trol state contains information about all the threads being executed. There is
more than one way to collect this information. The “thread centric view” simply
establishes

ControlStore : UTHREAD ↪→ UFRAME

whereas the “object centric view” defines

ControlStore : UOID× ℘(UTHREAD) ↪→ UFRAME.

These both views are isomorphic. For the purposes of this work, the choice is
irrelevant.

UEVENT denotes the universe of possible events. The events in an object are
retrieved via the function events : UOID → ℘(UEVENT). Messages, collected in
the universe UMSG, define special kinds of events: for each m ∈ UMSG we have
events SendEvent(m) and ReceiveEvent(m), and

sender, receiver : UMSG → UOID,
sender(m) = oid ⇐⇒ SendEvent(m) ∈ events(oid), and
receiver(m) = oid ⇐⇒ ReceiveEvent(m) ∈ events(oid).

Moreover, the message signature of an object, i. e., the messages that the object
may receive or send, is provided by

msgIn, msgOut : UOID → ℘(UMSG).

An event store contains all the events associated with an object, i. e., an event
store is a function

EventStore : UOID → Buffer(UEVENT),

where a buffer is a general structure to store and handle events, possibly deal
with priorities, etc. The universe EVENTSTORE collects all such event stores.

2.2 TSTS

A timed state transition system is a tuple (STATE,∆, Input, Output, Init) with

STATE a set of states,
Input and Output the input and output channel sets, respectively,
Init ⊆ STATE, and
∆ : (STATE× T(Input)) → ℘(STATE× T(Output))

where T(C) is the set of possible channel traces for the channel set C:

4 M. V. Cengarle

TS 1 TS 2

L1 L2

Fig. 1. Composition of TSTS’s TS1 and TS2

T(C) = C → UMSG∗

i. e., if x ∈ T(C) and c ∈ C, then by x.c we denote the finite sequence of messages
x(c) ∈ UMSG∗.

Timed state transition systems behave as a Moore machine,1 that is, the
output depends on the state and not on the input:

(σ′, y) ∈ ∆(σ, x) ⇒ ∀x′.∃σ′′.(σ′′, y) ∈ ∆(σ, x′)

The state transition function is furthermore total:

∆(σ, i) 6= ∅ for any s ∈ STATE, i ∈ T(Input)

Composition

Two timed state transition systems (see Fig. 1)

(STATEk,∆k, Inputk, Outputk, Initk) (k = 1, 2)

with Output1 ∩ Output2 = ∅

can be composed into

(STATE,∆, Input, Output, Init)

where STATE = STATE1 × STATE2 L1 = Output1 ∩ Input2
Input = (Input1 ∪ Input2) \ L L2 = Output2 ∩ Input1
Output = (Output1 ∪ Output2) \ L L = L1 ∪ L2

∆((s1, s2), x) = { ((s′1, s
′
2), y) : ∃z ∈ T(L ∪ Input ∪ Output) .

z | Input = x ∧ (s′1, z |Output1) ∈ ∆1(s1, x | Input1) ∧
z |Output = y ∧ (s′2, z |Output2) ∈ ∆2(s2, x | Input2) }

The composed state transition function ∆ is denoted by ∆1 ⊗∆2.

1 A Moore machine is a finite state machine that produces an output for each state.

System Model for UML — The Interactions Case 5

Interface abstraction

Given a timed state transition system (STATE,∆, Input, Output, Init), the state
transition function induces an interface function

B[∆] : STATE → (
→

Input → ℘(
→

Output))

where
→
C is the set of all valuations of channel C by streams:

→
C = C → (UMSG∗)∞

i. e., if y ∈
→
C and c ∈ C, then y(c) ∈ (UMSG∗)∞. The interface function B[∆]

abstracts away from the local encapsulated state and is defined by

B[∆](σ)(xˆy) = { x′ˆy′ : ∃σ′ ∈ STATE .
(σ′, x′) ∈ ∆(σ, x) ∧ y′ ∈ B[∆](σ′)(y) }

where ˆ prepends a trace to a channel valuation:

ˆ : T(C)×
→
C →

→
C

such that if x ∈ T(C), y ∈
→
C and c ∈ C, i. e., x(c) ∈ UMSG∗ and y(c) ∈

(UMSG∗)∞, then xˆy(c) def= x(c)ˆy(c) ∈ (UMSG∗)∞ is the concatenation of x.c
and y(c).

An interface function returns an I/O-behaviour. Two such behaviours

Fk :
→

Inputk → ℘(
→

Outputk) (k = 1, 2)

with Output1 ∩ Output2 = ∅

can be composed into F :
→

Input → ℘(
→

Output) defined by

(F1 ⊗ F2)(x) = { y |Output : y ∈ Input1 ∪ Input2 ∪ Output1 ∪ Output2
∧ y | Input = x | Input

∧ y |Output1 ∈ F1(y | Input1)
∧ y |Output2 ∈ F2(y | Input2) }

where Input = (Input1 ∪ Input2) \ (Output1 ∪ Output2)
Output = (Output1 ∪ Output2) \ (Input1 ∪ Input2)

Proposition 1. Interface abstraction and composition commute: given timed
state transition systems (STATEk,∆k, Inputk, Outputk, Initk) (k = 1, 2),
given states σ1 ∈ STATE1 and σ2 ∈ STATE2,

B[∆1 ⊗∆2]((σ1, σ2)) = B[∆1](σ1)⊗ B[∆2](σ2)

The proof is done by induction on the time intervals; a proof for a variation
of the present approach can be found in [8].

6 M. V. Cengarle

m3

m2

m1

a:A b:B
sd

(a) Basic UML 2.0 interaction
diagram

m3

m2

m1

a:A b:B
sd

alt

(b) UML 2.0 interaction diagram
with disjunction

Fig. 2. Sample UML 2.0 interactions

2.3 System models

A system model is any timed state transition system with

STATE ∈ DATASTORE× CONTROLSTORE× EVENTSTORE

Given a system model SM = (ΣSM ,∆SM , InputSM , OutputSM , InitSM), a system
run of SM is a finite or infinite sequence σ0 · σ1 · σ2 · . . . of ΣSM -states such that
σ0 ∈ InitSM and (σi+1,) ∈ ∆SM (σi,) for all i.

To define a semantics for any object-oriented, distributed specification lan-
guage (as e. g. UML) is the art of defining the transition function ∆ depend-
ing on a state in STATE i. e., depending on a DataStore ∈ DATASTORE, a
ControlStore ∈ CONTROLSTORE, and an EventStore ∈ EVENTSTORE, that more-
over observes certain rules. These rules capture the essence of the object-oriented
specification language of interest.

3 UML 2.0 interactions

UML 2.0 interactions describe message exchanges between instances. The picto-
rial representation of a basic interaction carries the intuitive meaning of a partial
order of event occurrences; see Fig. 2(a). Indeed, the dispatch of a message oc-
curs before the arrival of the same message, and the event occurrences on the
lifeline of an instance are ordered from top to bottom. The natural semantic
domain of interpretation for interactions is thus the universe of partial orders of
events—or, more intuitive, simply the traces obtained by linearisation of those
partial orders. So for the example in Fig. 2(a), the following two traces satisfy
the interaction:

t1 = snd(b, a,m1)·rcv(b, a,m1)·snd(a, b,m2)·rcv(a, b,m2)·snd(a, b,m3)·rcv(a, b,m3)

t2 = snd(b, a,m1)·rcv(b, a,m1)·snd(a, b,m2)·snd(a, b,m3)·rcv(a, b,m2)·rcv(a, b,m3)

UML 2.0 puts a number of interaction-building operators at disposal. We
have, for instance, two kinds of sequential composition, parallel composition,
disjunction, loop, ignore, assert, and negation. An example is shown in Fig. 2(b);
this interaction is satisfied by the following two traces:

System Model for UML — The Interactions Case 7

t3 = snd(b, a,m1) · rcv(b, a,m1) · snd(a, b,m2) · rcv(a, b,m2)

t4 = snd(b, a,m1) · rcv(b, a,m1) · snd(a, b,m3) · rcv(a, b,m3)

In sequential composition, the behaviour of the resulting interaction is the be-
haviour of the first operand followed by the behaviour of the second one. Strict
sequential composition requires the behaviour of the first operand be completed
before starting with the behaviour of the second operand. Weak sequential com-
position only requires of each lifeline to complete the behaviour specified for it
within the first interaction before starting with the behaviour specified for it
within the second interaction. Two parallel interactions are to be executed si-
multaneously. Loop repeats the execution of its interaction argument at least a
number of times m, where m can be zero, and at most n times, where n can be
∞. Ignore allows certain messages to be ignored.

UML 2.0 Interactions exemplarily describe patterns of communication, and
negation allows one to discard unwanted ones. The interaction of Fig. 3(a) is
negatively satisfied by the following trace:

t5 = snd(b, a,m2) · rcv(b, a,m2) · snd(a, b,m3) · rcv(a, b,m3)

Thus two kind of traces can be this way defined: positive and negative ones.
Traces that are neither positive nor negative are termed inconclusive.2 Assertion
discards inconclusive traces, i. e., only positive traces of its interaction argument
are positive for the assertion, any other trace is negative.

While the meaning of the negation of a basic interaction is straightforward,
negation composed with other interaction-building operators was given more
than one semantics. From a classical logic point of view, the interaction of
Fig. 3(b) has no negative traces associated, since the negation of a disjunction
(of basic interactions) is equivalent to the conjunction of the negation (of each of
those basic interactions), and given that basic interactions cannot be negatively
satisfied; this proposal can be found in e. g. [9]. An alternative proposal in [10]
states that the interaction of Fig. 3(b) is negatively satisfied by the following
two traces:

t6 = snd(b, a,m2) · rcv(b, a,m2)

t7 = snd(a, b,m3) · rcv(a, b,m3)

In the literature, and besides the above mentioned ones, many proposals for
the semantics of interactions can be found; see e. g. [11,12,13,14]. These semantics
are all trace based. The choice of the approach, for the purposes of this work, is
irrelevant: we assume any trace-based semantics has been chosen and try either to
mimic the inference rules of this semantics in terms of a transition function, or to
decide whether a given transition function satisfies a given UML 2.0 interaction.

2 More accurately, the semantics of an UML 2.0 interaction is 4-valued: a trace can
be positive, negative, inconclusive, or both positive and negative.

8 M. V. Cengarle

m2

m3

b:B
sd

a:A

neg

(a) Negated basic interaction
diagram

m2

m3

b:B
sd

a:A

alt

neg

(b) Negated disjunction

Fig. 3. UML 2.0 Interactions with negated fragments

4 Mapping UML 2.0 interactions

The challenge now consists in determining the semantics of a UML 2.0 interaction
in terms of system models. This section presents some informal thoughts about
this subject. A denotational approach is first considered, that is based on a
previous work; see [9]. We transform a system run into an event trace, from
which we filter all those events that are not associated with any object involved
in the interaction diagram. Then it only remains to check whether the trace this
way obtained satisfies the interaction diagram.

We afterwards consider an operational approach. Here we identify three ways
to tackle the problem. The first one, called global operational, is again based on
previous work; see [15]. The other one, called local operational, correspond to
a work in progress on a local or distributed version of the [global] operational
semantics. Two variants can be identified, namely the local “observing” and the
local “acting” operational approaches.

None of these possibilities has been exhaustively explored yet.

4.1 Denotational approach

In the denotational approach, it is checked whether an event trace satisfies an
UML 2.0 interaction. The participating events are just send and receive events.
In order to make use of this semantics, what we do, roughly speaking, is to
project system runs onto sequences of send/receive events involving only in-
stances present in the given interaction. Then the check is performed on the
traces this way obtained.

Let |= be a binary relation between event traces and UML 2.0 interactions,
for instance the relation |=p defined in [9]. We write t |= S if the event trace t
satisfies the interaction S.

Let SM = (ΣSM ,∆SM , InputSM , OutputSM , InitSM) be a system model, let
ρ = σ0 · σ1 · σ2 · . . . be a system run of SM .

Let S be a UML 2.0 interaction.
We assume that events are unequivocally identified, i. e., that two arbitrary

events, even if they are both a send (or receive) event of the same message from

System Model for UML — The Interactions Case 9

the same sender to the same receiver, can be distinguished (e. g., via a time
stamp). Thus, if a transition was triggered by an event, then this event can be
identified. We write

σk
e−→ρ σk+1

for σk and σk+1 two ΣSM -states adjacent in ρ and e an event, if the following
conditions hold

(a) σk = (ds, cs, es),
(b) σk+1 = (ds ′, cs ′, es ′),
(c) e ∈ es, and
(d) e 6∈ es ′.

If no such e exists for two ΣSM -states σk and σk+1 adjacent in ρ, then we write

σk
τ−→ρ σk+1

where τ is the so-called silent event, that cannot be generated by objects. Infor-
mally, if σk

e−→ρ σk+1, we assume that event e is the trigger of the transition. It
is not ruled out that transitions be triggered by anything other than an event;
for this reason we need the concept of silent event.

We define the event trace trS(ρ) generated by ρ and S as follows. First we
build the trace e0·e1·e2·. . ., where ei is either an event or τ such that σi

ei−→ρ σi+1.
From this trace, we remove

(e) occurrences of the silent event,
(f) occurrences of events that are neither a send nor a receive event,
(g) occurrences of send and receive events in which either the sender or the

receiver is not involved in S.

The resulting event trace is denoted by trS(ρ).
The system model SM satisfies an UML 2.0 interaction S, written SM |= S,

if there exists a system run ρ of SM such that trS(ρ) |= S.

Discussion. Given a system run ρ = σ0 · σ1 · σ2 · . . ., we have assumed that at
most one event triggers a transition from a state σk to a state σk+1. If there
were more than one event in the difference of the associated event stores, then
trS(ρ) would possibly be not just one but a set of traces. In this case, we must
rephrase SM |= S. A possibility is to state that SM |= S if there exists a system
run ρ of SM and a trace t ∈ trS(ρ) such that t |= S.

The last two steps above for obtaining trS(ρ), be this a single trace or a set
of traces, should not be made if the system model is supposed to satisfy only the
given interaction. In case they do apply, the last one could also read as follows:

(g) occurrences of send and receive events in which neither the sender nor the
receiver is involved in S.

10 M. V. Cengarle

This might be useful if the message exchange is projected onto one or more
lifelines. Other participants of the exchange would be then considered as the
environment.

Regarding the environment, it was totally neglected. The implication of doing
so is unexplored yet. One is tempted to treat the environment(s)3 just as another
lifeline (or other lifelines). The main difference between the environment and an
ordinary lifeline is that the events on the environment are not ordered from top
to bottom; this should not be disregarded.

Further issues are termination and deadlock, that in the above approach
might be identified (i. e., confused). For this latter matter, a concept of final
states of a system model might provide a solution.

4.2 Operational approach

The operational semantics, instead of only “passively” verifying traces as in the
denotational approach of above, it can “actively” generate transitions of a system
model. This approach is based on previously defined operational semantics for
UML 2.0 interactions, namely a global operational semantics (see [15]) and a
local operational semantics (still unpublished, a summary of it can be found in
the Appendix). The global version recognises (or generates) event occurrences
and transforms the original interaction into a target one. The local version, on the
contrary, projects the given interaction onto its lifelines, and allows the parallel
recognition (or generation) of event occurrences with the help of a minimal
synchronisation mechanism.4

Global version

Let C be a channel set, let c ∈ C be a channel, and let x ∈ T(C). We know that
x.c ∈ UMSG∗, i. e., x.c is a finite sequence of messages. C can be in particular
the set of input channels. Messages deposited in an input channel are to be
delivered to the corresponding object. This matter is outside the scope of this
article. Given a finite sequence of messages x.c, we let x.c denote the set of events
that are to be added to the event store in order for those messages to be correctly
delivered.

We let e denote either a send or a receive event, we let e denote either the
silent event τ or an e.

Let → be a relation between two UML 2.0 interactions and an arbitrary e,
for instance the positive reduction relation →p defined in [15]. We write S1

e−→ S2

if the interaction S1 reduces via e to the interaction S2.
We define a set of states by

3 Some authors propose the use of different environmental instances, see for in-
stance [16].

4 The synchronisation mechanism avoids, for example, that two instances participat-
ing on a loop construct perform a different number of iterations.

System Model for UML — The Interactions Case 11

STATE′ = {(S, es) | es ∈ EVENTSTORE ∧ S a UML 2.0 interaction}.

Given channel sets Input and Output, we furthermore define a function

∆′ : (STATE′ × T(Input)) → ℘(STATE′ × T(Output))

with

(a) ((S2, es ∪ {e}∪
⋃

c∈Input i.c), ∅) ∈ ∆′(((S1, es), i))
if S1

e−→ S2 and e 6∈ es, and
(b) ((S2, es∪

⋃
c∈Input i.c), ∅) ∈ ∆′(((S1, es ∪ E1), i))

if either S1
e−→ S2 and E1 = {e}

or S1
τ−→ S2 and E1 = ∅.

The function ∆′, thus, either generates or consumes the events along the reduc-
tion relation as derived by the operational semantics.

Let SM = (ΣSM ,∆SM , InputSM , OutputSM , InitSM) be a system model, let S
be a UML 2.0 interaction. We say that the transition function ∆SM is compatible
with ∆′ and S if

(i) ((S2, es ′), ∅) ∈ ∆′(((S1, es), i)) implies
((ds, cs, es ′),) ∈ ∆(((ds, cs, es), i)) for any ds, for any cs, and

(ii) there exist (ds, cs, es) ∈ InitSM and i ∈ T(Input)
such that ((S, es), i) ∈ dom(∆′).

Now the system model satisfies the interaction, written SM |= S, if ∆SM is
compatible with ∆′ and S.

Discussion. Notice that, instead of testing compatibility, one can state that
the transition function ∆SM by definition is the calculated ∆′ rephrased onto
STATE. In this case, on the one hand, the system model would satisfy the given
UML 2.0 interaction and no other one, and great care should be taken in the
definition of the set InitSM of initial states. On the other hand, the behaviour of
the system model would show just this one message exchange pattern, i. e., no
other behaviour, as it can be for instance specified by an activity diagram or a
state chart, would be satisfied by the system model obtained this way.

The relationship between input messages and event store is not quite satis-
factorily explored. For instance the relationships that hold as stated in Sect. 2.1,
namely

sender, receiver : UMSG → UOID,
sender(m) = oid ⇐⇒ SendEvent(m) ∈ events(oid), and
receiver(m) = oid ⇐⇒ ReceiveEvent(m) ∈ events(oid),

must be updated when transforming a finite sequence of messages i.c into the
set i.c of events. Similar concerns apply to the data store and the control store.
These seem to be useless if just one interaction is to be satisfied by the system
model.

12 M. V. Cengarle

Finally, events generated by the environment through the use of input chan-
nels is not mirrored by the above definition when it comes to send events to the
environment through the use of output channels. This matter, however, poses
no true difficulty: after generation by step (a) of such an event, recognisable by
having the environment as addressee, the event has to be casted to a message
and put on an output channel (in this case, thus, the set of output messages is
not empty).

Local version

In a distributed setting, it makes sense to consider the behaviour of each
instance without simultaneously considering the behaviour of the context of that
instance, be this context other instances or the environment. This approach
is explored in [17]. This local operational semantics allows the derivation of
judgements of the form γ1

e−→ γ2, where γ1 and γ2 are configurations and e
is either an event e or the silent event τ . Configurations, roughly speaking,
consist of a number of pairs together with synchronisation information. There
are as many pairs as lifelines involved in the given, initial, UML 2.0 interaction.
The pairs associate each such lifeline with its still to process projection of the
interaction. For details, see the Appendix.

As with the global operational semantics, information on the current con-
figuration needs be recoverable from the state, on which a transition function
based on the inference system for configurations can be based. We define the set
of extended states by

STATE′ = {(γ, es) | es ∈ EVENTSTORE ∧ γ a configuration}.

Given channel sets Input and Output, we define a function

∆′ : (STATE′ × T(Input)) → ℘(STATE′ × T(Output))

with

(a) ((γ2, es ∪ {e}∪
⋃

c∈Input i.c), ∅) ∈ ∆′(((γ1, es), i))
if γ1

e−→ γ2 and e 6∈ es, and
(b) ((γ2, es∪

⋃
c∈Input i.c), ∅) ∈ ∆′(((γ1, es ∪ E1), i))

if either γ1
e−→ γ2 and E1 = {e}

or γ1
τ−→ γ2 and E1 = ∅.

Along the same lines, given an UML 2.0 interaction S and a system model
SM = (ΣSM ,∆SM , InputSM , OutputSM , InitSM), we define the concept of compat-
ibility of ∆SM with ∆′ and S, and state that the system model satisfies the
interaction, denoted by SM |= S, if ∆SM is compatible with ∆′ and S.

Discussion. In the same way as in the case of the global operational semantics,
the transition function ∆′ could be used to define ∆SM . The relationship between

System Model for UML — The Interactions Case 13

input messages and event store needs likewise be explored, and similarly output
messages generated in step (a) should be put in an output channel.

The benefit of using a local operational semantics becomes apparent in com-
bination with the composition mechanism of system models. Indeed, system
models can separately implement lifelines, and a single system model for the
whole intended system can be obtained by composition. In this setting, config-
urations are no longer a number of pairs (one pair for each individual lifeline),
but just one single pair. The additional information needed for synchronisation
can be recorded in the data store. The data store or at least the synchronisation
information, then, needs be shared and not local of each single system model
implementing one lifeline. That is, a shared memory model or an ad hoc message
exchange mechanism is indispensable, that deviates from the system model pre-
sented above. System models with shared memory pose a new challenge, since
the composition mechanism needs be revised, and the same with the proper-
ties the present composition definition fulfils. If there is a real gain in doing so,
though, is still to be explored.

5 Conclusions and outlook

The contribution of the work in progress reported above is a conciliation of
the declarative language of UML 2.0 interactions with the more operational
one of system models. One denotational and two operational approaches for the
definition of the semantics of a UML interaction in terms of system models have
been presented. These approaches are based on previously developed notions of
semantics of UML 2.0 interactions, but in principle alternative proposals can
also be employed. To what extent this is actually possible is a subject of future
study.

System models provide a means for the interpretation of complex object-
oriented specification languages. They offer a wide range of mechanisms that
mirror well-established specification and programming techniques. In this con-
text, the choice of the semantics of a UML 2.0 interaction makes it necessary to
consider how to handle features that are not inherent in the language of the in-
teractions. For this reason, the various possibilities presented in this survey show
some loose ends that have been itemised in the respective discussions. In par-
ticular, none of the above approaches studies in detail the relationship between
I/O-messages and internal messages. Moreover, when discussing the implemen-
tation of each lifeline by a single system model, the messages in the input and
output channels possibly become internal ones by composition, i. e., they should
be handled in the event store. It remains to check how to treat events from
and to the environment in such a way that the corresponding input and output
channels become feedback channels by composition; see Fig. 1.

Besides the denotational and the operational ones, an additional approach
that could be termed equational, considers interactions as an equation on stream
processing functions; see e. g. [18,19,20]. Indeed, the intuitive semantics of an
interaction is a set of traces. An interaction can thus be regarded as an equation

14 M. V. Cengarle

on stream processing functions.5 We can therefore state that a system model
satisfies an interaction if the interface abstraction of the system model satisfies
the equation induced by the interaction. This seems straightforward for basic
interactions. It is not trivial to combine the obtained system models in such a
way that reflects the semantics of the different interaction building operators.
The weak composition of stream processing function is worthy of special interest;
see [7]. This matter is still unexplored.

The equational approach is appealing since it seems the most abstract one,
whereas the operational approaches seem the most concrete ones. Once they all
are fully developed, they should be proved to be equivalent, i. e., if a system
model satisfies an interaction in one of those approaches, then the satisfaction
relation must also hold according to another approach.

A chapter of itself deserves the negation of interactions. There is more than
one proposed semantics for this construct, each with its own advantages and
disadvantages. The great difficulty resides in the negation being non-classical
and, in particular, in the fact that double negation does not correspond to the
identity. This makes it very difficult to handle.

All in all, the interactions case poses an interesting challenge. There is a wide
range of possibilities, and—after they have been deeper studied—discerning the
better or most convenient one is the next task.

Acknowledgements. Special thanks go to Alexander Knapp for fruitful discus-
sions.

References

1. Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System
Model for UML: The Structural Data Model. Technical Report TUM-I0612, Insti-
tut für Informatik, Technische Universität München (2006)

2. Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System
Model for UML: The Control and Scheduling Model. To appear. (2007)

3. Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System
Model for UML: The State Machine Model. To appear. (2007)

4. Object Management Group: UML 2.0 Superstructure Specification. Final adopted
specification, OMG (2003) http://www.omg.org/cgi-bin/doc?ptc/03-08-02.

5. Object Management Group: UML 2.0 Superstructure Specification. Revised fi-
nal adopted specification, OMG (2004) http://www.omg.org/cgi-bin/doc?ptc/

03-08-02.
6. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In de Bakker,

J.W., Huizing, C., de Roever, W.P., Rozenberg, G., eds.: Real-Time: Theory in
Practice, (REX Workshop, Proceedings). Volume 600 of Lecture Notes in Com-
puter Science., Springer (1992) 226–251

7. Krüger, I.: Distributed System Design with Message Sequence Charts. PhD thesis,
Technische Universität München (2000)

8. Grosu, R., Rumpe, B.: Concurrent Timed Port Automata. Technical Report
TUM-I9533, Institut für Informatik, Technische Universität München (1995)

5 Note that the interface abstraction of a system model is a stream processing function.

http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.omg.org/cgi-bin/doc?ptc/03-08-02

System Model for UML — The Interactions Case 15

9. Cengarle, M.V., Knapp, A.: UML 2.0 Interactions: Semantics and Refinement.
In Jürjens, J., Fernandez, E.B., France, R., Rumpe, B., eds.: 3rd Int’l Workshop
on Critical Systems Development with UML (CSDUML’04, Proceedings), Techni-
cal Report TUM-I0415, Institut für Informatik, Technische Universität München
(2004) 85–99

10. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design
with sequence diagrams. Journal of Software and System Modeling (SoSyM) 4
(005) 355–367

11. Haugen, Ø., Stølen, K.: STAIRS - Steps to Analyze Interactions with Refinement
Semantics. In Stevens, P., Whittle, J., Booch, G., eds.: 6th Int’l Conference on
the Unified Modeling Language (UML’03, Proceedings). Volume 2863 of Lecture
Notes in Computer Science., Springer, Berlin (2003) 388–402

12. Knapp, A.: A Formal Semantics for UML Interactions. In France, R., Rumpe, B.,
eds.: 2nd Int’l Conference on the Unified Modeling Language (UML’99, Proceed-
ings). Volume 1723 of Lecture Notes in Computer Science., Springer, Berlin (1999)
116–130

13. Störrle, H.: Assert, Negate and Refinement in UML-2 Interactions. In Jürjens, J.,
Rumpe, B., France, R., Fernandez, E.B., eds.: Workshop on Critical Systems Devel-
opment with UML (CSDUML’03, Proceedings), San Francisco, Technical Report
TUM-I0317, Technische Universität München (2003)

14. Störrle, H.: Semantics of Interactions in UML 2.0. In: IEEE Symposium on Visual
Languages and Formal Methods (VLFM’03, Proceedings), Auckland (2003)

15. Cengarle, M.V., Knapp, A.: Operational Semantics of UML 2.0 Interactions. Tech-
nical Report TUM-I0505, Institut für Informatik, Technische Universität München
(2005)

16. Graubmann, P.: Describing interactions between MSC components: the MSC con-
nectors. Computer Networks 42 (2003) 323–342

17. Cengarle, M.V., Knapp, A.: Distributed Operational Semantics of UML 2.0 Inter-
actions. In preparation. (2007)

18. Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
PhD thesis, Technische Universität München (1996) In German.

19. Stephens, R.: A survey of stream processing. Acta Informatica 34 (1997) 491–541
20. Broy, M.: A logical basis for modular software and systems engineering. In Rovan,

B., ed.: Current Trends in Theory and Practice of Informatics (SOFSEM’98, Pro-
ceedings). Volume 1521 of Lecture Notes in Computer Science., Springer (1998)
19–35

21. Pratt, V.: Modeling Concurrency with Partial Orders. Int. J. Parallel Program.
15 (1986) 33–71

Appendix: Local operational semantics (draft)

The definition contained in this section was developed together with Alexander
Knapp. The local operational semantics is still under construction, we do not
have a full proof of correctness or completeness yet.

The local operational semantics of interactions is based on the idea of dis-
tributing information to all the different lifelines and administrating some shared
information necessary for correct synchronisation. This information is used by
lifelines in order to find out the constraints, if any, that apply to the next de-
cision and/or step to be taken. For the purposes of discerning decision points,

16 M. V. Cengarle

the notion of path that uniquely identifies each combined fragment inside an
interaction fragment is used. The initial interaction term is annotated with the
paths to each operator. Each lifeline is associated with the projection onto it of
the annotated interaction term. These pairs together with the synchronisation
information constitute a configuration. An inference system permits the deriva-
tion of pairs of configurations related by an event; intuitively, this means that
the outgoing configuration evolves, through raising the event, to the follow-up
configuration.

More formally, the abstract syntax of the (fragment of the) language of
UML 2.0 interactions introduced in Sect. 3 is captured by the context-free gram-
mar of Tab. 1, where a basic interaction Basic is characterised as a pomset;
see [9,21]. We assume two primitive domains for instances I and messages Msg .
An event e is either of the form snd(s, r,m) or of the form rcv(s, r,m), represent-
ing the dispatch and the arrival of message m from sender instance s to receiver
instance r, respectively. The set of events is denoted by E.

Interaction ::= Basic
| CombinedFragment

CombinedFragment ::= strict(Interaction, Interaction)

| seq(Interaction, Interaction)

| par(Interaction, Interaction)

| loop(Nat, (Nat | ∞), Interaction)

| ignore(Messages, Interaction)

| alt(Interaction, Interaction)

| neg(Interaction)

| assert(Interaction)

Table 1. Abstract syntax of interactions (fragment)

A given interaction term is first annotated with path information. Paths al-
low the univocal identification of each combined fragment within an interaction
fragment. Paths are finite sequences of 1 (for left) and 2 (for right). The anno-
tation procedure is defined as follows:

num(const , p) = const
num(uop(S), p) = uopp(num(S, p.1))
num(bop(S1, S2), p) = bopp(num(S1, p.1), num(S2, p.2))

where const denotes a constant interaction fragment like e. g. Empty, uop(−) a
unary combined fragment like e. g. loop(−),6 and bop(−,−) a binary combined
fragment like e. g. strict(−,−). For example, num(seq(par(e1, e2), loop(e3)), 1) =
seq1(par1.1(e1, e2), loop1.2(e3)).

6 We disregard the lower and upper bounds that limit the number of iterations to be
performed by a loop-construct. The treatment of these bounds is trivial, and would
now only distract the reader from the focus of this exposure.

System Model for UML — The Interactions Case 17

The projection πl(S) of an annotated term S onto the lifeline l replaces in S
every occurrence of an event which is not active on l by Empty and is formally
defined as follows:

πl(Empty) = Empty

πl(e) =

{
e if l = α(e)
Empty otherwise

πl(uopp(S)) = uopp(πl(S))
πl(bopp(S1, S2)) = bopp(πl(S1), πl(S2))

where α(e) denotes the active lifeline for event e, with α(snd(s, r,m)) = s and
α(rcv(s, r,m)) = r. That is, any configuration contains as many pairs as lifelines
are involved in the original interaction term.

The decisions taken so far are recorded in a synchronisation variable h that
is also part of any configuration. So for instance if a lifeline, faster than the other
ones, arrives first to an alt-fragment, then the branch taken by this lifeline is the
branch that any other lifeline must take. The path information that uniquely
identifies this occurrence of the alt-operator is used to record the decision. So
if the alt fragment is annotated with path information p and the branch chosen
is the left one, then the variable h assigns 1 to p, i. e., h(p) = 1. Besides the
choice of a branch in an alt-fragment, h needs to record the information about
which lifelines have reached the end of the first operand of a strict-fragment. So
if lifeline l has done so, i. e., the pair l : strictq(Empty, S2) is within the current
configuration, then the variable h assigns to q a set that contains l. If h(q)
contains every lifeline, then each pair l : strictq(Empty, S2) can be replaced by
l : S2. In this way, it is ensured that the second operand is only entered when
all lifelines finished processing the first one.

Special attention requires the loop-construct. During execution of a loop, the
relevant synchronisation information is the number of iterations performed so far
and if the loop has been already abandoned by any lifeline. This latter information
is recorded in the shared variable. Regarding the first matter, we take advantage
of the fact that a loop is equivalent to its unfolding as weak sequencing of its
interaction argument. Indeed, loop(S) is equivalent to seq(S, loop(S)) if at least
one more iteration is to be performed. In this case, we let loopp(S) be equivalent
to seqp(S, loopp.2([p 7→ p.2]S)), where [p 7→ p.2] replaces the path p by p.2 of its
annotated interaction argument. This substitution is formally defined as follows:

[p 7→ p.n]const = const

[p 7→ p.n]uopq(S) =

{
uopp.n.q′([p 7→ p.n]S) if q = p.q′

uopq(S) otherwise,

[p 7→ p.n]bopq(S1, S2) =

{
bopp.n.q′([p 7→ p.n]S1, [p 7→ p.n]S2) if q = p.q′

bopq(S1, S2) otherwise

(that is, [p 7→ p.n] is defined for any annotated term, even if p is not the
prefix the paths involved). For example, the substitution [1 7→ 1.2] has no ef-
fect on the annotated term seq2(par2.1(e1, e2), loop2.2(e3)) since within that term

18 M. V. Cengarle

paths begin with 2 and not with 1, whereas the same substitution applied on
seq1(par1.1(e1, e2), loop1.2(e3)) results in seq1.2(par1.2.1(e1, e2), loop1.2.2(e3)).

Therefore, the synchronisation variable h maps paths to either a subset of
{1, 2} (for left-right decisions) or a subset of L (for strict sequencing), where L
is a set of lifelines.

The initial configuration for an interaction term S is

〈{l : πl(num(S)) | l ∈ L}, ∅〉,

where L is the set of all lifelines involved in S. That is, each lifeline is associated
with the projection onto it of the annotated interaction term, and the synchroni-
sation function is empty. Configurations, in general, consist of a synchronisation
function whose domain is contained in the set of paths of S and a set of pairs,
one for each lifeline involved in S, that associate a lifeline with an annotated
term.

The inference system allows the derivation of judgements of the form γ1
e−→ γ2,

where γ1 and γ2 are configurations and e denotes either an event e or the silent
event τ .

In Tab. 2 a fragment of the inference system is presented. When writing the
axioms and rules of the inference system, we may omit irrelevant information;
this omission is to be understood as follows: in γ1

e−→ γ2, whatever is omitted
from γ1 remains unchanged in γ2.

For weak sequencing, an auxiliary predicate is needed that decides whether
the first operand is Empty or equivalent to it (as e. g. alt(Empty, Empty)). This
predicate is inductively defined as follows:

ε(Empty)
¬ε(e)
ε(uopp(S)) ⇐⇒ ε(S)
ε(bopp(S1, S2) ⇐⇒ ε(S1) ∧ ε(S2)

(Given that the interaction term is assumed to be projected on the lifeline of
interest, for an event e we need not check if this lifeline is active for e: this is,
by definition, the case.) With the help of this predicate, we let a lifeline advance
to the second argument of a weak sequence. This is especially relevant when, in
an alternative construct as first operand, the lifeline should be able not decide
which one of both disjunctive terms is to be chosen (since the lifeline itself is not
truly involved in any of both alternatives).

For ignore we use a function µ on events that returns the message carried by
its argument, i. e., µ(snd(s, r,m)) = m and µ(rcv(s, r,m)) = m.

In Tab. 2 the interaction building operators neg and assert are not consid-
ered. Their semantics in the local (or distributed) operational setting is still in
development.

System Model for UML — The Interactions Case 19

(basic) e
e−→ Empty

(strict1)
S1

e−→ S′
1

strict(S1, S2)
e−→ strict(S′

1, S2)

(strict2) l : strictp(Empty, S2), h
τ−→ l : strictp(Empty, S2), h[p 7→ h(p) ∪ {l}]

if l /∈ h(p)

(strict3) l : strictp(Empty, S2), h
τ−→ l : S2, h

if h(p) = L

(seq1)
S1

e−→ S′
1

seq(S1, S2)
e−→ seq(S′

1, S2)
(seq2) seq(Empty, S2)

τ−→ S2

(seq3)
S2

e−→ S′
2

seq(S1, S2)
e−→ seq(S1, S′

2)
if ε(S1)

(par1)
S1

e−→ S′
1

par(S1, S2)
e−→ par(S′

1, S2)
(par2) par(Empty, S2)

τ−→ S2

(par3)
S2

e−→ S′
2

par(S1, S2)
e−→ par(S1, S′

2)
(par4) par(S1, Empty)

τ−→ S1

(ignore1) ignore(M , Empty)
τ−→ Empty (ignore2)

S
e−→ S′

ignore(M , S)
e−→ ignore(M , S′)

(ignore3) ignore(M , S)
e−→ ignore(M , S)

if µ(e) ∈ M

(alt1) l : altp(S1, S2), h
τ−→ l : S1, h[p 7→ {1}]

if 2 /∈ h(p)

(alt2) l : altp(S1, S2), h
τ−→ l : S2, h[p 7→ {2}]

if 1 /∈ h(p)

(loop1) l : loopp(S), h
τ−→ l : Empty, h[p 7→ {1}]

if 2 /∈ h(p)

(loop2) l : loopp(S), h
τ−→ l : seqp(S, loopp.2([p 7→ p.2]S)), h[p 7→ {2}]

if 1 /∈ h(p)

Table 2. Positive local operational semantics (fragment)

	System Model for UML The Interactions Case
	María Victoria Cengarle

