
A Taxonomy of Aspects
in Terms of Crosscutting Concerns

Jorge Fox

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

fox@in.tum.de

Abstract. Aspect-orientation provides support for “ Separation of Con-
cerns” by means of techniques that first isolate and then weave concerns.
Most work in aspect-orientation has achieved such goals at the program-
ming level, even also at the modeling level. Though, in some cases the
application of these techniques is independent of the problem itself. In
other words, the techniques for weaving either code or models are in
principle applicable to a number of problems without a clear criterion
to answer questions like: in what software processes we may actually
discuss aspect-orientation? This also brings other questions: what do we
consider an aspect?, how do we deal with it?, are aspects crosscutting
concerns? The first notions of aspect-orientation relate to crosscutting in
code. We consider this a bottom-up approach. We believe though, that
aspect-orientation can be better understood from an architectural per-
spective. We call this a top-down approach. We explore the question of
“what makes an aspect an aspect” and “when do aspects arise” from a
top-down perspective. Our work relates to a definition of aspects in terms
of requirements traceability, proposes a classification, and altogether a
taxonomy.

Keywords. Aspect-orientation, requirements, taxonomy

1 Introduction

As aspect-orientation turns into a more established field of research, some of its
concepts need to be made more precise. Concepts like crosscutting, concern, and
aspect itself, do convey an approximate notion of what we mean by using them.
Historically seen, aspect-orientation seems to have emerged in a code-oriented
community of researchers that developed some of the first aspectual languages
(AspectJ, Hyper/J, Sina) mostly motivated by the need to improve object-
oriented systems. So far back as 1979 (See [1]) some of these ideas were already
being used. At a fast pace in recent years the term aspect is being used more and
more, nevertheless, it may sometimes give the impression of being an umbrella
idea behind which aspectual as well as non-aspectual concepts are explored. We
would like to propose an approach at the hand of which we may further clarify
aspect-orientation and detach it as far as possible from object-orientation to
present it in a more general way.

Dagstuhl Seminar Proceedings 06351
Methods for Modelling Software Systems (MMOSS)
http://drops.dagstuhl.de/opus/volltexte/2007/860

2 J. Fox

In this paper we propose a classification of crosscutting concerns from the
point of view of requirements traceability. We explore a set of definitions that
support the classification, and in this way we suggest a taxonomy of aspects.
We introduce the current concepts in aspect-orientation in order to determine
its central notion. After this we introduce the related definitions, and then a
classification (this is exemplified on an E-Learning system design).

We depart from the idea that aspects are crosscutting concerns. These acquire
meaning with respect to requirements specifications. Our method is therefore to
consider the general notion of software development process in which require-
ments are translated into design by means of software modeling concepts, and
the design into code (there may be several steps, cycles , and iterations, however
the goal is to produce code).

We consider now some possible ways to classify aspects1, for instance, with
respect to code, what we mentioned as a bottom-up perspective which we explore
in Sect. 2 more in depth. At the programming language level we may classify
them based on pointcut granularity as in [2]. We may also classify them according
to the present main available technologies represented in programming languages
as follows:

Table 1. Join point model and corresponding programming language

Join point model Aspect-oriented language

Pointcut and Advice AspectJ

Message interception via filters Compose*

Multidimensional SoC Hyper/J

Traversals DemeterJ

Another classification may also separate them in Dynamic and Static aspects
from a systems analysis and design point of view as well as from a programming
perspective, considering the time at which the weaving2 takes place. Another
interesting classification may relate to the nature of the crosscutting expressed
in the aspect language. Kiczales in [3] proposes a definition of “ Crosscutting”
independent of a programming perspective, though it is actually an explanation
of when a programming language is considered aspect-oriented related or not.

However, in the search for a thorough understanding of aspect-orientation
such approaches may not suffice. Consider that one of the problems aspect-
orientation aims at solving is improving modularization. For modularization we
understand the process of obtaining independent pieces of software or modules

1 understood by now as a code construct that allows to modify an existing object-
oriented program

2 The programming language level concept is found in Sect. 2, we define it more for-
mally in Sect. 3

A Taxonomy of Aspects 3

that put together constitute a (whole) system. We refer to modules indepen-
dently of the step in the development cycle, for instance, we consider a clearly
identifiable and independent model element as a module. Where a model is
“ an approximation, representation, or idealization of selected aspects of the
structure, behavior, operation, or other characteristics of a real-world process,
concept, or system” [4].

Moreover, we refer to modularization of software requirements that are fi-
nally translated to code through the software development cycle. We suggest
that modularization relies on the concepts (in the sense of mental frameworks)
available for software modeling, for instance: class, method, inheritance as in
object-oriented programming languages. The design decisions taken in the whole
process of translating requirements into code might also be considered as a col-
lection of composition and decomposition steps. At the general level, composi-
tion of the concerns in a system with composition mechanisms that support the
interaction of the entities pertaining to a system. At a more particular level,
the decomposition of functionality3. In this sense, crosscutting concerns exist
from the perspective of decomposition and modularization in a tracing relation
with respect to requirements i. e. software specifications. Both decomposition
and modularization imply a subsequent composition in order to produce an op-
erational software system. In this regard compositionality4 is a central notion in
aspect-orientation. This can be proved by the fact that the notion of weaving is
present in every aspect-oriented technique, paper, or related proposal.

It here is suggested that the production of a brand new software, as well as
the modification or maintenance of an existing one, relate to requirements. Also
in the case of non-preventive maintenance since it deals with fixing of errors or
failures stemming from changes in the environment or a wrongful implementation
with respect to some desired behavior (implicitly or explicitly) represented by
the requirements. In such case the system is corrected in order to fulfill the
desired functionality as stated by the stakeholders in the specification.

Summarizing, crosscutting concerns represent interests of the stakeholders
and are stated in the requirements artifacts. On this basis, we classify them
in view of its tracing from requirements instead of other possible classification
schemes.

In the coming section we look at the problem from a bottom-up approach
(see also Appendix C). We then introduce our own concepts at a more abstract
level in Sect. 3. Based on our top-down approach we identify two sources of
crosscutting and outline a thesis with the conclusion that crosscutting should be
managed in design and code i. e. later phases of requirements engineering and
on. We later introduce our classification in Sect. 4. Related work is introduced

3 as defined by Harel and Pnuelli in [5]
4 “ ...the meaning of a complex expression is fully determined by its structure and the

meanings of its constituents - once we fix what the parts mean and how they are put
together we have no more leeway regarding the meaning of the whole. This is the
principle of compositionality, a fundamental presupposition of most contemporary
work in semantics.”[6]

4 J. Fox

in Sect. 5. We close with some conclusions in Sect. 6. Appendix A provides the
sample case study. Appendix B completes the definition of aspect from Sect. 3.

2 Aspect-oriented Programming (AOP)

In this section, we explore aspect-orientation from a brief bottom-up and later
a more top-down perspective in order to provide some concepts that support
our theory in Sect. 3. Most common definitions of aspect fall in two groups.
The first group consisting of definitions stating that aspects are concerns that
cut across other concerns (whereas two concerns crosscut if the methods related
to those concerns intersect [7]). The second group assuming a very pragmatical
approach and defining aspects in terms of the constructs from aspect-oriented
programming languages, where an aspect is “ a join point and advice.” A join
point is defined as “ a well defined point in the execution flow of the program”,
and an advice as “ the actual implementation of the aspect.” Weaving is the
mechanism that actually inserts the advice at the points in the execution flow
indicated by the join points.

The first group argues further that aspects produce tangled representations
that are difficult to understand and maintain [8]. Moreover, crosscutting is rela-
tive to a particular decomposition [9]. See for instance Fig. 1 which corresponds
to a graphical representation of an aspect as compared to modular units. This
illustration is based on the example introduced in the previous section.

In any case, aspects can be system properties involving more than one func-
tional component, crossing the static and dynamic structure of a program. As-
pects affect and modify several classes. This means that aspects might be static
or dynamic properties that affect not only the behavioral definition of classes,
but also its data structure. Please note that most work on the field argues that
aspect-orientation is an enhancement of object-oriented programming.

Some authors define that issues that are not well localized in functional
designs, such as: synchronization, component interaction, persistency, security
control, fault tolerance mechanisms, quality of service, and the like; are con-
cerns that are typical candidate aspects. Another guideline to identify aspects is
that they “ are usually expressed by small code fragments scattered throughout
several functional components” [10]. Compatibility, availability and security re-
quirements are crosscutting concerns [11]. Also exception handling, multi-object
protocols, synchronization, and resource sharing would be extended across the
source code if only using traditional implementation techniques [12].

Although the above ideas provide material for a first definition of aspect, we
still have to consider means to identify aspects at different abstraction levels and
relate them to the different software process activities.

As Ossher in [7] mentions, “One of the hard things about crosscutting con-
cerns is understanding just what cuts across what”. There is still a need for
research on aspect identification at the early stage of software requirements,
because it is at that stage that many of the later difficulties in software devel-
opment can be generated. It is left to the criterion of the analyst to determine

A Taxonomy of Aspects 5

aspect set

Class 1 Class 2 Class 3 Class 4 Class 5

r1 r2

Class 6

r3

aspect set

Fig. 1. Requirements and aspects in relation to classes. First published in [13]

requirements, and then concerns, and out of these, select candidate aspects and
test them. As [14] states: “ Designers must rely on their discretion to decompose
the problem effectively”. Kiczales in [14] points out a simplified thumb rule for
aspect identification: “ A property that must be implemented is

– A component, if it can be cleanly encapsulated in a generalized procedure
(that is object, method, procedure, API). By cleanly, we mean well localized,
and easily accessed and composed as necessary. Components tend to be
units of the system’s functional decomposition, such as image filters, bank
accounts, and GUI widgets,

– An aspect, if it can not be cleanly encapsulated in a generalized proce-
dure. Aspects tend not to be units of the system’s functional decomposition,
but rather to be properties that affect the performance or semantics of the
components in systemic ways. Examples of aspects include memory access
patterns and synchronization of concurrent objects.”

This simple “ thumb rule” points in the right direction, because it is consistent
with the aspect concept. Our critique to this simple rule is that it does not
help discriminating what is an aspect and what is not. For instance, would
a synchronization protocol be an aspect or would only a part of the protocol
be considered an aspect? Or would every call to a database in a front-end be
considered an aspect just because it might be carried out in different parts of the
front-end? Furthermore, how useful would it be to consider systemic concerns
such as quality of service or performance as aspects?

In other words, aspects do not exist as such. These acquire meaning through
the semantic dependencies in a software system, whether they are constraints
affecting more than one functional unit or user concerns that are implemented
by more than one functional unit.

6 J. Fox

It is commonly accepted that aspects are “ concerns that cut across other
concerns”. According to the early notions of aspects, two concerns crosscut if
the methods related to them intersect [15]. Therefore, they are responsible for
producing tangled representations that are difficult to understand and maintain
[16]. This crosscutting is relative to a particular decomposition [9]. A concern is
considered as any area of interest in a software system. These concepts are too
general. That is why we formulate our concepts in Sect. 3. In order to achieve
it, we depart from the meaning of the word aspect. This helps shaping the
concept correctly while building on the existing concepts in the aspect-oriented
community.

The word aspect has the following meaning:

a particular status or phase in which something appears or may be re-
garded [17]

Besides, the word aspect comes from the latin aspectus, from aspicere, that is, to
look at. All in all the selected definition and the etymological meaning of the word
reflect the idea of a perspective toward an artifact, in this case toward a system.
The word aspect is then consistent with conceiving a system as composed of
different parts (subsystems) or angles, and allows us to separate such subsystems
as areas of interest. In short, this way we are able to arrange a system in concerns.

A number of difficulties for aspect identification arise from a notion of aspect
that leaves room for interpretation. Let us for instance consider the proposal on
early aspect identification as in [18]. Their approach toward aspect identification
relies on use cases, namely when a use case extends more than one use case or
when a use case is included by one or more viewpoints, then that use case is
considered an aspectual use case. There are a number of difficulties associated
with aspect identification by doing so, for instance, prioritization of conflicts that
stem from different viewpoints is done by hand, and by hand is made also the
decision of what is an aspect and what is not an aspect once the requirements
people identify candidate aspects. It is nevertheless a valuable approach that
gives an important insight toward aspect identification.

Further, aspect identification relates to the need of an integral comprehen-
sion of concern crosscutting altogether with its context. As authors like [19]
have already outlined, the problem AOSD solves is one of complexity in today’s
software applications.

Summarizing, aspect-oriented programming consists of a traditional base
language, usually object-oriented such as Java or C++ (but not necessarily
object-oriented) together with additional language constructs that transform
code, namely:

1. “ pointcuts” (set of join points),
2. “ advice”, and a
3. weaving mechanism

Similar concepts are used in most work related to aspect-oriented modeling.

A Taxonomy of Aspects 7

The prevailing aspect-oriented language is AspectJ. For a reader interested
in having an overview of it, we explain its constructs at the hand of a case study
in Appendix C.

3 Our Theory

In order to explain aspect-orientation we provide here some concepts that build
our taxonomy. It is based on software requirements considered as some kind of
“ focal reference” to discuss aspects.

We consider that requirements relate to a problem space, in the early require-
ments stage, and are mapped to a solution space in the late requirements and
design stages. These concepts are introduced in the following.

...the expression “requirements specification” by itself is virtually
meaningless. Whenever we use the term, it refers to a deliverable of
development consisting of product objective and of required product be-
havior [20].

Definition 1. (Requirements) The definition of requirements we refer to is:
“The first stage of software development which defines what the potential users
want the system to do.”

Definition 2. (Problem space) The problem space is defined as the set of
requirements together with the explicit or implicit definition of the environment
in which the system-to-be should operate.

We exemplify the requirements expressed as part of the problem space in
the form of interviews (Appendix A.3) and statements extracted from these
(Appendix A.5). All of these is what we consider the problem space in the par-
ticular case of the ELSS, plus the assumptions the requirements engineer and
design expert make with respect to domain knowledge.

Definition 3. (Solution space) The solution space is the set of artifacts that
belong to a running implementation of a software system and without which the
system would not be able to operate or would not have been produced (require-
ments are explicitly not in this set).

Examples of artifacts in the solution space are the class diagram in Fig. 3,
and methods specific to the classes such as the ones in Table 2. The code imple-
menting the system belongs also to the solution space.

Definition 4. (Mapping from problem space to solution space) Given
the notion of refinement as the transformation of an abstract i. e. high-level
specification into one or more concrete i. e. low-level executable software arti-
facts, we define the mapping from problem space to solution space as the process
of transforming a given requirement into one or more executable artifacts by
means of refinement. This mapping is performed explicitly or implicitly with the
help of a given conceptual model that translates requirements to software models
and finally to code.

8 J. Fox

Solution and problem spaces are represented in Fig. 2. The mapping is repre-
sented by the arrow from one to the other, we may formally relate the mapping
either to a transformation function from problem to solution space in the form
of refinement steps.

Requirements give shape to an architectural style, platform, interfaces, etc.
in a certain domain and following the conceptual model in use, we illustrate this
in Fig. 2. In short, the translation process from the problem space to the solution
space is performed via conceptual models e.g. object orientation, components,
service-oriented approaches, etc.

Some requirements are implemented in several modularization units. This
suggests a way to define crosscutting as behavior relating to more than one
(logical at design, physical at code) module from one abstraction level to the
next. This considering an abstraction level as a refinement step in a series of steps
from requirements to code, beign the previous step the more abstract in relation
to the next one, such relation is clearly transitive. As a matter of fact, we may
build a more abstract definition of aspect than the ones explored so far in this
section, by considering behavior as a property5 implemented in several modules
i. e. more than one modularization entity. The modularization entity depends on
the chosen architectural paradigm e. g. object-orientation, components, agents,
etc.

The above reasoning leads to the following definition of crosscutting concern.

Definition 5. (Crosscutting concern) Given a problem space, understood as
set of requirements, a crosscutting concern is a requirement that under every
possible translation from the problem space to the solution space is expressed in
more than one modularization unit in a lower level of abstraction.

Up to now we have considered aspect and crosscutting concern as the same
entity. The difference is that aspects arise due to the translation from the prob-
lem space to the solution space (Fig. 2) due to the fact that no modularization
abstraction is perfect. Emphasizing, aspects exist at the software architecture,
design, and implementation stages while crosscutting concerns can be seen as a
superordinate concept i. e. more generic concept. This makes aspects a subset of
crosscutting concerns. We have a precise definition of aspect which we quote in
the following lines (unpublished joint work with Professors Dominikus Herzberg
and Manfred Broy).

Definition 6. (Aspect-Orientation, Aspect Weaving, Aspect)

“ ...aspect-orientation can be completely subsumed by the notion of
communication refinement (defined in Appendix B). In this regard, con-
cerns are regarded as sets of components interacting via some means of

5 A property is formally defined as a set of behaviors, so that an execution of a system
Π satisfies a property P if and only if the behavior (a sequence of states and agents)
that represents the execution is an element of P. [21]

A Taxonomy of Aspects 9

communication, e.g. connection-oriented or connectionless communica-
tion. Communication refinement is viewed as a kind of behavioral re-
finement that helps adding behavior on a given set of components at the
communication channels between the components i.e. adding behavior to
the concern. Communication refinement is applied to the communication
service. This way of adding behavior opens up a way to stepwise add lay-
ers of concerns (i.e. sets of new components) to the previously existing
ones. This is aspect weaving. In other words, aspect orientation can be
explained as a process resulting from the viewpoint taken, or – to be more
precise – of the way, how components are grouped. From a “horizontal”
viewpoint (i.e. grouping), aspects turn out to be components added in
the layers of the software structure. Here, a layer is an isolated concern,
which builds up an abstraction hierarchy with other layers. From a “ver-
tical” viewpoint, the layer is sliced into pieces fragmenting the individual
concerns.”

Back to our taxonomy of aspects. We have discussed the subject, identified
its main concepts, introduced our definitions and now we introduce our classifi-
cation. An accepted classification of requirements divides them into Functional
(FR), Non-Functional (NFR), Design, and Implementation.

We understand FR as defining characteristics of the problem space6, and
NFR as constraints in the solution space7. The behavior of the SuD is expressed
as FRs, while restrictions to the possible solutions are determined by NFRs. But
at the same time, non-functional requirements are at some point in the develop-
ment cycle converted i. e. translated into functional specifications. Meaning that
they are translated into quantifications or behavior. As an example, consider
a NFR such as “ Fault Tolerance.” This requirement can in subsequent phases
of development be translated into functional specifications that guarantee data
persistence in view of a system failure.

A software specification is understood as the formal or semi-formal descrip-
tion of the behavior that a system or subsystem has to fulfill.

Based on the distinction between Non-functional and functional requirement
we identify two sources of crosscutting in the coming subsections.

3.1 Crosscutting Due to Inherent Limitations in a Decomposition
Paradigm

One source of crosscutting is due to limitations of existing programming as well
as design paradigms. As example consider object-orientation. This paradigm
decomposes software into modules, in this case classes. Some desired behavior
might be common to different classes and therefore ends up spread among several
classes. Systemic concerns or concerns that relate to a group of classes, such as

6 What a system should be able to do, the functions it should perform.
7 Requirements on the system’s performance. For instance, the amount of users that

have to be attended in a given time frame.

10 J. Fox

Problem
space

Requirement

Requirement

Solution space

Architecture
style

Conceptual
model Platform

Languages

User interface

Domain
Model

Fig. 2. Mapping between problem space and solution space

some security concerns, which cannot be encapsulated in a single unit and are
implemented in several classes.

The role of programming languages in shaping the abstractions by which
software designers and programmers apprehend and organize software cannot
be underestimated. This applies for requirements engineering as well. The ab-
stractions that ultimately shape a software are influenced by the underlying
modeling or implementation paradigm, like the class/object concept.

The object abstraction along with its composition mechanisms comprise limi-
tations. These limitations have already been discussed by [22] and more in-depth
by S. Clarke in [23]. S. Clarke clearly demonstrates that the units of modular-
ization in the OOP are structurally different from the units of modularization
in requirements specification. This result can be generalized to other modular-
ization paradigms. This reasoning is expressed in Definition 5.

Mathematically expressed, we may write it the following way.

Definition 7. (Aspect) Let ρ be a problem space (Definition 2), SOLSP =⋃
ρ SolSp(ρ) be a solution space (Definition 3), RE be a set of Requirements

(Definition 1) in the problem space, M be a set of Modularization Units in the
solution space.

We define an aspect A coming forth through the mapping from problem to
solution space (Definition 4) by
A =def {r ∈ RE | ∃ o1, o2 ∈M :
Implementsϕ(r , o1) ∧ Implementsϕ(r , o2) ∧ o1 6= o2}
where
Implementsϕ(r , θ)⇔ ∀ϕ′ ⊆ ϕ.(ϕ′ |= r ⇒ θ ⊆ ϕ′)
ϕ |= r means ϕ satisfies r
r ⊆

⋃
ρ SolSp(ρ)

Definition 7 means that given a problem space, understood as set of requirements
artifacts, an aspect is the representation in the solution space of a requirement

A Taxonomy of Aspects 11

(problem space) that under every possible translation to the solution space is
expressed in more than one modularization unit e. g. class, component, function;
depending on the underlying architectural framework of the solution space.

3.2 Crosscutting as a Result of Transforming Non-functional
Requirements into a Functional Proxy

Another source of crosscutting lies in the translation of NFR into a functional im-
plementation i. e. a functional proxy of the corresponding NF specification. These
are also considered in Definition 7 through the Implements relation. For instance,
in [24] we present the translation of the security constraint Keep transaction se-
cure in the early requirements stage into a number of security (sub-)constraints
such as keep transaction private, keep transaction available and keep integrity of
the transaction in the late requirements stage. These (sub-)constraints represent
the functional proxy of the more abstract security requirement.

As already mentioned, aspects come forth in the mapping from the prob-
lem space, where requirements are elucidated, to the solution space, where the
architecture, deployment, etc. are defined. Take for instance, fault tolerance.
Guaranteeing data persistence despite unanticipated faults may require a set of
functions that are implemented in several modularization units (components,
classes, services).

Design requirements relate to decisions regarding architectural style, user
interface style, and decisions that constrain the set of options available in the
domain model. The domain is also referred as Universe of Discourse (UoD) in the
literature. It is used to mean the part of the world to which the data manipulated
by the System under Development (SuD) 8 refers. We consider adaptability and
maintainability as design requirements.

Performance requirements, usually considered non-functional, are namely
translated in specifications that precisely quantify what performance actually
means for the SuD. Same in the case of security requirements. Components
performing security protocols such as encryption, authentication, etc. can be
considered proxies for more abstract security requirements e. g. data integrity.
These proxies not only act upon several modularization units in the resulting
system, but are implemented in several modularization units.

We do not consider scattered and tangled code resulting from an erroneous
modularization i.e. an incompetent design or bad programming techniques. There-
fore code clones, code smells and the like are out of the scope of this work.

We would therefore propose the following:

1. Crosscutting can be described in terms of a tracing relation from require-
ments to system design as well as from this to code. It is a transitive relation.

8 “Beacuse computer-based systems manipulate data, there are two systems we
can specify: the computer-based system and its UoD. In a development process,
the computer-based system is also called the system under development or
SuD” [20].

12 J. Fox

2. A crosscutting concern is any software artifact that can be described by the
crosscutting relation

3. An aspect is a kind of crosscutting concern that can be described by a special
refinement function, namely communication refinement.

4. Crosscutting is an outcome of the translation from a higher to a lower ab-
stracion level starting with requirements and ending with code.

5. Crosscutting is due to the available modularization concepts and will always
be provided.

6. It follows that crosscutting is determined by the modularization technique
and is given after requirements translation to further steps in the develop-
ment process.
(a) Also assuming that existing requirements engineering techniques suffice

to design software, we consider that
7. crosscutting should be managed in design and code.

4 A Classification of Aspects

As already mentioned, we classify aspects by the nature of the crosscutting with
respect to requirements.

In order to introduce our classification we consider two examples. On the one
hand, the problem of multiple views on a software system as introduced in [25].

On the other hand, the introduction of security mechanisms on a given soft-
ware system.

The problem can be illustrated as follows. In [26] we presented a prototype
for an E-Learning Support System (ELSS). The system supports the evaluation
of students in a university’s e-learning system. Students are supposed to attend
a given number of hours for self-learning and evaluate their advance using the
system. The professors define the tests to be applied via the system and are also
able to have an overview of their students’ advancement through this system.

The system is designed for the following users: Professors and Students.
We consider a view as a set of requirements whose grouping criteria is that they
have been requested by a given user of the system to be. Views are related to a
specific user i. e. interested party.

We define two views on the system and based on these views restrict ac-
cess to evaluation and examination -related methods. Restricting access based
on the user is a functional requirement that under an object-oriented design
would be implemented in different classes. We define two views on the system,
studentView and profesorView. Table 2 shows the access critical methods that
are assigned to each view.

We recall that in object-orientation the class abstraction encapsulates be-
havior related to each of the classes while leaving behavior related to multiple
classes in several modularization entities.

Example 1. As a first example, assume that we decide to modify the ELSS and
add a new set of requirements to the system. Say this set of requirements comes
from the university exams administration office. This additional view is supposed

A Taxonomy of Aspects 13
Table 2. Methods per view

Student Professor Exams Office

readTest() enableTest() enableProf()

answQuestion() defineAnswer() enableStudent()

checkOwnAnsw() evaluateStudent() allowAccessTest()

answTest() groupAverage()

eraseTest()

to enable authorized students to take an examination and enable authorized
professors to define or apply a test. Implementation of the above requirements
might be performed by the methods in Table 2 under the view Exams Office.
These methods relate to more than one class, namely to classes Student and
Professor considering Fig. 3.

Example 2. As a second example, consider the same diagram from Fig. 3 and
assume users may access the system remotely. A related requirement is that the
information from the exams shall be kept secret to third parties through the
communication channel. A possible solution is adding an encryption protocol to
every information sent from and to the following classes student, professor,
and exam.

The two examples presented above can be considered representative of the
aspects found in the literature, from synchronization policies, all the way to
composition aspects as multiple views, considering as well logging, security, per-
sistence, which are system properties involving more than one functional com-
ponent.

Table 3. Classification

Non-Functional
Semi-localized NFSL

Systemic NFS

Functional
Black-box BB

Clear-box CB

4.1 Non-functional Aspects (NFA)

These are constraints that characterize how the SuD will perform, just as non-
functional requirements do, however, NFA affect several modularization units in

14 J. Fox

Fig. 3. Class diagram ELSS

the solution space. We further distinguish two types of NFA depending on the
scope of the modularization units affected.

Non-functional Semi-localized aspects (NFSL) influence the decisions
shaping or modifying the architecture of a system. These aspects can be seen
as views on the system in the sense explored in Example 1.Consider also for
instance, the requirements formulated in Appendix A.4.

Non-functional Systemic aspects (NFS) relate to qualities expected on the
system, such as adaptability, maintainability, quality of service, performance, etc.
See for instance part 3 of Appendix A.5.

We do not explore here the transformation from requirements to systems
design and implementation. It is outside the scope of this work, it belongs to
more extent research that may be performed in a future time. We just recall that
different technology solutions (e. g. languages)to the problems posed by aspects

A Taxonomy of Aspects 15

exist. Non-functional semi-localized aspects may be solved by using Design Pat-
terns, AspectJ, or Compose*, for instance. Functional aspects by composition
mechanisms as Hyper/J or Compose* as already mentioned. Yet, there is still
no aspect-language technology capable of dealing with NFS aspects to the best
of our knowledge. We consider these aspects have to be managed in modeling
and design, rather than at the language level.

4.2 Functional Aspects (FA)

Concerns which are described in terms of behavior and affect several modular-
ization units fall in this category. FAs can be implemented at the level of the
methods in the classes, see for instance, Example 2.

Black-Box aspects relate to the public interfaces of components like func-
tions, object methods, and communication channels. The behavior affecting sev-
eral modularization units can be related to these via some wrapping over the
communication channels or the external interfaces. Such as those implementable
by frameworks as Composition Filters.

Clear-Box aspects relate to the internal structure of the classes or compo-
nents. The behavior of the affected units is redirected or appended and the
aspects can be seen as alien units composed inside the base units. I. Jacobson
discusses this kind of aspects which he named (years before AOP) as “Existion
and Extensions” in [1].

By classifying aspects in Table 3 according to the accepted division between
Functional and Non-functional requirements we may see that aspectual and non-
aspectual concerns are essentially the same. The difference between them results
later on in the development process. We may therefore use either traditional (i. e.
established) approaches like Object-orientation together with novel approaches
and techniques as the ones proposed by aspect-orientation.

5 Related Work

A review of other classifications reflects a preponderating role of the program-
ming level approach toward aspects. See for instance the work of [27]. The author
proposes that aspects be categorized into two sorts: “spectators” and “assistants”
with relation to the behavior of the code that they advise. This classification is
certainly of interest for programmers. Moreover, [28] classify aspects based on
the interaction between advice and method. Their classification helps program-
mers understanding the possible interactions of a given aspect and its design
implications.

There is a categorization of aspects at the programming level related to
classes of temporal properties in [29]. The author defines the following classes of

16 J. Fox

aspect: Spectative, regulative, and invasive. The categorization provides a basis
to later analyze aspect interaction with the base model at the code level.

We aim at a more comprehensive and top-down aspect classification. In this
way, though still very much at the language level, the work of [2] is quite com-
prehensive. The authors classify aspect-oriented systems based on type of join
point, selection criteria, and the adaptation mechanism. They classify the main
aspect-oriented languages based on the above criteria. Their work helps select-
ing the aspect language i. e. mechanism more suitable for the implementation
of a given crosscutting concern. [30] propose a framework based on crosscutting
concern sorts intended for aspect mining techniques. These sorts are defined
as atomic descriptions of crosscutting functionality, classified based on “ intent”
and its relation to an aspect mechanism (at the programming language level).
We agree that the authors present a classification that supports aspect mining
though very much influenced by the actual programming level constructs. This
means, the elements they mine might not necessarily cover aspects in general,
though certainly those that they a priori define as crosscutting concern sorts.
In contrast, we define crosscutting and aspect, and provide a classification that
is independent of language mechanisms.

We presented early work on a taxonomy of aspects in December 2005 at the
University of Twente. As a result of the discussion it occurred that the author’s
proposal was justified in terms of “ requirements traceability.” At that time, we
had already published a definition of aspect and its relation to a formal theory
for modeling aspects (see [13]). In that work we relate aspects and requirements
to traceability. Similar work from [31] discusses crosscutting though in terms
of tangling and scattering, yet not related to requirements traceability. Later
on [32] relate their definitions to requirements traceability, though they propose
no classification and focus on identification of crosscutting to the early phases
of software development.

The reader may also refer to [33] for a survey on current definitions of aspect.

6 Conclusions

This paper has provided a systematic study of aspect-orientation from a top-
down perspective. We explored where and how aspects are originated. Moreover,
as a consequence of relating their causation to the transformation from a problem
to a solution space, we group them based on their nature. In other words, we
may then classify them based on a the classification of requirements. We enrich
this first level of classification with the characteristics of the aspects in each
group, namely black-box, glass-box in the case of functional and systemic or
semi-localized in the case of non-functional. These constitute the second level of
the classification.

The definitions presented here and the classification of crosscutting concerns
in functional and non-functional may help identifying the technology at hand
for dealing with each type of aspect. This is future work, and will be performed
by proposing a modeling approach for functional aspects. We are in complete

A Taxonomy of Aspects 17

agreement that further studies are needed to relate the type of aspect to the
corresponding design and implementation technology in a more integral way.
The results of this work should assist identifying the software processes at which
aspects actually represent an improvement and discard those at which it makes
less sense. Furthermore, this work might provide more clarity for the coming
phases of aspect-orientation as it moves from being a new kind of maverick idea
to a more consolidated field of research.

Acknowledgements. Thanks to Florian Deißenböck for his critical opinions which
made me dwell on my arguments at times. To the reviewers of TEAM 2006 for
their comments on an earlier draft, regarding the importance of keeping a big-
picture perspective. Also to Maria Victoria Cengarle and Andi Bauer for making
me aware of some mistakes (which I then tried to prevent).

References

1. Jacobson, I.: Use cases and aspects -working seamlessly together. Journal of Object
Technology (2003) 7–28

2. Hanenberg, S., Stein, D., Unland, R.: Eine taxonomie für aspektorientierte systeme.
In Liggesmeyer, P., Pohl, K., Goedicke, M., eds.: Software Engineering. Volume 64
of LNI., GI (2005) 167–178

3. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In:
ICSE ’05: Proceedings of the 27th international conference on Software engineering,
New York, NY, USA, ACM Press (2005) 49–58

4. Institute of Electrical and Electronics Engineers: IEEE standard computer dictio-
nary: A compilation of IEEE standard computer glossaries (1990)

5. Harel, D., Pnueli, A.: On the development of reactive systems. In Apt, K., ed.:
Logics and Models of Concurrent Systems. Volume F-13 of Springer NATO ASI
Series. Springer-Verlag, New York, NY, USA (1985) 477–498

6. Szabó, Z.G.: Compositionality. In Zalta, E.N., ed.: The Stanford Encyclopedia of
Philosophy. (Spring 2005)

7. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing aspects
of aop. Commun. ACM 44 (2001) 33–38

8. Rashid, A., Sawyer, P., Moreira, A., Araujo, J.: Early Aspects: A Model for Aspect-
Oriented Requirements Engineering. In: IEEE Joint International Conference on
Requirements Engineering, IEEE Computer Society Press (2002) 199–202

9. Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing aspects of aspect-
oriented programming. Communications of the ACM 44 (2001) 33–38

10. Czarnecki, K., Eisenecker, U.W.: Generative Programming - Methods, Tools, and
Applications. Addison-Wesley (May 2000)

11. Rashid, A., Moreira, A., Araujo, J.: Modularisation and composition of aspectual
requirements. In: AOSD ’03: Proceedings of the 2nd international conference on
Aspect-oriented software development, New York, NY, USA, ACM Press (2003)
11–20

12. Kiczales, G., Hilsdale, E.: Aspect-oriented programming. In: ESEC/FSE-9: Pro-
ceedings of the 8th European software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on Foundations of software engineering,
New York, NY, USA, ACM Press (2001) 313

18 J. Fox

13. Fox, J.: A formal foundation for aspect-oriented software development. Research
on Computing Science, CIC-IPN, ISSN: 1665-9899 14 (2005) 241–251

14. Kiselev, I.: Aspect-Oriented Programming with AspectJ. Sams, Indianapolis, IN,
USA (2002)

15. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction.
Communications of the ACM 44 (2001) 29–32

16. Rashid, A., Sawyer, P., Moreira, A., Araújo, J.: Early aspects: A model for aspect-
oriented requirements engineering. In: Proceedings of IEEE Joint International
Conference on Requirements Engineering (RE 2002), IEEE Computer Society, pp.
199-202. (2002)

17. : Merriam webster online dictionary. (http://www.m-w.com)

18. Araùjo, J., Coutinho, P.: Identifying aspectual use cases using a viewpoint-oriented
requirements method. In: Early Aspects 2003: Aspect-Oriented Requirements En-
gineering and Architecture Design, Workshop of the 2nd International Conference
on Aspect-Oriented Software Development, Boston, USA, 17th March. (2003)

19. Videira-Lopes, C.: AOP: A Historical Perspective. In Filman, R., Elrad, T., Clarke,
S., Aksit, M., eds.: Aspect-Oriented Software Development. Addison-Wesley (2004)
97–122

20. Wieringa, R.J.: A survey of structured and object-oriented software specification
methods and techniques. ACM Comput. Surv. 30 (1998) 459–527

21. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15 (1993) 73–132

22. Aksit, M.: Composition and separation of concerns in the object-oriented model.
ACM Computing Surveys 28A (1996)

23. Clarke, S.: Composition of Object-Oriented Software Design Models. PhD thesis,
Dublin City University (2001)

24. Mouratidis, H., Jürjens, J., Fox, J.: Towards a comprehensive framework for secure
systems development. In Eric Dubois, K.P., ed.: Proceedings of the 18th Interna-
tional Conference, CAiSE 2006. Volume 4001., Springer Berlin / Heidelberg (2006)
48–62

25. Bergmans, L., Aksit, M., Tekinerdogan, B.: Aspect composition using Composition
Filters. In Aksit, M., ed.: Software Architectures and Component Technology.
Kluwer Academic Publishers (2001) 357–382

26. Fox, J.: E-learning support system. Technical report, National Institute of Small
Industry Extension Training (nisiet), Hyderabad, India (2002)

27. Clifton, C.: A design discipline and language features for modular reasoning in
aspect-oriented programs. PhD thesis, Iowa State University (2005) ISU TR 05-
15.

28. Rinard, M., Salcianu, A., Bugrara, S.: A classification system and analysis for
aspect-oriented programs. (2004) 147–158

29. Katz, S.: Aspect categories and classes of temporal properties. In Rashid, A., Aksit,
M., eds.: T. Aspect-Oriented Software Development I. Volume 3880 of Lecture
Notes in Computer Science., Springer (2006) 106–134

30. Marin, M., Moonen, L., van Deursen, A.: A common framework for aspect mining
based on crosscutting concern sorts. Technical Report TUD-SERG-2006-009, Delft
University of Technology (2006)

31. van den Berg, K., Conejero, J.M.: A conceptual formalization of crosscutting in
AOSD. In: DSOA’2005 Iberian Workshop on Aspect Oriented Software Develop-
ment. Technical Report TR-24/05, University of Extremadura (2005)

A Taxonomy of Aspects 19

32. van den Berg, K., Conejero, J.M., Hernàndez, J.: Analysis of crosscutting across
software development phases based on traceability. In: Early Aspects at ICSE2006:
Workshop in Aspect-Oriented Requirements Engineering and Architecture Design,
Shanghai (2006) May 21, 2006.

33. Fox, J., Jürjens, J.: Introducing security aspects with model transformation. In:
Model Based Development (MBD) Workshop in Proc. 12th Annual IEEE Interna-
tional Conference on the Engineering of Computer-Based Systems (ECBS 2005),
Greenbelt, Washington, 4-5 April, IEEE Computer Society (2005) 543 – 549

34. Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L., Martelli,
L.: A uml notation for aspect-oriented software design. AO modeling with UML
workshop at the 1st AOSD conference (2002)

35. Stein, D., Hanenberg, S., Unland, R.: A uml-based aspect-oriented design notation
for aspectj. In: AOSD. (2002) 106–112

A Requirements: E-Learning Support System

A.1 Problem description

During the spring of 2002 in the framework of a Data Warehousing and Mining
training program in Hyderabad, India, we came to the idea of proposing an E-
Learning Support System (ELSS) for a Mexican university that had actually no
distance learning support system at that time.

The university is located at the heart of Mexico City. Many students spend
a considerable amount of time travelling to and from the university and their
homes. Students come to the university from different parts of the city and its
metropolitan area or from neighbouring cities.

During the training program in India the requirements´ analysis was not
documented. The focus then was on developing a prototype.

The ELSS will be used as a brief case study for requirements. For that reason
we design an informal specification of requirements in the following section.

In the following lines the different parties that have a stake in the system
will be described. After that a the requirements are outlined in the form of an
interview with the stakeholders.

A.2 Stakeholders

Academic personnel Under academic personnel we consider the teachers of
the language center as well as the Director of the center. The academic personnel
give lectures and examine the students regularly based on the university’s cal-
endar and the course’s learning objectives. The Director of the Language Center
coordinates the learning process, resolves conflicts stemming from group allo-
cation, teacher-student interaction, supervises the evaluation process, reports
advances to the academic direction of the university, and usually teaches.

20 J. Fox

Students Students are the individuals registered at the university in a given
course or educational program. Their advance is regularly evaluated in terms of
mastering a given language skill. Students of the language center at UDLA come
from different academic faculties and share different professional and cultural
interests.

Administrative personnel The administrative personnel are in charge of reg-
istering students, printing out certificates and giving support to the activities of
the language center director.

A.3 Shaping the Requirements. Interviews

Simulated interviews with the interested parties will be used as a way of in-
troducing the requirements in textual form. We consider that some interested
parties also provide us with print-outs, reports and miscellaneous artifacts. A
simulated walk-through is also considered. Interviews and artifacts have been
designed based on an expert´s knowledge of the domain.

Miss Sylvia (Teacher): “ above all, I would very much like to be able to
grade examinations on a periodical basis and obtain the evaluations’ results in
a clear and understandable way. I would like to be able to enter the correct
answers of a particular evaluation in the system and later on check the number
of the correct answers per student and group. This is usually a hard work for
the teachers, but we carry it out joyfully. Automatically obtaining comparisons
among groups and identifying questions in which the students had more diffi-
culties for answering would be helpful. This would certainly help us improve the
learning process.”

Miss Sylvia kindly gives us a copy of an actual examination. Examinations
or “ quizzes” are performed periodically. There is also a final examination for
the students at the end of the semester.

Miss Geraldine (Director of the Language Center): “ There is a lot of
work to do here. Sometimes, especially at the end of the semester, we need to
correct exams, send the final notes to the registrar, and send reports to the Dean.
During the semester I also need to keep track of the evolution of the groups. At
the beginning of the semester I am in charge of assigning teachers and groups,
according to availability, it is no easy task, you know. Perhaps the system should
leave such a complex problem for a second version of it. Now, let us focus on the
evaluation aspect of the problem.”

She also told us that the typical controls and final exams very rarely exceed a
number of forty multiple choice questions. She allowed us to visit an examination
session which provided us with valuable input and insight into the university’s
procedures.

David (Student): “we’ll I’d like to review additional material at home,
check my advance at my own pace. As I live outside the city presenting exams
home would be nice. I’d also like to read lecture notes on the web.”

Sara (Student): “ this is such a great opportunity to allow us to check
additional material on the web that reinforces our learning process and then be

A Taxonomy of Aspects 21

able to present the controls and final exam under a controlled environment. I
would feel so happy if I could present the controls in advance, because sometimes
I am ready to present an exam weeks before the examination date.”

A.4 Design Requirements

The administrative personnel has a software policy and it states that the software
should be composed of the following three parts:

1. A relational database (DB) implemented on MySQL as Back-end. This will
be further referred to as DB.

2. A front-end program in Java for applying exams and automatically obtaining
students’ results based on the correct answers stored in the DB. This is re-
ferred to as Exams module. The front-end will also contain an administration
module.

3. A web-site with course supporting material for students.

A.5 What the ELSS shall do

We obtain the following requirements from the interviews above.

1. Functional Requirements
(a) The system shall allow students to study course related support material

on the internet.
(b) Students shall also be able to attend distance education lessons.
(c) Students shall be able to take exams in a computer at the campus under

a supervised environment.
(d) Students shall be able to take exams at their own pace and whenever

they feel confident enough to do it. The former has to be carried out
according to the university’s semester calendar.

(e) Once students feel confident enough they may go to campus and in the
computer lab take a quiz to review their progress. Students will present
the exam in the computer lab on given dates for the midterm or final
exams.

2. Additional Functional Requirements
(a) Access to the system shall be granted only to authorized users.
(b) Identity of users shall be confirmed.
(c) Only Academic Personnel is allowed to create, modify, or delete tests or

quizzes, in the courses they are in charge.
(d) Only Administrative Personnel may register a Student for a course and

assign courses to Academic Personnel.
3. Non-Functional Requirements

(a) Availability: the system should be available 24 hours a day, 7 days a
week, though the system might stay off-line until any fault is fixed.

(b) Performance: the system shall be able to attend at least 20 users simul-
taneously

22 J. Fox

B Weaving through Communication Refinement

These definitions are unpublished joint work with Professors Herzberg and Broy.

For a formal treatment of aspect-orientation, we need to explicitly highlight
the means of communication in form of a communication service. A communi-
cation service might simply provide a static connection-oriented service, thereby
reflecting an ideal or non-ideal connector. On the other hand, the communication
service might also provide a connectionless means of communication, represent-
ing for example a message router. A communication service connects only a
subset of the input and output channels of one component with those of another
one.

Definition 8 (Communication Service). Let S1 ∈ (I1 � O1) and S2 ∈ (I2 �
O2) be given components. A communication service C for S and S is a com-
ponent in (I ′

1 ∪ I ′
2 � O ′

1 ∪ O ′
2) where I ′

1 ⊆ I1, I ′
2 ⊆ I2, O ′

1 ⊆ O1, O ′
2 ⊆ O2. Its

composition is defined by

∃ I ′
1, I

′
2,O

′
1,O

′
2 : [[S1]] ∧ [[C]] ∧ [[S2]]

and we then write

S1 ← C → S2

2

For simplicity we assume here and in the following that all channels are
named in a way such that there are no name conflicts. This form of inserting
a communication service between two components is basically a generalization
of composition with mutual feedback. The notation presented is just a way to
semantically highlight that C represents the communication means and is not
supposed to be a “usual” component.

Communication refinement relates two specifications of communication ser-
vices C1 and C2 written at different levels of abstraction. Two other specifica-
tions, R and A, adapt the interfaces of the communication services and mediate
between the abstract specification C1 and the more concrete specification C2. R
is called the representation whereas A is called the abstraction.

Definition 9 (Communication Refinement). Let C1, C2, R, and A be spec-
ifications such that

C1 ∈ (I1 � O1) ∧ C2 ∈ (I2 � O2) ∧ R ∈ (I1 � I2) ∧ A ∈ (O2 � O1)

The relation of communication refinement from C1 to C2 is defined as

C1 (R⊗ C2 ⊗A)

2

A Taxonomy of Aspects 23

C Generic Solutions with AspectJ: an exploratory case

In this case study our interest is to learn to what extent AspectJ technology
allows for a better separation of concerns and also for developing generic concern-
solutions. By concern-solution we understand an aspect or a set of aspects that
represent cross-cutting concerns, are woven with a system’s core modules and
produce a new system. Therefore changing the original system’s behavior and
structure in a desired way. In this case, we may consider an existing system as
well as one under development. The motivation is to explore up to what extent
existing AOP technology allows for reusing aspects.

So, the following problem is proposed. Suppose we need to insert a more or
less generic undo() method in every class of a given object-oriented program.
The undo() method should allow for a way to reverse the changes carried out in
the objects of the program. In object-orientation adding such a method might
imply major modifications of the classes in behavior and structure. The problem
presented here may be seen as a typical cross-cutting concern problem. The cross-
cutting concern presented here is the undo() method. We outline a solution that
helps us explore the gap between the promise of AOP and the actual language
tools. Existing aspect modeling approaches as the ones from [34] and [35] are
used to illustrate the solution.

C.1 Proposal

This generic undo solution alters a class structure using an aspect and the con-
cept of cloning, which is implemented in Java as an interface. In this solution
the original program structure is preserved and the aspects are woven in a non-
intrusive manner. We intend to create a framework for preserving an object’s
history, thus allowing for restoring, if required, an object’s previous status after
an operation. We assume that the object encapsulation is not violated, in other
words, we may only alter an object’s content through its set methods. Still we
have to guarantee that only one method may actually perform a set operation
on the concerned object. In summary, it is expected to keep track of methods
that change the contents of an object. The solution is outlined in Fig. 4. In
short, whenever a set method from a given object be called, the call shall be
intercepted and a clone of the object be created as represented by step 1 in the
figure, after this the intercepted method will be allowed to continue as shown in
step 2. At this point, we may decide whether to follow with the changes on the
object or discard them as seen in step 3. The rest of the program should remain
unchanged.

The undo() is shaped as a clone or copy created every time the contents
of an object are changed. Implementing it over existing classes is possible as
an aspect that involves, on the one hand, inserting a cloning method to the
target set of classes. On the other hand, requires specifying the point in the flow
of the program to perform the copy of the object and then continue with the
intercepted method.

24 J. Fox

 Obj1

Content

Clon_Obj1

Content =
Obj1.content

Obj1

Modified
Content’

Pointcut
selectedMethods (ClassesToAdvice Obj1):
target (ClassObj1)
& set(* Class.*)

3. Restore content
(if desired)

2. Proceed

1. clone() or copy()
single or as a stack of clones

Obj1

 Content

Around selectedMethods:

Fig. 4. General schema undo()

Pawlak et al [34] model an aspect as a class called ”aspect-class” as shown
in Fig. 5(a) and specify it with the stereotype aspect. This example allows us
to portray one of the limitations of this modeling approach. In case we had
another aspect altering the same set of classes or even a set of classes includ-
ing ones from another aspect, then the class diagram would not necessarily be
clearly understandable and we may need to model aspects as perhaps another
layer of abstraction.Back to our example, it inserts an introduction with the
clone method on every related class and specifies an advice which we may name
whenSet (see Fig. 5(a)). The advice is called around the execution of a pointcut
which consists of every set method called at any of the related classes.

C.2 Implementation

In order to illustrate that our ideal solution is feasible we define a class Circle
as shown in figure 3, and the aspect following from the previous explanation.
Because of its wide acceptance as an aspect language the implementation is built
using AspectJ and consequently Java.

Static crosscutting From Fig. 5(b) the actual implementation should follow
smoothly. Classes Circle and Square are the core modules and the crosscutting
concern to be weaved on them is the undo aspect with the clone method and
the actual implementation of the advice named whenMove().

A Taxonomy of Aspects 25

 Class A

<<aspect>> undo

Class B Class N ...

...

+<<introduction>> clone_interface()
+<<around>> whenSet()

(a) Generic solution (b) Particular solution

Fig. 5. Class diagram of the undo() aspect

Listing 1.1. Hyper-cutting i. e. Cloning interface added to class Circle

1public aspect addCloneMethod {

declare parents: Circle implements Cloneable;

declare parents: Square implements Cloneable;

public Object Circle.clone () {

try {

6return super.clone ();

}

catch (CloneNotSupportedException e) {

throw new InternalError(e.toString ());

}

11}

public Object Square.clone () {

try {

return super.clone ();

}

16catch (CloneNotSupportedException e) {

throw new InternalError(e.toString ());

}

}

}

The actual clone interface has to be specifically inserted to each class as
illustrated in lines 2 and 3 of listing 1.1. Moreover, the method to restore the
object to its previous values also needs to be specified for each affected class,
because the clone method does not substitute the desired object, just substitutes
it with a new one, and we use the clone just as a repository of the information,
we need to define a function restore() to copy one by one the contents of the
clone into the original object, otherwise we get two distinct objects after the
advice in the rest of the program.

26 J. Fox

Dynamic behavior The dynamic behavior of the advice can be described using
a sequence diagram based on the aspect modeling framework in [35].

Fig. 6. Sequence of the undo() method

We focus on the class circle and the interception via the advice of a call to
the method moveCircle().

A simple version of the pointcut and associated advice for the class Circle
is found in listing 1.2 (for the Square is just about the same, just changing the
names).

Listing 1.2. Pointcut

pointcut whenMoveCircle(Circle c) : target(c) && ←↩
call(* moveCircle (..));

In this case the pointcut was chosen in order to select every call to the method
named moveCircle() where the target is an object of type Circle.

In case we would like to select every call to ”set” methods we would have to
add modify the pointcut definition and also add the proper restrictions to it in
order to avoid undesired recursion. The solution is nevertheless not as generic
as we would like it to be. So, it is safe and clear to specify every method to be
intercepted specifically by its name. The same applies in the case of class Square,
and so would have to be done with every class we would like to enhance with
the undo concern.

A Taxonomy of Aspects 27

Focusing ourselves on the needed restore() function, we would discover that
it is necessary to refer to the attributes of each class and then copy them from
the clone into the object in order to reverse the changes as outlined in figure 1
step 3. For that reason, it is not as generic as we originally intended it to be.
The discussion of the gap between the promise and the reality of AOP present
technology will be explored in the following lines.

C.3 Remarks

As we have seen, the introduction of the clone interface has to be performed class
by class. Even if classes are grouped in packages it is not possible to introduce
the interface to Java packages in AspectJ and make it work. Pointcuts need also
to be specified in relation to selected methods, directly specifying the affected
classes, instead of simply mentioning every “ set” action as was our original
intention. Otherwise, as we need to pass the object as parameter to the advice
the selection of the corresponding clone and restore methods results unclear.

When using AspectJ the specification of join points requires careful adapta-
tion and planning in order to avoid undesired recursion and stack overflow.

Also, the function that essentially achieves the restoring of data to the object
has to be tailored for each class, in this case once for Circle and once for Square,
if there were more we would certainly need corresponding restore functions for
each. Otherwise we would have to explore using reflection classes that are out of
the scope of the present work. Tailoring the solution for two classes is somehow
undemanding, but in case of applying it to a number of classes it is certainly
better than modifying each class in an intrusive manner, but is still far from
being clear-cut.

This case shows that AOP shows the way to new and creative solutions to-
ward software; allowing for a better separation of concerns and modifying exist-
ing code, though current tools or languages still lack the capability for straight-
forwardly shaping a generic solution and apply it on different pieces of code. It
is still required to customize the solutions on a case by case basis, which posses
a limit to one of the alleged goals of AOP that is encapsulation of concerns and
reusability. Nevertheless, as has already been mentioned, this technology brings
us closer to building software with new possibilities. This example allows us also
to conceive aspects as a set of static and dynamic elements that convey specific
behavior that has or may have an effect on vast sections of a given program.
Therefore aspects are able to abstract not only crosscutting existing require-
ments, but also requirements added in a later stage in the software development
lifecycle. This case supports our view that we need to go beyond the existing
aspect technology and current limited approaches in order to allow for more am-
bitious and adequate means for aspect modeling, as well as more powerful, easy
to use, and learn language mechanisms that allow us to create generic solutions
and straightforwardly translate them into code.

	A Taxonomy of Aspects in Terms of Crosscutting Concerns
	Jorge Fox

