
Abstracting out Byzantine Behavior

Peter Druschel, Andreas Haeberlen, Petr Kouznetsov

Max Planck Institute for Software Systems
MPI-SWS, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

{druschel,ahae,pkouznet}@mpi-sws.mpg.de

Abstract. Many distributed systems are designed to tolerate the pres-
ence of Byzantine failures: an individual process may arbitrarily deviate
from the algorithm assigned to it. Depending on the application require-
ments, systems enjoy various levels of fault-tolerance. Systems based on
state machine replication are able to mask failures so that their effect is
not visible by the application. In contrast, cooperative peer-to-peer sys-
tems can tolerate bounded deviant behavior to some extent and therefore
do not require masking, as long as each faulty node is exposed eventually.
Finding an abstract way to reason about the levels of fault-tolerance is
thus of immanent importance.
In this paper, we discuss how the information of deviant behavior can
be abstracted out in the form of a Byzantine failure detector (BFD). We
formally define a BFD abstraction, and we discuss two ways of using
the abstraction: (1) monitoring systems in order to retroactively detect
Byzantine failures and (2) enforcing systems in order to boost their level
of fault-tolerance. Interestingly, the BFD formalism allowed us to deter-
mine the relative hardness of implementing two popular abstractions in
distributed computing: state machine replication and weak interactive
consistency.

Keywords. Fault-tolerance, Byzantine failures, masking, detection, Byzan-
tine failure detectors, total order broadcast, weak interactive consistency.

1 Introduction

A distributed system might exhibit complex and unpredictable behavior when
some of its components are subject to failures. Crash-stop failures represent
a “benign” class of failures: a crashed process simply prematurely halts all its
activities. In an asynchronous system where no assumption about message delays
and process relative speeds can hold, there is no way to reason about crash-stop
failures, since it is impossible to distinguish a crashed process from a “slow” one
in a finite execution. As a result, even if only one process is allowed to crash,
most important agreement problems cannot be solved [1].

Failure detectors. Chandra and Toueg proposed to enrich the asynchronous sys-
tem with modular devices, called failure detectors, that encapsulate the timing
assumptions [2]. A failure detector is a distributed oracle that provides processes

Dagstuhl Seminar Proceedings 06371
From Security to Dependability
http://drops.dagstuhl.de/opus/volltexte/2007/850



2 P. Druschel, A. Haeberlen, P. Kouznetsov

with some information about failures. At any point of an execution, this informa-
tion can however be incomplete and unreliable. The output of a failure detector
is specified through a set of abstract axiomatic properties, so that a failure de-
tector can be implemented in any particular environment independently of an
algorithm that uses the failure detector. Thus, algorithms using failure detectors
can be designed and proved without looking at the actual implementations of
these failure detectors.

From a more theoretical perspective, the failure detector abstraction allows
us to determine precisely the exact timing assumptions necessary to solve a
given problem in distribute computing. These exact timing assumptions can be
expressed in the form of the weakest failure detector [3]. The weakest failure
detector for a given problem captures the weakest systems model in which the
problem can be solved, which in turn can be used for evaluating relative ”hard-
ness” of problems and classifying them. This approach brought a number of
interesting insights on solvability of and relations between various fundamental
problems in distributed computing, e.g., solving consensus [3] and non-blocking
atomic commitment [4], emulating shared memory [5], and implementing a dis-
tributed lock [6].

Byzantine failures. In this paper, we focus on the most general class of failures: a
Byzantine faulty process may deviate from its specification in an arbitrary way.
In particular, instead of crashing, a Byzantine process can maliciously deviate
from its specification, e.g., trying to confuse correct processes and bring the whole
system in an inconsistent state. We address here the following question: would
it make sense to extend the notion of a failure detector to general Byzantine
failure model?

Since the definition of Byzantine failures involves the knowledge of the sys-
tem specification, i.e., the automata associated with each process, in a natural
definition of a Byzantine failure detector (BFD), the expected correct behavior
of the distributed system should be taken as a parameter.1 However, we would
like to reach a proper separation of concerns, so that computations performed
by the processes were distinct from the failure detection mechanism. We assume
in this paper that information output by a BFD depends only on failures and
does not reveal other aspects of the current computation.

Obviously, certain incorrect state transitions, such as application-specific
events, cannot be monitored remotely. In this paper, we restrict our attention to
a large class of detectable failures, i.e., incorrect state transitions that causally af-
fect at least one correct process. This class includes, besides crash-stop failures,
muteness failures, when a process stops sending certain algorithmic messages
(while possibly sending other messages) [8,9,10], ignorance failures, when a pro-
cess refuses to accept certain messages, and incorrect state transitions affecting
correct processes.

1 The impossibility of building black-box Byzantine failure detectors is discussed ex-
haustively in [7].



Abstracting out Byzantine Behavior 3

A BFD can thus be defined as a function that maps a Byzantine failure
pattern (specifying where and when failures occur) to a set of allowable failure
detector histories (specifying what information about failures is output at each
process). We demonstrate two scenarios in which this abstraction can be of
use. First, BFD can be used for monitoring a system in order to provide the
application with hints about observed Byzantine failures. Second, BFDs can
enforce systems with information about failures in order to boost their level of
fault-tolerance.

Monitoring systems. Eventual detection of Byzantine behavior, while not suit-
able for masking Byzantine failures [11], can be used for building an accountabil-
ity service. To illustrate this, we introduce the following deviant peer Byzantine
failure detector 3B. At every process i, 3B outputs, for every other process j,
indicators of whether j is (from i’s perspective) trusted, suspected, and exposed.
Informally, 3B guarantees that eventually, every detectably faulty process will
be either forever suspected or forever exposed by every correct process, and no
correct process is exposed or forever suspected by any other correct process.

The possibility of retroactively but reliably exposing detectable Byzantine
behavior creates a disincentive for malicious processes to exhibit malicious be-
havior and imposes a time bound on the effect of such behavior. We show that,
maybe surprisingly, such a service can be implemented in the asynchronous au-
thenticated system.

Boosting fault-tolerance and comparing problems. We discuss the use of Byzan-
tine failure detectors for improving fault-tolerance of distributed systems in the
context of state machine replication systems [12,13,11]. In these systems, re-
quests of clients are processed by a collection of servers in a total order so that,
from a correct client’s point of view, the execution is indistinguishable from an
execution in which all requests are processed by a single correct server. Ideally,
a replicated service should tolerate any number of faulty clients and a bounded
number of faulty servers.

Recently, Doudou et al. [14] proposed an elegant modularization of a repli-
cated service based on a reliable broadcast and a weak interactive consistency
modules. Informally, reliable broadcast is a communication primitive that en-
sures that the correct processes eventually agree on the set of delivered messages.
Weak interactive consistency is a form of agreement which makes sure that the
correct processes eventually agree on a set of values which contains at least one
value proposed by a correct process. Reliable broadcast can be implemented in
any system in which correct processes are able to reliably communicate. Weak
interactive consistency is in turn implemented, under the assumption that less
than one third of processes can be faulty, using a muteness failure detector 3SB .
3SB outputs a list of processes suspected to be mute, i.e., to prematurely stop
sending algorithm messages, and which guarantees that there is a time after
which (1) every mute process is forever suspected and (2) some correct pro-
cess is never suspected by every correct process. Thus, the liveness properties of
replication systems can be naturally achieved using a Byzantine failure detector.



4 P. Druschel, A. Haeberlen, P. Kouznetsov

An interesting question arises: is weak interactive consistency necessary to
implement a replicated service? In other words, can WIC be implemented in any
model in which a replicated service can be implemented?

We use our BFD framework to show that the answer is “no”: we present a
Byzantine failure detector that can be used to implement a replicated service but
is too weak to implement WIC. This implies that WIC is in a strict sense harder
to implement than state machine replication. Interestingly, a similar modular-
ization of state machine replication for the crash-stop failure model into reliable
broadcast and consensus is optimal: consensus can be shown to be necessary to
implement a replicated service [15].

Contributions. To summarize, the main contribution of this paper is a generic
framework that allows us to specify a wide range of Byzantine failure detectors.
We illustrate the usability of this framework by presenting an accountability
service that monitors systems and retroactively detects failures. Further, we
show how the BFD abstraction can be used to measure the relative hardness of
solving Byzantine fault-tolerant problems. More precisely, the BFD framework
allows us to show that weak interactive consistency of [14] is strictly harder to
implement than a replicated service [12,13,11].

Roadmap. The paper is organized as follows. In Section 2, we discuss the related
work. In Section 3, we formulate our system model and introduce the notion
of detectable failures. In Section 4, we introduce the BFD abstraction. In Sec-
tion 5, we discuss the use of BFDs for monitoring systems, and in Section 6, we
discuss how the BFD framework can be used for determining relative hardness
of problems in distributed computing. Section 7 concludes the paper.

2 Related Work

There is a large body of literature related to various ways of dealing with Byzan-
tine failures in distributed systems. The study of distributed systems that are
tolerant to arbitrary deviations of individual processes was pioneered in 1980 by
Pease et al. who introduced the Byzantine consensus problem [16].

Malkhi and Reiter [10] were the first to consider the notion of failure detectors
in the Byzantine failure model. They have introduced the 3S(bz) failure detector
in a model where processes communicate through a Reliable Broadcast primitive
with additional causal order delivery guarantees. They proposed a solution for
the binary consensus problem using 3S(bz), where only deviant behavior that
prevents processes from reaching consensus is detected. In a more general way,
Doudou and Schiper [8] and Doudou et al. [9] have introduced, in the context of
the consensus problem, muteness failure detectors that deal with mute processes,
which prematurely stop sending algorithm messages. Friedman et al. [17] have
explored time-efficient consensus algorithms based on oracles detecting mute
processes. Kihlstrom et al. [18] have taken a more general approach and have
introduced several classes of failure detectors that expose detectable Byzantine



Abstracting out Byzantine Behavior 5

failures. They have also presented a consensus algorithm using one of these
failure detectors. A statistical evaluation of the number of Byzantine processes
in quorum systems was proposed by Alvisi et al. in [19].

To our knowledge, however, our paper is first attempt to formalize the Byzan-
tine Failure Detector abstraction in the most general way, detached from the
problem space and specific assumptions about the underlying failure model.

3 Model

We consider a set Π of nodes. Every node i is modeled as a state machine
Ai = (Si, Ii, Oi, ∆i), where Si is a set of states i can take, Ii is a set of inputs i
can accept, Oi is a set of outputs i can produce, and ∆i is a relation that maps
every state and input to a set of possible states and outputs. Without loss of
generality, assume that every state machine is initially in a predefined state ⊥.

Nodes communicate with each other through message passing. We assume
that messages are uniquely identified. For a message m, let sender(m) and
receiver(m) denote the sender and the receiver of m, respectively. We assume
that every node digitally signs its messages (e.g. with [20]), and that signatures
cannot be forged.

An event is either sendi(m) ∈ Oi, where i = sender(m), or receivej(m) ∈ Ij ,
where j = receiver(m), or an application-specific input or output of the state
machine. An execution E is a sequence of events such that in E, each m is sent
and received at most once, and each receivei(m) is preceded by the corresponding
sendj(m). A local execution of a node i, denoted E|i, is a subsequence of E that
consists of all events associated with i in E. We say that a node i is correct in
E if E|i conforms to Ai, i.e., if the sequence of outputs produced in E is legal,
given Ai and the sequence of inputs in E. Otherwise we say that i is faulty in
E. Every event in an execution is associated with a unique time at which the
event took place.

For the moment, we do not put any restrictions on local processing time and
communication delays. We assume, however, that channels are reliable, i.e. that
every message sent from a correct node to a correct node is eventually received.

Clearly, not every type of faulty behavior can be detected by a correct node.
For example, a faulty node might disclose its deviant behavior only to its appli-
cation or to other faulty nodes. Therefore, we introduce the notions of detectably
faulty and detectably deaf nodes. Informally, a node i is detectably faulty if the
behavior it exposes to correct nodes could not be observed if i were correct, and
detectably deaf if i ignores a message sent to i by a correct node.

Formally, we define a history of a node i as a sequence of events. A his-
tory h of a node i is valid if it conforms to Ai, i.e. if, given the sequence of
incoming messages and application-specific inputs in h, Ai could have produced
the sequence of outgoing messages and application-specific outputs in h. A pair
(h1, h2) of histories of i is consistent if h1 is a prefix of h2, or vice versa. If i is
a correct node, one trivial example of a valid history is E|i.



6 P. Druschel, A. Haeberlen, P. Kouznetsov

LetM(E) denote the set of messages received by the nodes in an execution
E. We assume that there exists a history map ϕ that associates every message
m ∈M(E) with a history of sender(m). We assume that for a correct node, ϕ(m)
is the prefix of the local execution E|sender(m) up to and including send(m).
Thus, for any message m sent by a correct node, ϕ(m) is valid, and for every pair
of messages m and m′ sent by a correct node, ϕ(m) and ϕ(m′) are consistent.

We say that a message m is observable in E if there exists a correct node i
and a sequence of messages m1, . . . , mk such that

(i) m1 = m,
(ii) receive(mk) belongs to E|i,
(iii) for all j = 2, . . . , k: receive(mj−1) belongs to ϕ(mj).

We say that a node i is detectably malicious at time t in an execution E if
there exists a message m that was sent by i at time t′ < t, is observable in E,
and satisfies one of the following properties:

(1) ϕ(m) is not valid (for i)
(2) There exists a message m′ that was also sent by i and is observable in E,

such that ϕ(m) is inconsistent with ϕ(m′)

Let E be any infinite execution. We say that a node i is detectably deaf at
time t in E if i is not detectably malicious in E and there exists a message m
sent to i at time t′ < t by a correct node, such that, for all m′ sent by i and
received by a correct node, receivei(m) does not appear in ϕ(m′). We say that
a node i is mute at time t in E if E has a suffix E ′ in which no correct process
receives a message from i. A process is called detectably faulty at time t if it is
detectably malicious, deaf, or mute at time t. Figure 1 depicts the relationships
between these classes of failures. Note that crash-stop faulty processes are both
mute and deaf.

Ignorant

Crash−stop

Byzantine

Detectably faulty

Mute

Fig. 1. Classes of failures



Abstracting out Byzantine Behavior 7

4 The Byzantine Failure Detector Abstraction

A Byzantine Failure Detector (BFD) is a distributed oracle: every process i is
equipped with its own BFD module, which gives i some hints about deviant be-
havior of other processes. As an input, every BFD module takes the specification
of the expected behavior of the underlying distributed system described in terms
of state machines {Aj |j ∈ Π}. Moreover, the BFD module at process i is given
the power to keep track of all inputs and outputs of Ai. Using this information,
the BFD module provides i with some indications about who follows its spec-
ification and who does not. The information can be used in two ways (Figure
2). First, a BFD module can monitor other processes a provide the application
level with indications about the suspected deviant behavior. Second,

Network

Application

send(m)
recv(m)

I/O
specific

A BFD module Bi
indications

i

app−
indications

Fig. 2. BFD interface at process i

We do not restrict a priori the range of the BFD output. However, we require
that only information based on failures can be output. In other words, a failure
detector is not allowed to reveal any information about computations performed
by correct processes.

5 Monitoring Systems with BFDs

We illustrate the use of BFDs for efficiently detecting Byzantine behavior by
defining the following deviant peer BFD, denoted by 3B. This BFD provides
the application level of every process i with indications trusted j , suspected j , and
exposed j (for every process j 6= i). Intuitively, the suspected j indication suggests
that j is ignoring certain inputs from the system, e.g., by refusing to accept a
service request from a correct process (we say j is suspected by i). The exposed j

indication means that i has a proof that j deviated from the specification of its
state machine Aj (we say j is exposed by i). Finally, trusted j indicates that none
of the aforementioned behaviors is observed by i (we say j is trusted by i). In
every execution, 3B ensures the following properties:



8 P. Druschel, A. Haeberlen, P. Kouznetsov

– Completeness

(1) Eventually, every detectably deaf process is suspected by every correct
process.

(2) Eventually, every detectably faulty process is exposed by every correct
process.

– Accuracy

(1) No correct process is forever suspected by any correct process.

(2) No correct process is ever exposed by a correct process.

Note that 3B is similar to the eventually perfect failure detector of [2] that
outputs a set of suspected processes so that eventually exactly the set of de-
tectably deaf processes is forever output at every correct process. However, 3B
and 3P are, in a strict sense, incomparable. Indeed, 3P does not produce any
information about detectably faulty processes. On the other hand, 3B does not
guarantee that a correct process is always trusted by a correct process (it can
jump from trusted to suspected and back). In fact, 3B can be implemented in a
purely asynchronous system, which is not the case with 3P .

In this , each message includes the full history of its sender and is broadcast
to every node in the system. As soon as a process receives an invalid history or
a pair of contradicting history it exposes the process and broadcasts the invalid
histories as a proof. A process i is suspected as long as some correct process j
sent a message m to i and no history from j that includes receivei(m) is received
by any correct process.

Of course, this implementation is not very practical: it has O(n2) message
complexity and it assumes that the full history is included in each message. A
more realistic implementation of a slightly weaker monitoring service can be
found in [21].

6 Boosting Fault-Tolerance with BFDs

In this section, we focus on algorithms for Byzantine fault-tolerant state machine
replication. Formally, a replicated service is specified as the total order broadcast
abstraction. Total order broadcast exports two primitives to-broadcast() and to-
deliver() and satisfies the following properties:

validity: if a correct process i to-broadcasts a message m, then i eventually
to-delivers m;

agreement: if a process to-delivers a message m, then every correct process
eventually to-delivers m;

integrity: each process to-delivers every message at most once, and only if the
message was previously to-broadcast;

total-order: if a process i to-delivers a message m before having to-delivered a
message m′, then no process j can to-deliver m′ without having to-delivered
m first.



Abstracting out Byzantine Behavior 9

Doudou et al. proposed in [14] an elegant decomposition of Byzantine fault-
tolerant total order broadcast. They introduced the Weak Interactive Consis-
tency (WIC) abstraction and presented an algorithm that implements total order
broadcast using multiple instances of WIC and the reliable broadcast primitive.

In WIC, every correct process proposes a value and eventually the correct
processes decide on the same set of proposed values that includes at least one
value proposed by a correct process.

It is shown in [14] that the WIC abstraction is sufficient to implement total
order broadcast. But is it also necessary? Can WIC be implemented in any model
in which total order broadcast can be implemented?

We show that this is not the case by presenting a Byzantine failure detector
that can be used to implement total order broadcast but is too weak to implement
WIC. This failure detector is the composition (3SB , ΣB). 3SB outputs a list of
processes suspected to be mute and guarantees that (1) eventually every mute
process is forever suspected by every correct process, and (2) there is a time
after which some correct process is never suspected by any correct process.
ΣB outputs a set of processes, called quorum such that (1) every two quorums
output at any correct processes at any times share at least one correct process,
and (2) eventually quorums output at every correct process include only correct
processes.

Theorem 1. No algorithm implements weak interactive consistency using 3SB

and ΣB.

Proof sketch. Assume by contradiction that an algorithm A implements WIC
using (3SB , ΣB). Let Q be a proper subset of processes and consider an execu-
tion E of A in which only processes in Q are correct. Assume that (3SB , ΣB)
outputs (j, Q) at every process in Q where j ∈ Q. Since E solves WIC, E has
a prefix, denoted Ē, in which every process in Q decides on a set of values S
proposed by processes in Q. Ē can also be a prefix of an execution E ′ in which
some process i /∈ Q is also correct. Clearly, E ′ has a prefix, denoted Ē′, in which
process i decides on S. But Ē′ can also be a prefix of an execution E ′′ in which
i is correct and all processes in Q are faulty. Thus, in E ′′, i decides on a set of
values that includes no value proposed by a correct process — a contradiction.
2

Theorem 2. There is an algorithm that implements total order broadcast using
3SB and ΣB.

Proof sketch. The following simple modification of the replication algorithm of
Castro and Liskov [11] solves the problem.

(1) The safety properties of the replication algorithm of [11] are guaranteed by
the certification and the conservative communication mechanisms, and the
assumption that the number of processes n is greater than 3f , where f is
the number of processes that are allowed to fail in the same execution. The



10 P. Druschel, A. Haeberlen, P. Kouznetsov

certification is implemented as follows: a process that wants to certify a value
sends the value to everybody and waits until the value is acknowledged by at
least f +1 processes. As a result, by attaching the set of signed acknowledge-
ments to the value, the process has a proof that the value is acknowledged
by at least one correct process. To send a value in a conservative manner, a
process sends the value and waits until at least 2f + 1 values acknowledge
the value.
We replace every statement a process i broadcasts a value and waits for
acknowledgements from f+1 or 2f+1 processes with the following statement:

repeat

Q← ΣB

until Q ⊆ the set of processes from which acknowledgements are received

The cycle above is clearly non-blocking: ΣB guarantees to eventually include
only correct processes.
The set of values received from the quorum Q is attached to the values signed
and sent by i in the same way as the set of f + 1 and 2f + 1 values in the
original algorithm of [11].

(2) To achieve liveness, in the algorithm of [11], processes maintain a coordinator
(primary replica) as long as the coordinator is available. If the coordinator
becomes unavailable (timed-out), processes exponentially increase the time-
out and move to the next view by electing a new coordinator.in a round-robin
fashion.
This mechanism can be naturally expressed using 3SB . Roughly speaking,
a process moves to the next view as soon as the coordinator of the current
view is suspected by 3SB . 3SB guarantees that every coordinator which
stops sending algorithm messages will eventually be suspected by every cor-
rect process. Thus no process can be blocked forever waiting for a faulty
coordinator to reply. On the other hand, 3SB guarantees that eventually
some correct process is never suspected. Thus, eventually correct processes
reach a view in which the coordinator is correct and never suspected.

Thus, safety and liveness of total order broadcast are preserved. 2

Theorems 1 and 2 imply that WIC is in a strict sense harder to implement
than total order broadcast.

7 Concluding Remarks

Handling Byzantine failures in an abstract and modular way is traditionally
argued to be difficult. In this paper, we proposed a framework that formalizes
the concept of Byzantine failure detectors in a generic manner. This allowed us
to specify and build a simple but powerful accountability service that retroac-
tively exposes any detectable Byzantine behavior. Then we use the framework
to relate the problems of total order broadcast and weak interactive consistency
(WIC) [14]. We presented a Byzantine failure detector that is strong enough to



Abstracting out Byzantine Behavior 11

be used to implement total order broadcast but cannot be used to implement
WIC. Combined with the construction presented in [14], this result implies that
WIC is in a strict sense, harder than total order broadcast. We actually con-
jecture that Byzantine fault-tolerant total order broadcast cannot be optimally
modularized using one-shot agreement tasks. This would contrast the crash-stop
failure model in which such a modularization is feasible [15].

We believe that this paper opens several interesting research avenues. First
of all, it would be interesting to understand whether we could define the notion
of the weakest BFD to solve a given problem. This seems non-trivial since BFDs
are defined with respect to algorithms that might use them, which makes them
difficult to compare. However, as we show in this paper BFDs can be used to
measure the respective hardness to solve problems.

In this paper, we assumed that BFDs do not reveal any information about
correct state transitions. For some classes of systems, it might be convenient
to remotely detect some correct state transitions, e.g., transitions to the next
round in a round-based system. In the crash-stop failure model, this approach
was elaborated in the round-by-round failure detector framework [22]. It would
be interesting to analyze the implications of this approach in the Byzantine
failure model.

References

1. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(3) (1985) 374–382

2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225–267

3. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43(4) (1996) 685–722

4. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov,
P., Toueg, S.: The weakest failure detectors to solve certain fundamental problems
in distributed computing. In: Proceedings of the 23rd Annual ACM Symposium
on Principles of Distributed Computing (PODC). (2004) 338–346

5. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Shared memory vs mes-
sage passing. Technical Report IC/2003/77, EPFL (2003) Available at
http://icwww.epfl.ch/publications/.

6. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual ex-
clusion in asynchronous systems with failure detectors. Journal of Parallel and
Dustributed Computing (JPDC) 65 (2005) 492–505

7. Doudou, A., Garbinato, B., Guerraoui, R.: Encapsulating failure detection: From
crash to Byzantine failures. In: Ada-Europe. (2002) 24–50

8. Doudou, A., Schiper, A.: Muteness detectors for consensus with Byzantine pro-
cesses. In: PODC. (1998) 315

9. Doudou, A., Garbinato, B., Guerraoui, R., Schiper, A.: Muteness failure detectors:
Specification and implementation. In: EDCC. (1999) 71–87

10. Malkhi, D., Reiter, M.K.: Unreliable intrusion detection in distributed computa-
tions. In: CSFW. (1997) 116–125

11. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of
OSDI’99, New Orleans, LA (1999) 173–186



12 P. Druschel, A. Haeberlen, P. Kouznetsov

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21 (1978) 558–565

13. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22 (1990) 299–319

14. Doudou, A., Garbinato, B., Guerraoui, R.: Tolerating Arbitrary Failures with
State Machine Replication. In: Dependable Computing Systems. Wiley Series on
Parallel and Distributed Computing. John Wiley & Sons, Inc (2005)

15. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcast and
related problems. Technical report, Cornell University, Computer Science (1994)

16. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27 (1980) 228–234

17. Friedman, R., Mostéfaoui, A., Raynal, M.: Simple and efficient oracle-based con-
sensus protocols for asynchronous byzantine systems. IEEE Trans. Dependable
Sec. Comput. 2 (2005) 46–56

18. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine fault detectors for
solving consensus. Comput. J. 46 (2003) 16–35

19. Alvisi, L., Malkhi, D., Pierce, E.T., Reiter, M.K.: Fault detection for byzantine
quorum systems. IEEE Trans. Parallel Distrib. Syst. 12 (2001) 996–1007

20. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21 (1978) 120–126

21. Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Detecting faulty behav-
ior in distributed systems. Technical Report Max Planck Institute for Software
Systems 2006-1 (2006)

22. Gafni, E.: Round-by-round fault detectors : Unifying synchrony and asynchrony.
(1998) 143–152


