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Abstract. The methodology of aspect-oriented software engineering has
been proposed to factor out concerns that are orthogonal to the core
functionality of a system. In particular, this is a useful approach to han-
dling the difficulties of integrating non-functional requirements such as
security into complex software systems. Doing so correctly and securely,
however, still remains a non-trivial task. For example, one has to make
sure that the ”weaving” process actually enforces the aspects needed.
This is highly non-obvious especially in the case of security, since differ-
ent security aspects may actually contradict each other, in which case
they cannot be woven in a sequential way without destroying each other.
To address these problems, this paper introduces a framework for the
aspect-oriented development of secure software using composition filters
at the model level. Using an underlying foundation based on stream-
processing functions, we explore under which conditions security prop-
erties are preserved when composed as filters. Thanks to this foundation
we may also rely on model level verification tools and on code and model
weaving to remedy security failures. Our approach is explained using as
case-studies a web banking application developed by a major German
bank and a webstore design.

Keywords. Aspects in software engineering, aspect interference, verifi-
cation, semantics, formal methods

1 Introduction

Aspect-Oriented Software Development (AOSD) is a novel software develop-
ment paradigm still under evolution. It aims at overcoming limitations of pre-
vious paradigms such as that many requirements do not decompose neatly into
behavior centered in a single decomposition element. For instance, OOP has
difficulty localizing global concerns because the unit of modularity or first class
instance in OOP is the class, which leads to what is called the ‘tyranny of the
dominant decomposition’. This dominant decomposition encapsulates data con-
cerns effectively into classes, though systemic concerns, such as security, cannot
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be neatly encapsulated within the dominant modules. The result is that these
kind of concerns are scattered across several classes.

Aspect-orientation aims at identifying and specifying crosscutting concerns
i. e. aspects in separate modules, providing one more dimension to modularize
software. For our purposes, it is sufficient to understand an aspect as a desired
feature stemming from the requirements specification which is orthogonal to
the main functional requirements and that contains functionality which affects
several other modularization entities. The idea is thus that computer systems are
better programmed by separately specifying the various concerns (understood
as properties or areas of interest) of a system, describing their relationships, and
then relying on mechanisms in the underlying AOSD environment to weave i. e.
compose them into a coherent program.

This brings a problem we intend to deal with in this work, namely, the pos-
sible interaction of different aspects as a result of the weaving process. Since
there exist aspects that actually contradict each other (for example the security
aspects of anonymity and accountability), it is in general not clear whether two
different aspects can be woven into a program without negative interference.
Furthermore, establishing this for a given set of aspects and a given program is
a non-trivial problem which requires having a formal foundation to analyze the
system and the aspect interaction. Specifically, the problem of aspect composi-
tion involves analyzing not only their execution ordering, but is rather a problem
of semantic analysis of the aspects that are woven on a given base element (such
as an object’s method, attribute, or the interface of a component). To explore
the problem of aspect interaction we draw inspiration from one of the main re-
search lines in AOSD, the Composition Filters (CF) approach along the lines of
[1]. The reason is that this approach allows for a particularly insertion of aspects
over the communication channels between objects. We recall that every system
i.e. subsystem (in the sense of logical system entities) interaction can be reduced
to the receiving and sending of messages. Making the communication channels a
first-class entity in the aspect-interaction analysis helps reasoning over a number
of problems in AOSD. We chose to explore aspect interaction in this work at
the hand of two security aspects from industry interesting enough for a formal
mathematical analysis. Security issues are usually accepted as crosscutting. In
addition, the interaction of security protocols is by no means trivial and aspect
interaction happens actually at specific points that is why we show our theory
on a few well-defined points of execution. Correspondingly, consider the defi-
nition of clear- and black-box aspect-oriented programming (AOP) from [2] in
terms of quantifications over the internal structure of components (clear-box) or
over the public interface of components (black-box). In both cases, we have com-
munication channels, either external (at the interface level) or internal (in the
decomposition of the subsystem). In this report we address the specific situation
where one can weave aspects in the interfaces among components, also known as
black-box aspect-orientation. We believe this situation to be of sufficient interest.
As mentioned above, it is related to an important line of research in AOP that
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adds aspect behavior through input and output filters superimposed on sets of
objects [1].

This work has three main contributions. Firstly, we provide a formal founda-
tion for aspects which does not seem to have been provided so far for composition
filters. Secondly, we demonstrate how to use this formal foundation to formally
analyze aspect composition including the composition of aspects with other as-
pects, and possible unwanted interactions. Finally, we apply our approach more
specifically to the case of security aspects, because of the particular challenges
involved with developing security-critical software. A formal foundation for dy-
namic security aspects in the context of aspect-oriented development seems to
be missing until now. Security is generally accepted as a crosscutting concern,
that is a reason to explore our framework at the hand of these examples. Our ap-
proach is independent of object-orientation and therefore allows us to use ideas
from AOP and aspect composition outside object-oriented programming (OOP),
but can be extended with concepts to also consider object-orientation. We use
the term component in a conceptual and logical sense, not as a programming or
physical entity. Here we propose a framework for the analysis of aspect inter-
action in software architecture. Our proposal is not intended for the analysis of
aspect orientation at the code level.

In order to reason about aspect composition a framework with precise syntax
and semantics is required. Such a framework is introduced in the next chapter.
In Sect. 3 we introduce the composition model we used in this report, based on
Composition Filters. In Sect. 4 we introduce security aspects through the exam-
ple of a secure channel3 aspect that will be used in the case study. In Sect. 5, we
demonstrate how this aspect can be composed with the authentication aspect in
a secure way. In Sect. 6, we consider two different security aspects and determine
under which conditions they can be securely composed together. In Sect. 7 we
introduce a framework for verification of predefined security properties in UML
models. Based on the diagnosis of such a framework we may correct the failures
by weaving the required aspect. We relate our work at the modeling level to as-
pect weaving at the code level with an example in Java and Compose* in Sect. 8.
We close with a comparison to related work and conclusions.

2 Formal Foundation

We recall the definitions of streams, stream-processing functions, and compo-
sition of stream-processing functions from [3,4]. These definitions help specify-
ing the components. Through the channel history of components we may an-
alyze their interaction. For instance, we may observe whether a given message
mreceived as input at channel s1 in component P (Fig. 1) at time t is present
in some output channel o at time t+1. Similarly, given that P can be speci-
fied under this theory as a stream-processing function with precise syntax and
semantics, we may follow its output history to verify whether a given system
3 To be more precise this is actually a secrecy-enforcing channel. We call it “ secure

channel” in this work to facilitate reading.
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property4 is actually fulfilled. That is the reason for the use of this formalism as
theoretical background.

The formal theory Focus [4] describes a system based on input/output re-
lations on sets of histories of externally observable events. A system is divided
into components. The behavior of a component is described by the relationship
between its external input and output histories, defined as streams-processing
functions (where “streams” are the sequences of input and output values of the
system, to be defined below). This way we obtain a black-box view of the compo-
nent in question. This theory also allows us to distinguish between elementary
and composite specifications. Composite specifications are built from elementary
specifications using constructs for composition and network description.

We model components through their communication histories, that means
their I/O behavior, modeled as streams. A stream is a finite or an infinite se-
quence of values, often called messages. Streams are used to model the communi-
cation histories of directed channels, that is, channels that transmit messages in
one direction. Given that the communication histories of channels are modeled
by the streams of messages sent along the channels, we may specify a component,
in this case a function, by characterizing the relationship between its input and
its output streams. This is also a reason to rely on this theory for modeling com-
position filters, since they operate on messages sent among objects in a directed
fashion. The model is introduced in Sect. 3.

Stream C =def (CExp)C (where C ∈ Channels) for the set of C -indexed
tuples of sequences of expressions. The elements of this set are called streams,
specifically input resp. output streams if C denotes the set of input, resp. output,
channels of a process P . Each stream s ∈ StreamC consists of components sc
(for each c ∈ C ) that denote the sequence of expressions appearing at channel
c. The nth element in this sequence is the expression appearing at time t = n.

Stream processing function A function f : StreamI → StreamO from sets of
streams to sets of streams is called a stream-processing function. We consider
deterministic systems in this definition.

Streams From a mathematical point of view, are functions mapping natural
numbers to messages. The index on the channel (see StreamC in the above
definition) is needed since we have different channels and for each channel we
have a stream. In the example below the index is i in channel s of component
P.

For instance, stream si (starting with message m1 followed by messages m2,
and again m2) is uniquely characterized by the function

si ∈ {1, 2, 3} → {m1,m2},where si(1) = m1, si(2) = m2, and si(3) = m2.

As already mentioned, we build composite specifications out of elementary
specifications by composing stream-processing functions. We therefore recall the
4 i. e. set of behaviors see [5]
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Fig. 1. Component P with input and output named channels

composition operator which we actually use as weaving function together with
the tables we introduce in the next section.

Mutual-feedback composition operator (⊗)
The composition of two stream-processing functions (illustrated in Fig. 2)
fi : StreamIi → StreamOi

(i = 1,2) with O1 ∩O2 = ∅ is:
f1 ⊗ f2 : StreamI → StreamO

with I = (I1 ∪ I2)\(O1 ∪O2),O = (O1 ∪O2)\(I1 ∪ I2),
where f1 ⊗ f2(s) =def {t �O : t �I = s �I ∧t �Oi∈ f1(s �Ii )(i = 1, 2)}
(the time index t ranges over StreamI∪O). For t ∈ StreamC and C ′ ⊆ C , the
restriction s �C ′∈ StreamC ′ is defined by �C ′ (c) = t(c) for each c ∈ C ′.

... ...

... ...

I1 I2

f1 f2

O1 O2

Fig. 2. Composition of two stream-processing functions with mutual feedback

The above definition formalizes the fact that the two stream-processing func-
tions interact by exchanging messages over their shared input- and output-
streams.

Example 1. If f : StreamI1 → StreamO1 , f (s) =def {1.s, 2.s}, is the stream-
processing function with input channel I1 and output channel O1 that outputs
the input stream s prefixed with either 1 or 2, and
g : StreamI2 → StreamO2 , g(s) =def {0.s}, the function with input (resp.
output) channel I2 (resp. O2) that outputs the input stream prefixed with 0,
then the composition f ⊗ g : StreamI1 → StreamO2 , f ⊗ g(s) = {0.1.s, 0.2.s},
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outputs the input stream prefixed with either of the 2-element streams 0.1 or
0.2.

We shortly recall from [4] that one can associate a stream-processing function
to a state machine. The definitions of state machine and state transition diagram
are recalled from [6].

State transition relations are described by state transition rules. These are log-
ically represented with the help of assertions that contain the state attributes v
as identifiers in a primed form v’ and in an unprimed form v as well. Unprimed
identifiers relate to the values of the given attribute in the state before the state
transition and the primed identifiers to the values of the attributes in the state
after the transition.

Transition rules are of the syntactic form [P] x:e / y:b, where P is a guard
which is a state assertion referring only to the local attributes of the system.
The identifier x denotes an input channel and y an output channel, e and b
are messages of respective types of the channel. A transition is fired when an
appropriate message is received and the specified guard is fulfilled.

State machines are described by a state assertion U that characterizes the set
of initial states and a finite set of state transition rules R of the form presented
above.

A state transition specification S=[I/O, attribute B; initial U ;R] consists of
a given set of typed input channels I, a given set of typed output channels O and
a set of typed attributes B; furthermore, it contains a state assertion U which
characterizes the set of initial states and a set R of state transition rules.

Furthermore, state machines can be described by a state space, state tran-
sition rules, and an assertion on the initial states of the machine. The state
is specified by a set of typed attributes. Each valuation of these attributes de-
scribes a state. In the assertion related to the initial state we refer to the state
attributes and the output channels. We model the state transitions between the
system states and the input and output sequences of messages arriving through
the channels. State machines are describe by state transition diagrams.

A state transition diagram is a graph with nodes labeled by control states and
arcs labeled by state transitions. One control state or a set of them is marked as
being initial.

In the state transition diagrams we present here, the channel type is indicated
below the graph together with the corresponding expressions that each may send
(respectively receive).

We denote a specification S as JSK. So that, for instance, the specification
represented as a state machine in Figure 5(a) will be referred as JSendE K. The
input and output channels are specified in the lower part of the diagrams.

We refer indistinctly to components as stream-processing functions.
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In the next section, we introduce the concern composition framework (i. e.
model) which is based on the formalism exposed here. The formalism, despite
being complicated, enables us to reason about aspect composition in logical
terms. This means in terms of predicate logic. Although it is not further explored
in this work, the framework may allow us to go a step further and rely on
automated software verification tools like Automated Theorem Provers (ATP), as
well as on High-Order Logic (HOL) tools. We demostrate its use on an informally
written theorem and its proof in Sect. 6, for more complex cases we suggest
relying on ATPs.

In this sense our framework might be considered as a solid step toward (for-
mal) verification of aspect interaction at a fine granular level, as illustrated in
Sect. 6. In the coming section we introduce the composition model (Sect. 3), and
explain aspect composition in(Sect. 4, and Sect. 5).

3 Composition Model

The composition model we propose is inspired by the composition filters model
presented in [1]. It is a concern composition mechanism based on message in-
terception over communication channels between components. Input and output
filters are defined around a base object. The filters select messages based on
given criteria, and either perform a process on the accepted messages or send
the message (intact or altered) along to a predefined recipient. If the message
was not accepted, it is then forwarded to the next filter. Input filters select in-
coming messages to the base object, output filters select outgoing messages of
the base object. The model we refer to is implemented is implemented in the
Compose* framework [7]. It is defined at the programming level, not at the soft-
ware architecture level as is ours. Compose* is one of the first aspect-oriented
languages and contrary to other aspect-oriented tools (such as Hyper/J) it is
mature enough to be applied industrially. This is why we chose the former as
inspiration for the composition model.

The model exploits the fact that objects in the OOP can only communicate
by sending messages. Based on this principle, a set of filters is defined together
with an advice. The filters select incoming and outgoing messages according to
logical conditions stated by the developer and execute the respective advice.
Please note that such filters are stated syntactically, namely over the signature
of objects.

We introduce an architecture level composition-filters model. In the case of
a black-box view, components as defined in Sect. 2 communicate only through
their input and output channels, i. e. interfaces. In the case of a glass-box (also
called clear-box ) view, the communication is analyzed at the level of internal
communication channels. The main elements we propose for a formal composi-
tion filters model are a set of base components, a set of component-filters which
are each defined as a stream processing function, and a mapping relating both.
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To explain the relationship between our concepts and the prevalent AOP
terminology we briefly recall (from [2] and [8] ) the concepts of: Join Point (JP),
Pointcut (Designator) (PCD), and Advice.

The model relies on the concept of components as interactive system entities.
We consider the base concern as a set of interconnected components. This can
be understood as a network of components that constitute a software system.
The aspects are then modeled as a set of filters, also defined as components.
The filters are composed with the base concern by weaving them as compo-
nents added in the communication channels of selected members of the base set.
The selection mechanism works in this case as a JP selector or PCD. In aspect-
orientation a join point is a well-defined place in the structure or execution
flow of a program where additional behavior can be attached e. g. method cal-
l/execution or data element. While a Pointcut (Designator) describes a set of
join points. Weaving refers to the composition of aspects with other concerns in
the system [8]. In this work, our JPs are communication channels among com-
ponents (namely the granularity level of our approach is at the messages sent
over communication channels), and our PCD is expressed as a table indicat-
ing the weaving of components (as illustrated in the last part of tables Table 1
through 4). We define weaving as a component transformation function based
on the composition operator ⊗.

An Advice is a (functional) element which augments or constrains other
concerns at JP’s matched by a pointcut expression i. e. pointcut delimiter. In
our model the advice is specified by state machines expressing the behavior of a
given filter.

Composition Filter Given a set of n stream-processing functions a Composi-
tion Filter (CF ) is defined as a set: CF =def {CF1, . . . ,CFn}, where CFj is a
component (i. e. stream processing function) with index j ∈ N+

The CF model in [1] allows one to direct messages to internal or external
objects. We believe that, although powerful, this mechanism can be difficult
to understand, to control, and to verify whether it is actually being used as
intended. Anyways, our model also allows to direct messages to components
other than the ones originally considered.

We restrict our analysis to a composition model defined over the external
channels of components (i. e. at the level of component interface), since this is
sufficient for our purposes and allows the kind of analysis described in Sect. 6.
Please note that our model can be perform message redirection. Since the filters
are defined as components, we may provide for channels i. e. streams from the
filter to components in other parts of the system.

We consider now a means for specifying the insertion of the composition
filters expressed in Table 1. For that purpose we adapt the aspect abstraction
proposed in [9] (for an object-oriented model) to our component-oriented ap-
proach. This table helps visualizing aspect weaving. The first part of the table
provides the aspect name and the second one its identifier. The third row of the
table designates the set of components (M) affected by the aspect as well as the
base component around which the filters will be composed. This base component
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is intended to act as a pivotal point around which the aspects are connected.
In the case we explore here, the base element is the communication channel
in Fig. 3. The fourth row of the table relates each component in the filter set to
the formal specification of the intended behavior i. e. advice (expressed as state
machines). The fifth row contains our Pointcut (or PCD), in other words, the
composition order.

In Fig. 3 the process of weaving i. e. composing the aspects with the channel
and other parts of the system is illustrated. The tables are explained in more
detail in § 4 and 6 at the hand of the particular case study.

The weaving process is considered as a transformation function of the form

Ψ : {Components} × CF 7→ {Components}

We explore it in terms of model transformation in [10]. Alternatively, we relate
the actual realization of the weaving function to the composition operator (⊗)
from Sect. 2 together with the specification of the weaving order in the corre-
sponding tables. We briefly recall that there are two possible weaving techniques
considering when the weaving process is performed. On the one hand, dynamic
weaving if the process is performed at run time, on the other hand, static weav-
ing if the process is performed during compilation. Our proposal belongs to
the second group. It performs static weaving without tool support. Advancing
our composition model with other weaving mechanisms as well as tool support
belongs to future work.

Table 1. Aspect weaving to base concern: Generic case

Aspect Name

Aspect identifier

Set of base components M = {C0, ...,CK , ...,Cm}
Base Component: Base = CK

Composition Filter: JCF1K = JSpecification1K, JCF2K = JSpecification2K

. . . JCFnK = JSpecificationnK

Weaving order of CF to base concern (Pointcut Designator):

JC0K⊗ · · · ⊗ JCF1K⊗ JBaseK⊗ JCF2K⊗ · · · ⊗ JCmK

To summarize, we introduced our composition model based on the concepts
of stream, stream-processing function, and state machine, also inspired by the
aspect-oriented language Compose* which performs aspect weaving by message
interception and superimposition of filters over a base object (described at the
beginning of this section). The formal definitions in Sect. 2 provide precise syntax
and semantics to our model. On this basis we specify a generic secure channel
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in the next section together for which we will then perform a formal analysis of
(security) aspect composition.

The relation of our proposal to object-orientation can be drawn if we con-
sider the methods of a class as a subsystem on its own i. e. a component. We
recall that the composition filters approach as in [11] stresses the fact that the
communication between methods in OOP is abstracted into the messages sent
between objects, we model this message sending as communication channels be-
tween components.

4 Specifying Security Aspects

We now illustrate the proposed composition model on the case of a web banking
system taken from a joint project with a major German bank. We consider
the base concern to be a Client and a Web server communicating over a given
Internet medium (also referred to as communication channel in the tables). The
aspects are a secure channel as defined in [12] and an authentication protocol
from [13].

The web banking system consists of an Internet-based application that allows
clients to complete and sign a digital order form. The main security concerns of
this application we consider for the analysis are two. First, user data must be
kept confidential. This implies the use of a secure communication channel or a
protocol that ensures the privacy of the data. We build in section 4.2 our system
over a secure channel that may be considered generic and usable for similar
problems. This secure channel has been modeled against a generic attacker and
fulfills the property of ensuring user’s privacy. Second, it is required that orders
may not be submitted in the name of other users. On account of this when
the user logs-in an authentication protocol runs and a confidential connection is
established. The authentication protocol is based on SSL and it constitutes the
second concern that we will compose with the secure channel. This demonstrates
the practical application of our approach.

An overview of the system is shown in Fig. 3. We focus on the examination
of the two security concerns and their interaction. Nevertheless, the approach
is of interest for related problems. For instance, composing a different authenti-
cation protocol over the secure channel, or modifying the secure channel while
preserving the outer layers of the system and analyzing whether the security
concerns still hold. As shown in Fig. 3 we build the authentication process over
the secure channel. Both aspects are first treated independently of one another,
and are afterward woven together with the base components using the composi-
tion operator ⊗ defined in Sect. 2. From the software engineering point of view
keeping changes as modular as possible is of relevance and even more if we need
to preserve complex concerns as the ones related to security. What we aim at
is allowing a given commercial institution to make use of a verified set of com-
ponents. Constructing a secure channel that guarantees secrecy and a protocol
that guarantees authenticity each as an aspect allows one to later reuse both



Analyzing Composition of Security Aspects 11

AuthC AuthS

b) authenticate b) authenticate

Client WebserverCommunication Channel

Communication Channel

SendE ReceiveE

ReceiveE SendE

a) secure channel

... ...

a) secure channel

Authentication and Secure Channel composed into the communication channel. Following Table 4.

Authentication aspect over a given channel. Following Table 3.

Secure channel aspect. Following Table 2

Fig. 3. Architectural view of the process. Weaving as component composition

in other parts of the system. The former can be found in Sect. 4.2, the latter in
Sect. 4.3.

4.1 Cryptographic Model

We introduce some definitions that are used for modeling cryptography and
authentication in the coming specifications.

We assume a set Keys with a partial injective map ()−1 : Keys → Keys.
The elements in its domain, which may be public, can be used for encryption and
for verifying signatures. Those in its range, usually assumed to be secret, are used
for decryption and signing. We assume that every key is either an encryption
or decryption key, or both: any key k satisfying k−1 = k is called symmetric;
otherwise asymmetric. We fix sets Var of variables and Data of data values.
We assume that Keys, Var, and Data are mutually disjoint. Data may also
include nonces, and other secrets. A nonce is a random value supposed to be
used only once.

We recall that a term algebra generated by a set of elements and operations is
the set of terms formed by applying the operations to the elements. A quotient
of the term algebra under a given set of equations is derived from the term
algebra by imposing these equations, and those that can be derived from them,
on the terms. It follows that the algebra of cryptographic expressions Exp is the
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• :: (concatenation)
• head( ) and tail( ) (head and tail of a concatenation)
• { } (encryption)
• Dec ( ) (decryption)
• Sign ( ) (signing)
• Ext ( ) (extracting from signature)
• Hash ( ) (hashing)

• DecK−1({E}K ) = E ∀E ∈ Exp and K ∈ Keys
• ExtK (SignK−1(E)) = E ∀E ∈ Exp and K ∈ Keys
• and the usual laws regarding concatenation, head(), and tail():

• (E1 :: E2) :: E3 = E1 :: (E2 :: E3)(∀E1,E2,E3 ∈ Exp)
• head(E1 :: E2) = E1 (∀E1,E2 ∈ Exp) and
• tail(E1 :: E2) = E2 (∀E1,E2 ∈ Exp such that there exist no E ,E ′ with

E1 = E :: E ′. For all other cases, head() and tail() are undefined.

Fig. 4. Cryptographic expressions

quotient of the term algebra generated from the set Var ∪ Keys ∪ Data with
the operations in Fig. 4 and by factoring out the equations given there.

Furthermore we define the type Events, for the communication channels,
as type Events = request | return(e) | transmit(e) | receive | clientHello |
Data(e,f) | Dataform(e) | e where e, f ∈ Exp.

4.2 Secure Channel

Based on the cryptographic model from the previous subsection we may now
introduce the secure channel aspect as the composition filter specifications of a
sender (SendE ) and a receiver (ReceiveE ). Both are weaved with the authenti-
cation aspect in Sect. 5. We then analyze the composition of the two aspects in
a general setting in Sect. 6.

The secure channel aspect consists of two composition filters. On the one
hand, the sender filter that will be coupled to the client and the communication
channel. The sender is in charge of encrypting and signing the messages that will
be further sent over the communication channel. On the other hand, we have
the receiver filter that gets the messages from the channel, decrypts and unsigns
the message, and sends it further.

The next two specifications represent the aspect we compose on the base
concern. We delineate the weaving of the secure channel over the communication
channel in Table 2.

The specification in Fig. 5(a) represents the sender side of our first aspect
according to the above security property. The state machine represents the spec-
ification. The sender retrieves the signed and encrypted symmetric session key
kj from the receiver, checks the signature, and encrypts the data under the sym-
metric key. Encryption is performed together with a sequence number c, to avoid
replay.
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Table 2. Aspect weaving to base concern: Secure channel

Aspect Name: Secure channel

Aspect identifier:CFSC

Set of base components M = {Communication channel}
Base Component: Base = Communication channel

Composition Filter: JCF1K = JSendE K, JCF2K = JReceiveE K

weaving order of CF to base concern:

JCF1K⊗ JBaseK⊗ JCF2K

The secrecy property considered here relies on the idea that a system spec-
ification preserves the secrecy of a piece of data d if the system never sends
out any information from which d could be derived, even in interaction with an
adversary.

The second part of the secure channel aspect, namely the receiver, is repre-
sented in Fig. 5(b). The receiver first gives out the key kj with a signature and
also with a sequence number j , and later decrypts the received data checking
the sequence number.

(a) Sender: SendE (b) Receiver: ReceiveE

Fig. 5. State Transition Diagram Secure Channel

4.3 Authentication

In this section we specify the authentication aspect. Its composition with the
secure channel from the previous on is examined in Sect. 6.

We explain a typical run of the authentication aspect, specified as state ma-
chines in Fig. 6(a) and Fig. 6(b). The client sends the authentication client a
clientHello message which is forwarded to the server. Afterwards a randomly
generated number (nonce) is sent by the web server. The client signs this nonce
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with his private key KC and sends it back together with a global identification
number (GID) which is signed using the Key provided by a certification author-
ity KCA. The server checks the signature, the certificate and the GID, and sends
the client a Data Form. In the specification AuthS we do not establish a commu-
nication channel with the web server itself – for simplicity we assume the data
form is generated by the web server and provided to the authentication server.
Note that NonceID(Exp) is a member of the set Data as described in 4.1 and is
represented in the specification AuthS as a hash function over the first element
of the clientHello message.

(a) Client: AuthC (b) Server): AuthS

Fig. 6. State Transition Diagram Authentication

We may define other aspects similarly. Once the base component(s) and
aspects are specified we proceed to define how they are actually related as a
system in the coming chapter. This is actually performed by relating the channel
names which gives the weaving ordering and the resulting system. Therefore,
channel renaming is a necessary step for weaving. Just as in AOP the underlying
framework ultimately relates aspects and base code at the level of names in class
methods or data, as is the case in the prevailing aspect languages.

5 Composing Security Aspects

The authentication aspect is composed over the secure channel aspect which is
first established and generates the session keys. The orders will be signed based
on these keys and therefore allow us to guarantee that bank orders can not be
sent in the name of other users, which is the second aspect we need to consider.

Similarly to the secure channel aspect, the authentication aspect is imple-
mented as composition filters composed with the client and the server. Table 3
establishes how this aspect is composed over the communication channel. As
designated in Fig. 3 the weaving of the CFs to the base concern is:
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JClientK⊗ JAuthC K⊗ JCommunicationChannelK⊗ JAuthS K⊗ JWebserverK

Where JCommunicationChannelK = JSendE K⊗ JReceiveE K

In order to send and receive through the secure channel, SendE is connected
on the communication channel from the Client to the Server with the client
side AuthC of the authentication protocol, and when the message is sent from
the Server to the Client, SendE connects to AuthS . This is illustrated in Fig. 3.
Ultimately, the channel names are related as indicated below5:

I. Communication Channel:
i. JSendE K.sout = JReceiveE K.stor
ii. JReceiveE K.tos = JSendE K.rtos

II. Authentication and Communication Channel
i. JAuthC K.actom = JBaseK.itos
ii. JAuthC K.mtoac = JBaseK.tow
iii. JAuthS K.mtoas = JBaseK.tow
iv. JAuthS K.astom = JBaseK.itos

Table 3. Aspect weaving to base concern: Authentication

Aspect Name: Authentication

Aspect identifier:CFAuthentication

Set of base components

M = {Communication channel}
Base Component: Base = Communication channel

Composition Filter: JCF1K = JAuthC K, JCF2K = JAuthS K,

CFAuthentication = {JCF1K, JCF2K}
Weaving order of CF to base concern:

JCF1K⊗ JBaseK⊗ JCF2K

Altogether, in Sect. 4 we introduced the two aspect specifications that rep-
resent crosscutting concerns i. e. aspects in the sense of the definition presented
in [9]. First, the secure channel’s specification in Sect. 4.2. Second, the authen-
tication aspect in Sect. 4.3. The next step is to weave them in a way that allows
us to analyze whether the composition of both specifications respects and entails
the desired security properties, namely secrecy and authentication. Weaving is
performed according to the scheme in Sect. 3. It is a case of static weaving, yet
5 Notation: JSpecificationNameK.Channel name
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Table 4. Aspect weaving to base concern: Authentication and Secure Channel

Aspect Name: Authentication and Secure Channel

Aspect identifier:CFAuthSC

Set of base components

M = {Client ,Webserver , CFSC}
Base Component: Base = CFSC

Composition Filter: JCF1K = JAuthC K, JCF2K = JAuthS K

Weaving order of CF to base concern: JClientK⊗ JCF1K⊗ JBaseK⊗ JCF2K⊗ JWebserverK

the framework can be extended to consider dynamic weaving, since once the
components are verified the phase at which they are composed to the system
does not affect its behaviour (at least the way components and therefore aspects
are defined in the formal theory recalled in Sect. 2).

6 Analyzing Composition of Security Aspects

Resulting from the previous chapters, in which we define our aspects and set
their composition i. e. weaving, now, we may analyze the secure channel and
authentication aspects. The idea is to determine under which conditions they can
be securely composed together. The authentication aspect is now implemented
over the secure channel as shown in Table 4. Please note that CFSC in Table 4
was defined in Table 2.

The resulting system is specified:
JClientK⊗ JAuthC K⊗ JSecureChannelK⊗ JAuthS K⊗ JWebserverK, where
JSecureChannelK = JSendE K⊗ JReceiveE K

We define how this aspect is woven over a given communication channel e. g.
internet in Table 3.

Specifically, the method we applied here can be summarized in three steps.
First, we establish that the secure channel defined in Sect. 4.2 is generic in
the sense that it can securely be composed with a system that satisfies certain
saneness condition6. Then, we establish the properties that the resulting system
should preserve (see below). Finally, we prove it.

Theorem 1. The secure channel aspect preserves the secrecy of the variable d
from adversaries whose knowledge before initialization of the system does not
include any values in the set {K−1

S ,K−1
R } ∪ {kn, {x :: n}kn

} and includes only
such values of the form SignK−1

R
(k′ :: m) for which we have k′ = km for all m ∈ N

and k′ ∈ Exp.
6 for example, that the system itself does not send the secret values to the adversary

outside the secure channel



Analyzing Composition of Security Aspects 17

Proof

The proof is of informal nature.
Note that the adversary knowledge set KA is contained in the algebra
generated by K0

A ∪ {{SignK−1
R

(ki :: j)}KS
} and the expressions {d :: n}K

for inputs d, where K0
A is the initial knowledge of the adversary:

Firstly, the adversary can obtain no certificate {{SignK−1
R

(k :: j)}KS
}

for k 6= kj, because the Receiver object only outputs the certificates
{SignK−1

R
(kj :: j)}KS

(for j ∈ N) to the Internet. Secondly, the sender
outputs only messages of the form {d :: n}k to the Internet, for in-
puts d and any k ∈ Keys for which a certificate {SignK−1

R
(k :: n)}KS

has been received. Here k must be Kn since no other certificate can
be produced (since the key K−1

R is never transmitted). Note also that
Kp
A = K0

A since there are no components accessed by the adversary.
Also, the values that an adversary may insert into the Internet link may
only delay the behavior of the two objects regarding outQuC′ since the
adversary has no other certificate signed with K−1

R and does not have
access to the key K−1

R , and because of the transaction numbers used.
Thus any other value inserted is ignored by the two objects.

This means in particular that the secure channel aspect can be securely
composed with any aspect which obeyes the saneness conditions required in the
above result. This gives us a general result on aspect composition, instantiated
at the case of the secure channel aspect.

The protocol that implements the authentication aspect introduced in Sect. 4.3
has indeed been verified, not only to provide the authentication aspect as hoped,
but moreover to be secure in the sense of the assumptions in the Theorem above,
using a model-checker in [13]. Thus we can actually apply the theorem here. In
particular, we can compose both aspects and obtain a composed secure authen-
tication aspect. Applying this aspect, again given the saneness assumptions of
the theorem, now results into a system which provides both secrecy and authen-
tication.

As a result, we outline our methodology in the following steps:

i. Specify the base component(s) and aspects as state machines
ii. Define the composition order and the composition tables
iii. Relate the state machines renaming their channels accordingly
iv. Based on the specification of each aspect and the property to explore,

define a theorem
v. Based on the channel histories find a proof for the theorem above.
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7 Model Verification Framework

To explain the use of verification tools together with our proposal, consider a
UML model annotated with desired security properties. Such properties in this
case are formulated in UMLsec which is a light-weight extension to the UML,
and constitutes a flexible framework to define dynamic and static properties
in UML diagrams. UMLsec specifies important security properties such as the
stereotype <<high>> that denotes dependencies that are supposed to provide the
respective security requirement for the data that is sent along them as arguments
or return values of operations or signals. The stereotype <<encrypted>> in a
deployment diagram denotes the kind of communication link and the associated
threats in view of a default or insider attacker. The stereotypes are explaind in
depthin [12]. In Fig. 10, we have a dependency between web and bank tagged
with both stereotypes. The UML model of the Web Store was checked against
internal and external attackers particularly in view of the stereotype <<high>>.
It followed that the link between web and bank were prone to attacks, we focus on
this particular result. Therefore, an encryption mechanism to make the channel
secure along with an authentication mechanism was needed.

UML Editor
(UML 1.5 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.5 /
XMI 1.2)

Analysis engine
MDR

JMI

Model
and

Desired
properties

Result

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML
Model

Error Analyzer

“uses"

data flow

Fig. 7. UML Verification Framework

The framework in Fig. 7 is used as follows. The developer creates a model
and stores it in the UML 1.5 /XMI 1.2 file format. The file is imported by
the UML verification framework into the internal MetaData Repository (MDR)
repository. MDR is an XMI-specific data-binding library which directly provides
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a representation of an XMI file on the abstraction level of a UML model through
Java interfaces (JMI). This allows the developer to operate directly with UML
concepts, such as classes, statecharts, and stereotypes. It is part of the Netbeans
project [14]. Each plug-in accesses the model through the JMI interfaces gener-
ated by the MDR library, they may receive additional textual input, and they
may return both a UML model and textual output. The two exemplary anal-
ysis plug-ins proceed as follows: The static checker parses the model, verifies
its static features, and delivers the results to the error analyzer. The dynamic
checker translates the relevant fragments of the UML model into the automated
theorem prover input language. The automated theorem prover is spawned by
the UML framework as an external process; its results are delivered back to
the error analyzer. The error analyzer uses the information received from the
static checker and dynamic checker to produce a text report for the developer
describing the problems found, and a modified UML model, where the errors
found are visualized. Besides the automated theorem prover binding presented
in [15] there are other analysis plugins including a model-checker binding [16]
and plugins for simulation and test-sequence generation.

The framework is designed to be extensible: advanced users can define stereo-
types, tags, and first-order logic constraints which are then automatically trans-
lated to the automated theorem prover for verification on a given UML model.
Similarly, new adversary models can be defined.

The framework and its application on secure software development are further
described in [17,15]. The user webinterface and the source code of the verification
framework is accessible at [18].
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SendE
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Fig. 8. Overview of the Methodology: Model and code composition i. e. weaving
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8 Reusing Aspects

In Sect. 4 we introduced our two security aspects on the case of a banking
system. The idea was to discuss on the one hand the importance of these security
protocols, and on the other to abstract from the problem a generic secure channel
and an authentication aspect. In this part, we use these two aspects on the case
of a web store design. This shows how our method allows for the definition and
verification of security aspects that may later be (re)used as building blocks on
existing software models, such as the web store whose deployment diagram is
shown in Fig. 10.

The UML model of the Web Store was checked using the tools introduced
in Sect. 7. It was checked against internal and external attackers particularly in
view of the stereotype <<high>>. The verification showed that the link between
web and bank were prone to insider attacks, we focus on this particular result.
Therefore, an encryption mechanism to make the channel secure is needed.

A class diagram of the Web Store is shown in Fig. 9. In order to illustrate
the use of our specifications as aspects we relate the State Machines AuthC , and
AuthS to the join points in the message flow of Fig. 10, namely, the communi-
cation points where a transaction between bank and web is realized. Moreover,
we relate SendE , ReceiveE , to the message calling of AuthC , and AuthS and
view it as a Shared Join Point, meaning a Join Point at which two aspects in-
teract. We illustrate the use of these specifications as aspects by relating them
to an implementation of the web store design using Compose* as code level as-
pect weaver. Please note that we propose aspect weaving at two levels as a that
complement each other. We consider managing aspects at the modeling level
(upper part of Fig. 8), weaving them with the tables and composition operator
explained in previous chapters, and generate code from the resulting model. We
may also, specify the individual aspects, the base components, and generate code
from these. Then, weave it with a code level aspect weaver (lower part ofFig. 8).
The expected result should be equivalent, though proving this belongs to future
work.

We explore the second proposal mentioned above. That is to say, specifying
the components, transforming these to code, and weaving them at the code level.
Yet, the composition of security components is verified at the model level and
weaved after its translation to code. We assume the translation to code preserves
the specifications in the state machines.

A sample code of the Dress 4 Less web store is implemented on J# (.Net),
the pointcut designator is defined as the PaymentSecurity concern in Compose*
and is shown in listing 1.1. This concern specifies two filters, authenticate filter
referring to the authentication aspect, and encrypt filter. In the superimposition
section of the concern (line 16 in listing 1.1) we define the methods of the classes
Bank and Web from Fig. 9 into which the security aspects are superimposed
i. e. weaved. The encryption filters (JSendeK, JReceiveE K) are composed with
the authentication filter (JAuthC K,JAuthS K), this is the shared join point whose
composition we outlined in Sect. 5 and analyzed in Sect. 6.
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Fig. 9. Class Diagram Web Store

The state machine specifications can be translated into Java code and defined
in classes authenticate and secureChannel in package dress4Less.
SecurityProtocols. This way security aspects can be first defined and for-
mally analyzed, and later on weaved onto a given program (or model) with the
use of an aspect weaver such as Compose* in the case of the code level. Fig. 8
illustrates the relation between model and code weaving as a complementary
process. The base concern on the upper left part is either a component model
or a UML one, this is transformed by composing the security aspects on it.
In the case of components by the composition operator defined in Sect. 2 and
some pointcut designator as in Table 1 in the case of code by defining a concern
as in listing 1.1. Code generation can happen either before or after composing
the aspects in the model (upper part of the figure). In the case we explored
above, the UML model is translated into code and the state machines also, the
weaving process is performed at the code level. Please note that the analysis of
aspect interaction between the secure channel and authentication was performed
at the model level and its suggested translation to code is performed after its
composition (right hand side of Fig. 8).
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Fig. 10. Deployment Diagram with security specification stereotypes (Web
Store)

Selection of the join point might be made, for instance, by picking the stereo-
types <<high>> and
<<encrypted>>. In this case, when we have both of them on a communica-
tion line between packages in the deployment diagram shown in Fig. 10, we
select the payment related methods that are called. This is expressed in lines 11,
12, and 14 of listing 1.1. Namely, from the class diagram placePaymentOrder,
choosePaymentMethod, and sendAuthenticated that is the implementation of
the authentication aspect with the encryption protocol i. e. the implementation
of the secure channel. We may select other methods in classes such as Costumer if
needed, based on the verification analysis or as a result of changing requirements.
Weaving the secure channel is performed at the code level using Compose* as
pointcut delimiter (see listing 1.1). This way security aspects might be verified
and re-used.
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Listing 1.1. Code pointcut delimiter: Compose*
1concern PaymentSecurity in dress4Less

{ filtermodule securePayment

3{ internals

authentication : dress4Less.SecurityProtocols. ←↩
authenticate;

5encryption : dress4Less.SecurityProtocols. ←↩
secureChannel;

conditions

7authenticated :

dress4Less.SecurityProtocols.authenticate. ←↩
clientAuthenticated ();

9inputfilters

authenticate_filter : Dispatch = {True =>

11[*. placePaymentOrder]authentication. ←↩
paytobankAuth ,

[*. choosePaymentMethod]authentication. ←↩
choosePaymentAuth };

13encrypt_filter : Dispatch = {True =>

[*. sendAuthenticated]encryption.encChannel}

15}

superimposition

17{ selectors

payment = { *= dress4Less.Bank , *= dress4Less.Web ,

19*= dress4Less.SecurityProtocols.authenticate };

filtermodules

21payment <- securePayment;

}

23}

9 Related Work

This work is a continuation from previous work, where we considered analyzing
crosscutting concerns on a formal theory [9], transforming models with the use
of AOSD [10] as well as work where we considered how to weave in security
aspects on the transition from models to code [19].

Most aspect-oriented approaches address the aspect interaction problem at
the programming and language level. However, the particular issue of semantic
analysis of CF compositions is still an open question, and to the best of our
knowledge has not been formally achieved combining CF and a formal theory.
Related work on aspect interaction can be found in [20], however the authors
restrict themselves to a global overview of the problem and present no results
comparable to ours. Nagy et al [21] explore aspect interaction and propose a set
of requirements for composing aspects at so-called shared join points, yet their
analysis is rather syntactic.

Although some work toward a formal foundation has been carried out in
the case of Aspect/J [22], no formal foundation has been published so far for
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Composition Filters to the best of our knowledge. The tool SyncGen assisting
aspect-oriented development with semantic analysis has been presented in [23].
The tool automatically synthesizes synchronization implementations from high-
level specifications using first-order logic.

10 Conclusions

This work introduced a composition model that allows us to provide concerns
with a (formal) syntax and semantics. In this way we might be able to pose
the problem of aspect composition with other aspects (i. e. aspect interaction)
at a formal level. This work suggests that building a composition model on the
concept of I/O behavior and the composition operators for stream-processing
functions, we may at least explore under which conditions aspects may be safely
composed. This framework allowed us to consider aspect analysis at the semantic
level, which up to the present time has been mostly performed syntactically.
Moreover, this work also proposed a generic secrecy-enforcing channel (called
secure channel through this work as explained in the introduction) that has
been formally verified. Altogether, we introduced a formal model for composition
filters and aspect interaction analysis, a generic secure channel aspect composed
with an authentication protocol, and an analysis of their interaction in view of
preservation of security properties during aspect composition.

Although in the current work we considered security aspects in particular,
we propose that our method can be generalized. Future work will consider under
which assumptions security is composable in general terms. We did not explore
the issue in the present paper. We therefore totally agree on the need to further
assess the generality of this proposal.
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