Programming Manifolds

Jacob Beal Jonathan Bachrach
MIT CSAIL MIT CSAIL
77 Massachusetts Ave 77 Massachusetts Ave
Cambridge, MA 02139 Cambridge, MA 02139
jakebeal@mit.edu jrb@csail.mit.edu
Abstract

Many programming domains involve the manipulation of valdeéstributed through a manifold—
examples include sensor networks, smart materials, arfitifgo This paper describes a programming
semantics for manifolds based on #raorphous mediumbstraction, which places a computational de-
vice at every point in the manifold. This abstraction ensalihe creation of programs that automatically
scale to networks of different size and device density. FRimantics is currently implemented in our
language Proto and compiles for execution on Mica2 Motes.

1 Introduction

Many programming domains involve the manipulation of valdéstributed through a manifold. A few
current examples:

e Awireless sensor network deployed throughout a large stafidw a small crew to monitor the health
of the vast collection of machinery onboard, and manage fdwgater, coolant, etc. throughout the
ship.[10]

e A programmable biofilm where a colony of cells coordinatenaloally to capture an image or dis-
pense a drug in carefully timed and located doses.[12]

e An ad-hoc packet radio network deployed on the roofs of s, doing routing and traffic management.[9]

e Reconfigurable robots coordinating to build arbitrary pégisstructures.[13]

Each of these are examples ispatial computer-a collection of devices that fill space and whose
ability to interact is strongly dependent on their proxinithe network of devices making up the computer
approximates a geometric region of Euclidean space: ttangaif cells covers the surface on which they
grow, the sensor network fills the interior of the ship, etc.

It is natural to think about programming these spaces usammngtric notions. The structure of the
space, however, may be quite complicated. For example, cmication on the ship may detour around
bulkheads and cargo areas, while the reconfigurable robaysfonm an elaborate shape with complicated
bends and folds. Thinking about the spaces as manifoldaweile programming them easier, as we can
then largely decouple a geometric description of the behave want from the details of communication
and execution on individual devices necessary to impletihent

This paper describes a programming semantics for manif@ded on theamorphous mediurabstrac-
tion, which places a computational device at every pointhim thanifold. This abstraction enables the
creation of programs that automatically scale to netwofldifterent size and device density. This seman-
tics is currently implemented in our language Proto, coagpibr execution on Mica2 Motes, and has been
used to implement algorithms for sensor networks and modolkeotics (Figure 1).

Dagstuhl Seminar Proceedings 06361
Computing Media and Languages for Space-Oriented Computation
http://drops.dagstuhl.de/opus/volltexte/2007/1023

(a) Tracking (b) Threat Avoidance (c) Plane Wave

Figure 1. Programs for target tracking (a), threat avoidgbg, and directable plane waves (c) being verified
on 100, 1000, and 10000 simulated devices, respectively.

2 A Brief Review of Manifolds

We will start by briefly going over what a manifold is: if youeafamiliar with them, feel free to skip this
section.

A manifold is a space that looks like a Euclidean space lgcdibugh its whole structure may be much
more complicated, with holes and other geometric awkwassin€o be precise:

Definition 1 An m-manifold is a spacéVl where each point in the space has a neighborhood which is
homeomorphic to an open setli¥”.

Them is the dimension of the manifold. Since we are interestedhénréal world, we will mostly be
interested in 2-manifolds (surfaces) and 3-manifoldsuas).
Some examples of manifolds:

e A curve is a 1-manifold

e Figure 2(a) shows a 2-manifold. Other examples are the suidh the Earth, the road network, a
Mobius strip, and a Klein bottle.

e The interior of a building and a coffee cup are both 3-madgol

In the interests of simplicity, we will only consider mards which are Riemannian, smooth, and
compact—that is, ones where distance and derivatives naalsesand without nasty topological quirks.
This excludes a great number of interesting mathematigalctsy but not much that we can build in the
real world. Our semantics might apply to manifolds withdwede properties as well, but we have not been
motivated to investigate the matter.

Functions can be defined on manifolds, mapping each poirftemtanifold to a value. We will call
these functiondields after the fashion of physics, and denote a field eithéor a generic field, or by its
range (e.gR for a field of numbers).

3 The Amorphous Medium

An amorphous mediurs a manifold where every point is a computational devicearg devices share
state—each device has some neighborhood in which it carssitice state of other devices. Information
propagates across the manifold at a maximum velagisp the processor accesses the past light cone of its
neighborhood, not the current values (Figure 2(b)).

(&) Amorphous Medium (b) Information Propagation (c) Discrete Network

Figure 2: An amorphous medium is a manifold where every psiattcomputational device that shares state
with a neighborhood of other nearby devices. Informatiamppgates through an amorphous medium at a
fixed rate, so each processor has access only to values imi¢ngection of its neighborhood and past light
cone. An amorphous medium may be approximated by a meshikecte network.

All of the infinitely many devices execute the same program their executions diverge due to differ-
ences in sensor values, randomness, and interaction withngsighborhoods.

Obviously, we cannot build an amorphous medium—there dinitely many processors! We can,
however, approximate it on a discrete network. Therein thespower of the abstraction: by writing a
program for an abstract continuous space, we end up with @t@decan be run approximately on a wide
range of different real networks.

Because all interactions in the amorphous medium are lid@a,can build an approximate implementa-
tion of a neighborhood, then we can approximate any compuatan the amorphous medium. Fortunately,
although a manifold may have a complex shape, it is defined sirbple in the neighborhood of each point.

For unit disc communication, for example, the neighborhoad be approximated as the set of 1-hop
neighbors in the network, with equal to the average hop distance divided by the time betwegadic
updates.

Note also that there is a duality between the amorphous mmeaing the network used to approximate it.
Given an amorphous medium, we can evaluate how well varietigarks approximate it; given a network,
we can find an amorphous medium which it approximates.

We will not treat the transformation between continuous disdrete in detail in this paper: see [3] and
[6] for more information on this issue.

4 Evaluation Model

Our language, Proto, uses ideas from both functional amgstrprogramming to provide an evaluation
model for computing with an amorphous medium.

Programs written in Proto can be thought of either as a n&twbistreams or as a dataflow graph
evaluated repeatedly over time. In this description, wéwgié the dataflow graph interpretation.

There are two basic elements in the language:

Definition 2 An expression is a functioa : M — F! that takes an amorphous medium as input and
produces a set of fields as output.

Definition 3 An operator is a functior : F! — FJ that takes a set of fields as input and produces a set of
fields as output.

f 3 f 3
N/
l

(a) Expression (b) Evaluation

Figure 3: An expression is evaluated at a point in time byyapglit to an amorphous medium, producing
a set of fields as output. For example, the expreséioh3) produces a field where every point mapped
to n by f maps ton + 3 in the new field. General evaluation is instantaneous etiatuaepeated at fixed
intervals.

For example, the expressidrtakes an amorphous medium and produces a field where everyiptie
amorphous medium maps 49 and the operatosqgrt takes a scalar field and produces a scalar field where
every point that mapped toin the input field maps tq/n in the output field.

The means of composition is implied by the functional debnit We will use LISP notation to show
composition, though the reader should remain aware thab oot a LISP.

Composing an operator with a compatible expression pradacether expression. For examplsqrt
4)is an expression that takes an amorphous medium and proatie&swhere every point in the amorphous
medium maps ta@.

Composing an operator with another operator produces amtope An expression can be converted
into an operator by means of a special scope functjanF! — M, which takes a set of fields and returns
an amorphous medium which is the intersection of their domaComposing the scope function with an
expressiore produces an operatare that gives the value of an expression on the amorphous medium
where the input variables are defined. Using this, we can@ebmpound operators that include arbitrary
expressions: for exampl@ambda (x) (* 2 x)) is an operator that takes a scalar field and produces a scalar
field where every point that mappedrtan the input field maps to 2n in the output field.

We can now define the instantaneous evaluation of an expresdis evaluation at a given point in
time—as simply its application to an amorphous medium, pcod a set of fields (Figure 3). To find out
what values have actually been computed, we must furthduagesthe field at particular points.

To evaluate an expression across time, we perform a sequéninstantaneous evaluations at fixed
intervals! Each instantaneous evaluation depends only on the presi@lsation (via thelelay operator—
see Section 9). In the future, we look to allow make evalmatmntinuous in time instead of at discrete fixed
intervals.

5 Instantaneous Pointwise Computation

We now know enough to translate any purely functional op@madn a normal computer into a pointwise
operation on an amorphous medium: the amorphous mediuoneimply applies the operation uniformly
to every point in the amorphous medium. A few examples:

In the approximate implementation, we will not attempt eldsne synchronization. It is sufficient to have a low skew in
evaluation rate.

e x : Rl — R takes any number of real-valued fields and returns a reakualield where each point
maps to the product of the values that it mapped to in the ifiplais.

e truncate : R — R x R takes areal-valued field and returns two real-valued fig¢ldsfirst containing
the integer part of values in the input field, the second doimig the fractional part.

e tup : FI — T takes any number of fields and returns a field of tuplas.: T — T takes a field of
tuples and returns a field of the first component of each tupié,: P — F returns the second, and
SO on.

Allowing operator-valued fields, we have pointwise firstaréunctions as well. Nor is there any block
to defining recursive operators.

We can now describe any instantaneous pointwise computati@n amorphous medium—that is, any
computation where the results at a point do not depend otisitsria or the history of values at other points.

A few issues in pointwise operations warrant specific aithent

¢ Purely functional exception handlers can be translatedgeion an amorphous medium. For example,
by adjoining a speciatrror value to every operator, we can allow composition of opesatathout
extremely strict compatibility checking: any input not kéed properly by the operator results in an
output oferror .

¢ A pointwise random number generator is not particularlyfulssince there are so many points that
the resulting field is completely homogeneous. Instead, Weaise arandom operator that creates
an arbitrary finite partition of the amorphous medium, thesigns a single value to each element of
the partition.

e For pointwise expressions, conditionals can operate w@at When side-effects or computations
across the space are involved, we will need two varietiepoflitional (see Section 8).

¢ Input can be gathered via a pointwisenseoperation that takes an identifier for an input device and
returns its current value. Output can be produced similailly a pointwiseact operation that takes a
value and supplies it to an output device. The output is aaifdet, however, and thus may interact
with conditionals.

6 Motivating Examples

As we begin to discuss more complex operations, we will catoypg two motivating examplegyradient
andbound:

(def gradient (src)
(letfed ((n infinity (nmux src O (mn-hood (+ (nbr n) (nbr-range))))))

n))

(def bound (src |imboundary)
(if boundary 0 (<= (gradient src) lin))

For now, do not worry about understanding the code: it is ghdo know that thegradient function
measures the distance from every point to a source by sétiengjstance at the source to zero, then relaxing
across the whole space using the triangle inequality, amddabind function builds on top of this, selecting
the interior of a region by clipping against a boundary.

nbr-range

Figure 4: Thenbr operation selects neighborhood values for computatioactt point. Computing is car-
ried out on neighborhoods with pointwise operations tramséd to apply to neighborhood fields. Finally,
a summary operation collapses each neighborhood of vaitea isingle value for each point.

7 Computation Over Neighborhoods

Now we will begin to extend our semantics to take advantagiaefamorphous medium, beginning with
computations that extend across local areas of the manifoldlo this, we're going to use something new:
a field-valued field.

The operatiombr takes a field as input and returns a field of fields, where eairtt pmaps to a field
where the domain is the neighborhood and the values are lines\via its past light cone (Figure 4). Included
in the neighborhood field for each point is the value of thepibself at the current time. Note that including
this value changes little, since there will generally algongighbors arbitrarily close by which map to
arbitrarily close values.

Notice thatnbr isn’'t so much performing a computation as selecting theesathat will be used for
computation. In order to produce a usable output, we’ll Haveummarize this field of values back down
into a single value in the end.

We will sometimes also need information about the structirthe manifold, so we also define spe-
cial expressions for geometric, informatiambr-range andnbr-angle give fields of spatial displacement to
neighborsnbr-density gives a field of the density of neighbors, amigr-lag gives a field of time displace-
ment to neighbors.

Polymorphic forms of pointwise operations can safely bdiagpo these fields of neighborhood values,
“one level down.” Scalar values can be mixed into the contpriaas well—the polymorphic form simply
uses the scalar in operating on each point in the neighbdrhoo

Finally, the field of neighborhood fields is summarized battk an ordinary field with one of several
summary operators. At present, we have defined and used fivmary operatorsint-hood (which takes
an integral),any-hood, all-hood, min-hood andmax-hood 2 We have not yet determined whether these
summary operators are sufficient; if not, then the set ofaipes can simply be extended.

For examplegradient includes an expression applying the triangle inequalityin-hood (+ (nbr n)
(nbr-range))) (Figure 4). This selects two neighborhood fields—one fillaéthwestimates of distance to
source, the other with the distance to neighbors—and aeuts tb find the estimates distance to the source

2The min-hood andmax-hood operations are actually infimum and supremum limits, enguthat their value is always well
defined.

éf@ 1 nlt 2
. QP | *

% restrict restrict
SRS
mux

mux

u

)
(a) Example ofmux (b) Example ofif

Figure 5: The conditionaiux runs both computations and uses the test to select an araleeing the
whole space to influence both computations. For exanfplax x (not (all-hood (nbr x))) false) finds the
boundary of regiorx by selecting the points insidefrom the group of points with a neighbor outside of
X. The conditionalf, on the other hand, is a syntactic operator which branchegpatation by restricting
the domain of the fields for each branch, then combines thétsagsingmux. Shown above is a simple
example(if f 1 2).

through each neighbor. The triangle inequality is theniaddby taking the minimum of all these distances
with min-hood.

When approximated on a network, thier operation implies communication: devices proactivelyaoko
cast the values which will be needed by their neighbors. fmescases, static analysis can reduce or eliminate
communication costs: for example, thier of a constant need not be broadcast. Transformed pointyise o
erations are then performed on the collection of values mezsintly broadcast. Finally, the five summary
functions above can all be approximated well with finite sEsp

We now have a mechanism for computations that extend throegihborhoods. Computations on
general regions of the manifold awaits two more ingredientsditionals, which will allow us to specify
the region, and state, which will allow information to trhaeross long distances.

8 Conditional Computation

In any model of computation, conditionals are interpretigaee as branching or selection. In the branching
interpretation, a test is evaluated and the result detesnivhich of two computations is executed. In the
selection interpretation, both computations are perfoinaad the test determines which result is returned.
The branching interpretation is most common, since it maldes-effects easy to understand and control.
In computing on an amorphous medium, however, we will find W& need to use both approaches.
First, we will assume that the test produces a field of boaleamd the value of the field at each point deter-
mines which computation should produce the value for thattpdhe neighborhood of a point, however,
may contain points where the test produces an opposite.vBhequestion, then, is this: if the conditional
computation contains neighborhood operations, shoulg eeable to use the values of neighbors where

3A few subtleties of the approximatioint-hood is defined as a Lebesgue integrl;hood is defined to yield true when the
set of false neighbors has measure zero,arndhoodyields false when the set of true neighbors has measure zero.

I PBBE [=

delay delay delay

] + é@
g < &
Y
(@) Time T-1 (b) Time T (c) Time T+1 (d) Feedback Loop

Figure 6: Thedelay operator,(delay default input), takes its scope from the current input and its values
from the previous input, filling in any missing values wittetmitial value. The figure above shows three

successive time-steps of the evaluatior(d#lay 7 f). Thedelay operator is used to create state variables
using a feedback loop. For example, the counter shown inddssat zero and increases by one each round.

the test goes the other way?

Under the branching interpretation, which we will naifyghe test is used to restrict the space involved
in the computation, and neighbors in the opposite branclestkided. The branching interpretation is
useful for preventing unnecessary computation and forroblinlg actuation, which has side-effects.

For examplebound usesf because it needs the boundary to stop the gradient from gatipg further.

Under the selection interpretation, which we will namex for its multiplexing behavior, the space is
not restricted. This interpretation is useful for compigtasg that span space. For example, an impermeable
boundary for a region identified with a boolean figldan be calculated using the expressiomx x (not
(all-hood (nbr x))) false), which will return true for the points inside the region winigave a point outside
as a neighbor (Figure 5(a)). If we substituftfor mux, then the computation will fail, because no point
outside the region is accessible to the neighborhood dperatthe true branch.

For examplegradient usesmux because the devices near the source need to be able to seearte s
in order to know how far they are from it.

The implementation ofmux is easy: it is a simple operatémux test true-expr false-expr)that just
uses the value of the first field to choose between values thersecond and third fields.

We can then implemerit usingmux and a new operatofrestrict test value) which limits the domain
of value to points wheregest maps to true. We will not allow the programmer to usstrict directly,
however, as that introduces the danger of ending up withfuretevalues.

Putting these pieces together, we can deffiress a syntactic operatdif test then else)which wraps
the terminals of thehen andelseexpressions imestrict operator, limiting their domains, then pastes the
results together usinmux (Figure 5(b)). Usingest for both splitting the branches and pasting together
their outputs guarantees that nothing in the domain is ledefined.

We can then implement any other conditional operator we warhe basis omux andif.

9 Computation With State

We now have computations that extend over small distancgsaoe, and the ability to restrict the space in
which they apply. In order to extend them across long digtariic space, we will need to add state to our
computations. Incidentally, this also gives us the tootfamputations that extend over time.

A A

Neighbo‘rhoo‘d of Q ‘Neighbo‘rhood of Q
))
£ £ 1
(el l ‘

L - - 3 -

P Q P Q

Space Space

(a) Insufficient Time Resolution (b) Smooth Propagation

Figure 7: Discrete time evaluation causes “hiccups” in tdigjance information propagation when the
delay between evaluations is longer than the time it takiesrimation to propagate across a neighborhood.
When Q operates on its neighborhood at point 2, the mosindiataessible value is that calculated by P at
point 1. If space is the limiting factor (a), then there is ddifonal delay between when information from
P arrives and when Q can do its next calculation. If time islithéing factor (b), then Q can repropagate
the values from P with no apparent delay.

In keeping with our functional approach, we're going to bkt state with a feedback loop: a state
variable is defined by an initial value and an update functidnich uses values from each time-step to
calculate the values for the next.

Fundamental to this is theelay operator,(delay init value), which takes its domain from the current
time-step and its values from the previous time-step (Eid)r At startup and following space restriction,
there may be undefined values in the domain: these are filledrminit .

Using delay, we can set up a feedback loop where the outpbeafdlay operator is fed into an expres-
sion that computes the next input. For example, we can ma&arater by making a loop where we add one
to the delayed value (Figure 6(d)).

Another common use of feedback is long-distance commuaital hegradient function uses it in this
manner, chaining relaxation with a feedback loop incoragaa neighborhood operation. The feedback
loop provides a slot for the communication to chain through.

This structure is captured with a syntactic operafletfed ((name init expr) ...) body) which estab-
lishes a set of state variables that can use each other'sabids/during updates. The body of tle¢fed
expression can then calculate using the values of the fekdiaaiables.

10 Spatial Computation

We now have all of the tools necessary to create general datgms that extend over arbitrary portions of
the manifold. The general form of such a computation is Ipcapagation using neighborhood operations,
chained by means of a set of feedback variables holding tlhes¢o be communicated.

As long as evaluations happen frequently enough, this agetibin of local propagation and feedback
variables can propagate information across arbitranadggs at the maximum velocity If the delay
between evaluations is shorter than the time it takes irdtion to propagate across a neighborhood, then
every evaluation will happen just as some point is receithg information, and it can be propagated
instantaneously. If the delay is longer, however, thenddistance propagation will “hiccup” as information

(a) 20 devices (b) 1,000 devices (c) 10,000 devices

Figure 8: Target tracking scales across a wide range of mkéwdShown above are simulations of with
twenty, one thousand, and ten thousand devices, all prayitie same behavior as the 100 node network in
Figure 1(a) at different resolutions. (Note: the 10K sintioladoes not show network connections in green,
as there are too many)

reaches the edge of a neighborhood, but cannot pass beyantd the next evaluation occurs.

One pattern we have found broadly useful is relaxation, peints start with an extreme value, except
for a few seeds which know their final value. The desired figlthén calculated recursively, as neighbors of
the seeds relax toward their final value, which allows theighbors to relax as well, and so on, spreading

outward across the manifold.
Thegradient function is an example of code that uses this pattern. Rieeidte code from above:

(def gradient (src)
(letfed ((n infinity (nux src 0 (mn-hood (+ (nbr n) (nbr-range))))))

n))

Points outside the source start at infinity, while pointshwaitstart at zero. Every point looks at its
neighborhood and calculates the shortest distance to theeséhrough each neighbor, then selects the
minimum as its own distance. The net effect is that as timgnesses, correct distance values spread
outward from the source, until the desired distance fielddean calculated for the entire manifdid.

Given this set of building blocks, it is easy to express camgrograms simply. Implemented in our
language Proto, for example, it takes only 28 lines to dbecai target tracking program and 23 lines to
describe a program for threat avoidance (Figure 1)—see pperdix for the code, and [3] for a line-by-
line explanation of these examples.

The manifold semantics we have presented allows the saned@odn on networks with widely varying
numbers and distributions of nodes. Figure 8 shows targekitig scaling across networks ranging from 20
to 10,000 nodes. The figures show target detection as lasggercircles, the reporting node as a large red
circle, and the reported position of the target as a bluetipped with magenta. Network connections are
green (except in the 10K case, where there are too many tog)shodes where tracking data is flowing are
small red circles, and other nodes are tiny red dots. All ef¢hdifferent scales provide the same behavior
as the 100 node network in Figure 1(a) at different resahstio

Moreover, the compiled code is compact enough to fit (alorth wicustom virtual machine to execute
it) on Mica2 motes, which have a scant 4KB of RAM and a 16Mhzrogontroller.

Not all spatial programs can be expressed well using thasgtpes. Inherently discrete algorithms,
such as TDMA or matrix-based optimization, can be run onlkwardly, by recreating the discrete space
within the continuous space.

“Note that this code does not handle a changing source, sinaeriot rise in response to the source getting farther avoay f
a point. That version ofradient is significantly more complicated.

10

11 Conclusion

We thus have a programming semantics that gives us a globaélnod computation on an amorphous
medium, which is implemented in our language Proto. This ehd&l powerful because it allows us to
prescribe the behavior of a spatially embedded networkaaitiioncerning ourselves with the details of its
deployment or communication patterns. Furthermore, imgrcan be very simple and use primitives that
carry over some intuitions from ordinary single-procegsmgramming.

11.1 Related Work

This work does not, of course, exist in a vacuum. Previoukwor amorphous medium languages pro-
poses the amorphous medium abstraction[4], general giteatéor control[7], and an ancestor language of
Proto[5]. Recently, we described[6] how the abstractionpdifies engineering of emergent behavior and
investigated its applicability to sensor network prograngiB]

Others have envisioned computing on platforms like the aimmws medium. MacLennan'’s field trans-
formation computers[18] use a different basis for comparethat does not require locality in its operations.
The Continuum Computer Architecture[20] envisions buitda real platform that closely approximates an
amorphous medium, though with a different programming rho@lee Connection Machine[14] provided
a grid of processing, which *Lisp[16] allowed users to mautgpe in terms of fields, but the programming
model was firmly wedded to the discrete grid structure of thelémenting hardware.

Cellular automata computing has proved a useful way of agmating the behavior of continuous
media[21], and there is in fact a continuous formulation A&(17] CAs could certainly be used as a spatial
computer on which Proto could be executed, though the reyuhaight create problems for approximation.
At the present time, we are not aware of a language for CAshwhipports scaling to machines of different
resolution.

The specification of behavior in a CA is inherently local, lewer, and lends itself to investigation of
emergent behavior rather than engineered computation.

The language Regiment[19] is a sensor-network languagehvapierates on geometric regions of space,
but it is focused on data-gathering and only distributesesoperations across space.

Other work on languages in amorphous computing [1] has ditaeesame general goals, but has been
directed more towards problems of morphogenesis and pdibemation than general computation. A
notable exception is Butera’s work on paintable compu8hglhich allows general computation, but lacks
an abstraction barrier separating an applications progremfrom low-level network details.

Finally, the structure of Proto as a dynamic network of sireas strongly influenced by Bachrach’s
previous work on Gooze[2], as are many of the compilatioatstyies used to compact Proto code for
execution on Motes. There is a long tradition of stream @sicg in programming languages. The closest
and most recent work is Functional Reactive ProgrammindPjHR1] that is based on Haskell [15], which
is a statically typed programming language with lazy eviadmasemantics. In these systems, less attention
is spent on runtime space and time efficiency, and the typgemsyis firmly wedded to Haskell, with all of
its strengths and weaknesses.

11.2 Future Directions

The work described herein only begins to answer the hostefdating questions about how to program on
manifolds. From our perspective, the most pressing opellgms are:

e How can the evaluation model be extended to continuous timilgout losing the advantages of
discrete-time programming models?

11

How can approximation error be usefully characterized anchded?

How can relaxation be modified to allow non-monotonic result

How can the behavior of a program on a changing manifold biillxseharacterized?

e How can actuation that reshapes the manifold be usefullgritbesl and controlled?

As always, a strong driver for future investigation will bgpéication of these ideas to new problems,
which will best reveal their weaknesses.

References

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homs y, T. i, R. Nagpal, E. Rauch, G. Sussman,
and R. Weiss. Amorphous computing. Technical Report AINMS,6VIT, 1999.

[2] Jonathan Bachrach. Gooze: a stream processing langlirlgghtweight Languages 2008lovember
2004.

[3] Jonathan Bachrach and Jacob Beal. Programming a seasgork as an amorphous medium. In
Distributed Computing in Sensor Systems (DCOSS) 2006rPdatee 2006.

[4] Jacob Beal. Programming an amorphous computationaiumedIn Unconventional Programming
Paradigms International Workshp@eptember 2004.

[5] Jacob Beal. Amorphous medium languageLamge-Scale Multi-Agent Systems Workshop (LSMAS)
Held in Conjunction with AAMAS-05, 2005.

[6] Jacob Beal and Jonathan Bachrach. Infrastructure fgineered emergence in sensor/actuator net-
works. IEEE Intelligent Systempages 10-19, March/April 2006.

[7] Jacob Beal and Gerald Sussman. Biologically-inspidslist spatial programming. Technical Report
Al Memo 2005-001, MIT, January 2005.

[8] William Butera. Programming a Paintable ComputePhD thesis, MIT, 2002.
[9] Benjamin Chambers. The grid roofnet: a rooftop ad hoeless network. Master’s thesis, MIT, 2002.

[10] Fred Discenzo, Francisco Maturana, and Raymond Stabusiributed diagnostics and dynamic re-
configuration using autonomous agentslrternational Conference on Complex Systems 2006e
2006.

[11] Conal Elliott and Paul Hudak. Functional reactive aafimn. InProceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFH), volume 32(8), pages 263-273,
1997.

[12] Drew Endy. Foundations for engineering biolog§ature 438:449-453, November 2005.

[13] S.C. Goldstein, J.D. Campbell, and T.C. Mowry. Progmzaible matterComputey 38(6):99-101, June
2005.

[14] W.D. Hillis. The Connection MachineMIT Press, 1985.
[15] S. P. Jones and J. Hughes. Report on the programmingdgedhaskell 98., 1999.

12

[16] C. Lasser, J.P. Massar, J. Miney, and L. Daytd®tarlisp Reference ManualThinking Machines
Corporation, 1988.

[17] Bruce MacLennan. Continuous spatial automata. Teethfteport Department of Computer Science
Technical Report CS-90-121, University of Tennessee, Kitlex 1990.

[18] Bruce MacLennan. Field computation: A theoreticahfiwvork for massively parallel analog com-
putation, parts i-iv. Technical Report Department of Cotap&cience Technical Report CS-90-100,
University of Tennessee, Knoxville, February 1990.

[19] Ryan Newton and Matt Welsh. Region streams: Functiomatroprogramming for sensor networks.
In First International Workshop on Data Management for Sergetwor ks (DMSN)August 2004.

[20] Thomas Sterling and Maciej Brodowicz. Continuum comepuarchitecture for nano-scale and ultra-
high clock rate technologies. International Workshop on Innovative Architecture for &t Gener-
ation High-Performance Processors and Systeiaguary 2005.

[21] Tommaso Toffoli and Norman Margolu€ellular Automata Machines: A new environment for mod-
eling. MIT Press, 1987.

13

A Example Code

Note: the code below uses an optional extra argumembforhood andmax-hoodthat tells which element to use for
comparison.

A.1 Target Tracking

In this code, a clique of nodes detecting a target estimatiodation by averaging their coordinates. A channel is
created along the shortest path to the monitoring statisf),(@nd the location estimate flows back along that channel,
so that the information need not be transmitted to uninvbp@rtions of the network.

(def | ocal -average (V)
(/! (int-hood v) (int-hood 1)))

(def gradient (src)
(letfed ((n infinity
(+ 1 (mux src 0 (mn-hood (+ (nbr n) (nbr-range)))))))
(- n1)))

(def grad-value (src v) ; flow val ues down gradient
(let ((d (gradient src)))
(letfed ((x O (nux src v
(2nd (m n-hood (nbr (tup d x)) 1st)))))
x)))

(def distance (pl p2)
(grad-val ue pl (gradient p2)))

(def dilate (src n) (<= (gradient src) n))

(def channel (src dst wi dth)
(letx ((d (distance src dst))
(trail (<= (+ (gradient src) (gradient dst)) d)))
(dilate width trail)))

(def track (target dst coord)
(let ((point
(if (channel target dst 10)
(grad-val ue target
(mux target
(tup (! ocal -average (1st coord))
(1 ocal -average (2nd coord)))
(tup 0 0)))
(tup 0 0))))
(rmux dst (- point coord) (tup 0 0))))

A.2 Threat Avoidance

Given coordinates, a threat sensor and a model of expotigrteraying threat, we the expected safest path to a
destination is calculated by relaxation and gradient desce

(def exp-gradient (src d)
(letfed ((n src (max (* d (max-hood (nbr n))) src)))
n))

14

(def sq (x) (* x x))
(def dist (pl p2)
(sart (+ (sq (- (1st pl) (1st p2)))
(sq (- (2nd pl) (2nd p2))))))

(def I-int (pl vl p2 v2) ; approx. line integra
(pow (/ (- 2 (+ vl v2)) 2) (+ 1 (dist pl p2))))

(def max-survival (dst v p)

(letfed
((ps O (mux dst 1
(max- hood
(» (I-int (nbr p) (nbr v) p v) (nbr ps))))))
ps))

(def greedy-ascent (v coord)
(- (2nd (max-hood (nbr (tup v coord)) 1st)) coord))

(def avoid-threats (dst coords)
(greedy-ascent
(max-survi val
dst
(exp-gradi ent (sense :threat) 0.8) coords) coords))

15

