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Abstract

We investigate in depth a natural generalisation of boolean formulas in con-

junctive normal forms (or “clause-sets”) allowing non-boolean variables; this

generalisation is closely related to “sets of no-goods” in the AI literature, and

we will argue that it is the right generalisation of boolean clause-sets maintain-

ing essential combinatorial properties. First we build up a solid foundation for

(generalised) clause-sets, including the notion of autarky systems, the inter-

play between autarkies and resolution, and basic notions of (DP-)reductions.

We obtain fixed parameter tractability (FPT) of satisfiability decision for gen-

eralised clause-sets, using as parameter a suitably generalised notion of max-

imal deficiency, where in the boolean case the deficiency is the difference

between the number of clauses and the number of variables. Another central

result in the boolean case regarding the deficiency is the classification of min-

imally unsatisfiable clause-sets with low deficiency (MU(1), MU(2), ...). We

generalise the well-known characterisations of boolean MU(1). The proofs for

FPT and MU(1) are not straight-forward, but are obtained by an interplay

between suitable generalisations of techniques and notions from the boolean

case, and exploiting combinatorial properties of the natural translation of

(generalised) clause-sets into boolean clause-sets. Of fundamental importance

here is autarky theory (autarkies are generalisations of satisfying assignments),

and we concentrate especially on matching autarkies (based on matching the-

ory) and special cases of linear autarkies (based on linear programming and

linear algebra). Minimally unsatisfiable (generalised) clause-sets are “lean”,

i.e., they do not admit non-trivial autarkies. Besides minimally unsatisfiable

clause-sets we consider also “irredundant” clause-sets, which allow for satisfi-

able clause-sets, with a special emphasise on “hitting clause-sets” (which are

irredundant in a very strong sense) and the generalisation to “multihitting”

clause-sets.

Autarky theory provides methods for deriving lower bounds on the defi-

ciency δ(F ) of generalised clause-sets F , where δ(F ) relates the number of

∗Supported by EPSRC Grant GR/S58393/01
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clauses and the number of variables of F , while the structural properties of

minimally unsatisfiable (generalised) clause-sets enable classifications of min-

imally unsatisfiable clause-sets of low deficiency. Using the canonical trans-

lation of hypergraph colouring problems into (generalised) clause-sets, we are

able to interprete classical basic results from hypergraph theory within this

more general framework. We provide a general method for proving the ex-

istence of a matching in the bipartite graph of a hypergraph G covering all

vertex nodes (if such a matching exists, then G must have at least as meany

hyperedges as vertices). This methods allows to derive the (generalised) Fisher

inequality, that a non-trivial pairwise balanced design must have as least as

many blocks as points, as well as a the bound by Seymour, that a minimally

non-2-colourable hypergraph must have at least as many hyperedges as ver-

tices. Regarding Seymour’s inequality, without any additional work the result

generalises to non-k-colourable hypergraphs for k ≥ 2: Consider a hypergraph

G and the canonical translation of the k-colouring problem for G into a (gener-

alised) “colouring” clause-set F[k](G). “Minimally non k-colourability” of G is

equivalent to F[k](G) being minimally unsatisfiable, a complicated and “frag-

ile” notion. But the lower bound on the deficiency on F[k](G) does actually

not hinge on the minimal unsatisfiability, but only on the absence of a special

class of linear autarkies (namely “balanced linear autarkies”), and so we can

use the “smooth” generalisation of minimally unsatisfiable clause-sets by (bal-

anced linearly) lean clause-sets. Finally we touch upon the characterisation of

minimally unsatisfiable colouring clause-sets with minimal deficiency, recast-

ing the characterisation of “self-blocking square condensers” by Seymour.
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1 Introduction

Satisfiability problems with constraint variables having more than two values occur
naturally at many places, for example in colouring problems. Translations into
boolean satisfiability problems are interesting and useful (see [20, 45, 2] for various
techniques), however often they cause performance problems, and they hide to a
certain degree the structure of the original problem, which causes these translations
typically to be not very well suited for theoretical studies on the structure of the
original problem. In this report1) we study non-boolean satisfiability problems
closest to boolean conjunctive normal form, namely satisfiability of what is called
generalised clause-sets (or sets of “no-goods”). Combining suitable generalisations
of boolean techniques with suitable translations into the boolean case we obtain
non-trivial generalisations of fundamental theorems on autarkies and minimally
unsatisfiable formulas.

Three aspects of clauses (as combinations of literals) make processing of boolean
clause-sets especially efficient:

(i) When the underlying variable of a literals gets a value, then the literal is either
true or false (this enables efficient handling of literals).

(ii) Only by assigning a value to all the variables in a clause can we falsify the
clause, and for each variable the value here is uniquely determined (this makes
a tight connection between partial assignments and clauses, and enables “con-
flict learning” by clauses).

(iii) By giving just one variable a right value we are always able to satisfy a clause
(this enables simple satisfaction-based heuristics).

Taking these properties as axiomatic, a “generalised clause” should be a disjunction
of generalised literals, and a “generalised literal” should have exactly one possibility
to become false, while otherwise it should evaluate to true. We arrive naturally at
the following concept for generalised literals (the earliest systematic use seems to
be in [3]): A variable v has a domain Dv of values, and a literal is a pair (v, ε) of the
variable and a value ε ∈ Dv such that the literal becomes true under an assignment
ϕ iff ϕ sets v to a value different than ε (i.e., ϕ(v) ∈ Dv \ {ε}); to express this
interpretation, often when displaying formulas we will write “v 6= ε” for the literal
(v, ε). In case of Dv = {0, 1} variable v becomes an ordinary boolean variable with
the literal (v, 0) representing the positive literal. We remark here, that a fourth
property of boolean clauses, namely that if all literals except of one are falsified,
that then the value for the variable in the remaining literal is uniquely determined,
which is the basis for the ubiquitous unit-clause propagation, is necessarily lost
here. In this article we investigate the basic combinatorial properties of generalised
clause-sets, concentrating on the theory of autarkies and on structural properties of
minimally unsatisfiable generalised clause-sets.

One driving force for the study of generalised clause-sets comes from the appli-
cations of learning falsifying partial assignments in (generalised) SAT algorithms
— the notion of a generalised clause as a “no-good” embodies this point of view (a
clause encodes the partial assignment leading to a failure, and a partial assignment
falsifies this clause iff it extends the failing assignment). In [37] a theoretical study
of such uses of generalised clauses was initiated, however in this article our main

1)substantially extending the early report [38]
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application area is hypergraph theory. The emphasise is on building up a framework
for showing that certain classes of hypergraphs have at least as many hyperedges as
vertices, and for classifying those hypergraphs within this class for which equality
holds. This is done by reformulating the inequality as a lower bound on the defi-
ciency of certain generalised clause-sets, while the classification task becomes the
task of classifying certain minimally unsatisfiable clause-sets of minimal deficiency.

As a (very) first evidence for the potential power of autarky theory as a uni-
fying framework in combinatorics we will see, that early results of Seymour on
critically colourable hypergraphs can be extended naturally by interpreting hyper-
graph colouring as a satisfiability problem for generalised clause-sets — here the
formulation as a (generalised) satisfiability problem does not mask structure (the
transformation is canonical and structure-preserving), but actually helps to reveal
structure.

1.1 Generalising the notion of deficiency

Using c(F ) for the number of clauses in a boolean clause-set, and n(F ) for the
number of variables, in [19] the deficiency δ(F ) := c(F )−n(F ) has been introduced
and made fruitful for the study of minimally unsatisfiable boolean clause-sets as
well as for the introduction of a new polynomial time decidable class of “matched”
satisfiable clause-sets. Let MUSAT denote the class of minimally unsatisfiable
clause-sets (unsatisfiable clause-sets, where each strict sub-clause-set is satisfiable).
For F ∈ MUSAT the property ∀F ′ ⊂ F : δ(F ′) < δ(F ) has been shown; using
δ∗(F ) := maxF ′⊆F δ(F ′) we get δ∗(F ) = δ(F ) as well as “Tarsi’s lemma” δ(F ) ≥ 1
(since for the empty clause-set > ⊂ F we have δ(>) = 0). Furthermore let the
class MSAT of “matching satisfiable” clause-sets F be defined by the condition
δ∗(F ) = 0. All matching satisfiable clause-sets are in fact satisfiable, since by
Hall’s theorem the bipartite graph B(F ) contains a matching covering all variables,
where the vertices of B(F ) are the clauses of F on the one side and the variables
of F on the other side, while an edge joins a variable and a clause if that variable
appears in the clause (positively or negatively). Or, using Tarsi’s lemma, one argues
that if F ∈ MSAT would be unsatisfiable, then F would contain some minimally
unsatisfiable F ′ ⊆ F , for which δ(F ′) ≥ 1 would hold, contradicting δ∗(F ) = 0.

The study of the levels MUSAT (k) of minimally unsatisfiable boolean clause-
sets F with δ(F ) ≤ k has attracted some attention. In [1] (where also Tarsi’s lemma
has been proven) the class SMUSAT of “strongly minimally unsatisfiable clause-
sets” has been introduced, which are minimally unsatisfiable clause-sets such that
adding any literal to any clause renders them satisfiable, and a nice characterisation
of SMUSAT (1) = {F ∈ SMUSAT : δ(F ) = 1} has been given (yielding polyno-
mial time decision of SMUSAT (1)). Then in [11] a (poly-time) characterisation
of MUSAT (1) has been obtained, followed by a characterisation of MUSAT (2)
in [6], while in [51] some subclasses of MUSAT (3) and MUSAT (4) have been
shown to be poly-time decidable. For arbitrary (constant) k ∈ N it has been shown
in [5] that for F ∈ MUSAT (k) there is a tree resolution refutation using at most
2k−1 · n(F )2 steps, and thus the classes MUSAT (k) are in NP. In [5] it has been
conjectured that in fact all classes MUSAT (k) are in P.

This conjecture has been proven true in [28] (using tools from matroid theory),
where more generally the classes SAT (k), consisting of all satisfiable clause-sets
F with δ∗(F ) ≤ k, have been shown poly-time decidable, from which immediately
poly-time decision of the classes MUSAT (k) and SMUSAT (k) follows. Actually
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the classes USAT (k) of unsatisfiable clause-sets F with δ∗(F ) ≤ k have been shown
poly-time decidable by improving the “splitting theorem” from [11], yielding tree
resolution refutations for F using at most 2k−1 ·n(F ) steps and of a simple recursive
structure, so that these refutations can be found in polynomial time by means
of enumeration of the circuits of the transversal matroid T (F ) associated to the
bipartite graph B(F ) (the independent subsets of T (F ) are the matching satisfiable
sub-clause-sets of F ). Independently also in [17] poly-time decision of the classes
MUSAT (k) has been derived by extending techniques from bipartite matching
theory to directed bipartite graphs. Improving the proofs from [17], the present
author joint the team in [16]. Actually refining the techniques from [28], in [48]
fixed-parameter tractability of SAT (k) is shown (all this for the boolean case).

After setting syntax and semantics for generalised clause-sets, the first main
task tackled in the present paper is to transfer these results regarding the defi-
ciency to generalised clause-sets. After suitably generalising the notion of deficiency
and matching satisfiability (which is not completely straight-forward; in Subsection
4.4 an earlier version is discussed, which doesn’t seem to have the right proper-
ties), in Corollary 4.9 the “satisfiability-based” approach from [16] yields polyno-
mial time satisfiability decision for generalised clause-sets with bounded maximal
deficiency. Generalising fixed-parameter tractability turns out not to be straight-
forward (again), and only by combining the generalised approach with a suitable
translation into the boolean case we arrive in Theorem 5.5 at fixed parameter
tractability also for generalised clause-sets. The general framework for our consid-
erations is autarky theory as started in [31], with emphasise on matching autarkies
as introduced in [33].

A key point for structural investigations in (generalised) clause-sets is to un-
derstand the effects of applying partial assignments (see for example [8, 7], where
splitting of minimally unsatisfiable boolean clause-sets is studied in some depth),
and in this paper we consider the basic questions regarding irredundant and min-
imally unsatisfiable generalised clause-sets (which leads in a natural way to the
study of hitting clause-sets and generalisations). The well-known classifications of
the simplest case of minimally unsatisfiable clause-sets, namely boolean clause-sets
of deficiency 1, finds a natural generalisation in Theorem 6.16 (where again the proof
is not straight-forward, caused by the breakdown of the “saturation method”).

Finally, we leave generalisations behind, and with the third main subject of
this paper, the applications of autarky theory to hypergraph theory, we enter new
ground; I believe that such combinations of (generalised) satisfiability theory and
combinatorial theory have a future, waiting for us to be explored.

1.2 Translating hypergraph colouring

Given a hypergraph G and a set C of “colours”, a C-colouring of G is a map
f : V (G) → C such that no hyperedge E ∈ E(G) is “monochromatic” (that is,
there must be vertices v, w ∈ E with f(v) 6= f(w)). Translating this colouring
problem into a generalised satisfiability problem FC(G) is straightforward2): For
each hyperedge E ∈ E(G) and each colour ε ∈ C form the clause {v 6= ε : v ∈ E},

2)This translation directly generalises the well-known translation of graph 2-colouring problems
into boolean CNF; if we translate generalised clause-sets into boolean clause-sets via the stan-
dard translation (see Section 5), then the translation of hypergraph colouring problems into SAT
problems for generalised clause-sets also generalises the well-known standard translation of graph
colouring problems into boolean CNF.
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and FC(G) is the set of all these clauses; obviously the C-colourings of G corre-
spond 1-1 to the (total) satisfying assignments for FC(G). Interesting examples of
hypergraph colouring problems are given by the diagonal van der Waerden prob-
lems and the diagonal Ramsey problems. Computing van der Waerden numbers
has been considered in [14, 25], and it seems that SAT solvers are performing
quite well on them, and that possibly SAT solvers could help to compute new
van der Waerden numbers3), so here is the problem: Consider natural numbers
k,m, n ∈ N, and let the hypergraph WH(m,n) have vertex set {1, . . . , n}, while
the hyperedges of WH(m,n) are the subsets E ⊆ {1, . . . , n} of size m which form
an arithmetic progression (that is, for every E there exist a, d ∈ {1, . . . , n} with
E = {a+i·d : i ∈ {0, . . . ,m−1}}); now the van der Waerden number NW(k,m) is the
minimal n such that WH(m,n) is not k-colourable. The corresponding generalised
clause-sets are FW(k,m, n) := F{1,...,k}(WH(m,n)), and if FW(k,m, n) is satisfi-
able, then NW(k,m) > n, while if FW(k,m, n) is unsatisfiable, then NW(k,m) ≤ n;
for k = 2 we obtain boolean clause-sets (I would like to point out how natural
the translation is — no auxiliary variables are involved4)). Directly expressing the
problem instance as a generalised clause-set, in this way also the non-diagonal ver-
sions of van der Waerden- and Ramsey problems can be immediately translated
into generalised clause-sets (see [41]).

For the more general list-hypergraph colouring problem for each vertex v a list
L(v) of allowed colours is given; this can be translated into a generalised clause-set
FC(G,L) by just restricting the domain of v to L(v). At this point it is worth
noticing that also the still more general list-hypergraph-homomorphism problem has
a direct (structure-preserving) translation into a satisfiability problem for gener-
alised clause-sets. Given two hypergraphs G1, G2 and for each vertex v ∈ V (G1)
a non-empty set L(v) ⊆ V (G2) of allowed image vertices, the problem is to find a
map f : V (G1) → V (G2) with f(v) ∈ L(v) for all v ∈ V (G1) such that for each
hyperedge H ∈ E(G1) we have f(H) ∈ E(G2). Note that if we take for G2 the
hypergraph GC with vertex set C and hyperedges all subsets of C with at least two
elements, then the homomorphisms from G1 to G2 are exactly the C-colourings for
G1. For the translation of the list-hypergraph-homomorphism problem we use the
set V (G1) of vertices as the set of variables, while the domain of v is Dv = L(v),
and for each hyperedge H ∈ E(G1) and for each map f : H → V (G2) such that
for each v ∈ H we have f(v) ∈ L(v) and such that f(H) /∈ E(G2) holds, we
have a clause CH,f := {v 6= f(v) : v ∈ H}. Now satisfying assignments of the
generalised clause-set F (G1, G2, L) consisting of all clauses CH,f are exactly the
hypergraph homomorphisms from G1 to G2 respecting the restrictions given by L.
Note that the translation of hypergraph colouring problems is a special case via
FC(G,L) = F (G,GC , L).

We notice that in the same vein we can also translate homomorphism problems
for relational structures: Let A = (A, (Ri)i∈I) and B = (B, (R′

i)i∈I) be two com-
patible finite relational structures (that is, A,B as well as I are finite sets, the Ri

are relations (of arbitrary arity) on A, the R′
i are relations on B, while Ri has the

same arity as R′
i). We want to express the set of homomorphisms f : A → B,

defined by the property that for i ∈ I and all ~x ∈ Ri we have f(~x) ∈ R′
i, where f is

applied componentwise to ~x. For this we choose A as the set of variables, which all

3)The problem sizes of formulas related to unknown Ramsey numbers on the other hand are
likely too big to be manageable by any (current) SAT solver.

4)The translation is the core of two translations discussed in [14] — the additional constraints
used in [14] just express the structural property of a generalised clause-set, that every variable
gets exactly one value of its domain.
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have the same domain B, and for each i ∈ I and each ~x ∈ Ri and each ~y ∈ Bm \R′
i,

where m is the arity of Ri, we have the clause Ci,~x,~y := {~xi 6= ~yi : i ∈ {1, . . . ,m}}.
We obtain the generalised clause-set F (A,B) by collecting all these clauses. The
size of F (A,B) is polynomial in the sizes of A,B together with the number of tu-
ples in Ri and the number of tuples not in R′

i. The translation F (G1, G2, L) as
well as F (A,B) is “direct” (homomorphisms are directly encoded as assignments)
and “negative” (we use forbidden value combinations). If we wish to have F (A,B)
polynomial in the number of tuples in R′

i, then we can use an “indirect” and “pos-
itive” translation as follows: Variables are pairs (i, ~x) for i ∈ I and ~x ∈ Ri, with
domain R′

i. The constraints are the unit clauses {(i, ~x) 6= ~y}i∈{1,...,m} expressing
that a variable (i, ~x) with ~xk = ~xk′ for some k, k′ must not get a value ~y ∈ R′

i with
~yk 6= ~yk′ , and the binary clauses {(i, ~x) 6= ~y, (i′, ~x′) 6= ~y′} expressing that if variable
(i, ~x) gets a value ~y, then a variable (i′, ~x′) with ~xk = ~x′k for some k must not get a
value ~y′ with ~yk 6= ~y′k.

1.3 Hypergraph inequalities

In this article we consider problems from hypergraph theory related to the notion
of deficiency. In [47] it was proven that a hypergraph which is minimally non-2-
colourable and has no isolated vertices has at least as many edges as vertices. By
recognising that this property only needs the non-existence of certain autarkies, as
in the case of Tarsi’s lemma, we can generalise this result to the statement, that
if a hypergraph without isolated vertices is minimally non-k-colourable for some
k ≥ 2, then it has at least as many edges as vertices. A similar application (but
without adding something new) is given to the Fisher inequality in design theory.
Both inequalities can be derived from a meta-theorem, which allows to translate
back leanness properties of generalised clause-sets encoding hypergraph colouring
problems.

I hope that these (first) examples can demonstrate the potential of considering
hypergraph colouring problems as special generalised satisfiability problems. The
virtue of embedding hypergraph colouring problems into the richer structure of
generalised satisfiability problems can be seen in the substitutional closedness of
generalised satisfiability problems, which is noticeable missing from the notion of
hypergraph colouring, while on the other hand generalised satisfiability as presented
in this paper seems close enough to hypergraph colouring problems, so that tech-
niques can be transferred.5). So I see great potential for the study of generalised
satisfiability problems as a unifying framework for combinatorics, while on the other
hand for example many treasures of (hyper)graph theory are still waiting to be dis-
covered for the SAT community (see Subsection 8.3 for an intriguing example from
[47]).

5)According to my personal experience researchers from graph theory and combinatorics some-
times view the satisfiability problem as “pure complexity theory”, dismissing its combinatorial
nature. For example in [42], where (boolean) resolution is transferred to the 2-colouring problem
for hypergraphs, the point is stressed that satisfiability is a special case of the 2-colouring problem
for hypergraphs by reducing the SAT problem for boolean conjunctive normal form in a relatively
simple way to the hypergraph 2-colouring problem — however that the inverse transformation is
even simpler (not using any sort of “gadget”) is not mentioned in this paper.
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1.4 Signed formulas and resolution

Are there still more general versions of “generalised conjunctive normal forms”
suitable in our context? The most general form of variable-based literals allows
literals of the form “v ∈ S” for some S ⊆ Dv (generalised literals (v, ε) correspond
to S = Dv \ {ε}); see [2], where S is called a “sign”, while literals of the form
“v ∈ S” are called “signed literals”, and clause-sets made of signed literals “signed
CNF formulas”, or see [20] (using the same class for formulas, but calling them “nb-
formulas”). Our generalised clause-sets are “negative monosigned CNF formula”
in the language of [2], while “monosigned CNF formula” allow signs of the form
S = Dv \ {ε} as well as S = {ε}.

So the closest generalisation of our “clause-sets” are “monosigned CNF formu-
las”. Considering this extension is also motived by the fact, that these formulas cor-
respond exactly to their boolean counterpart via the natural translation. However,
monosigned formulas seem to lack the good combinatorial properties which “nega-
tive monosigned formulas” have, which can be seen for example by the fact, that
the boolean translation of monosigned CNF formulas need the “AMO” clauses (ex-
pressing that every (original) variable gets at most one value), making the translated
formula unwieldy, while the AMO clauses are not needed for negative monosigned
CNF (here we can just select some value, if an original variable gets several values,
without destroying the satisfaction relation, which is not possible in the presence of
literals demanding that a variable gets some fixed value).

An important point has been raised in [44], where it has been shown, that
splitting on the boolean translation of generalised clause-sets can have an exponen-
tial speed-up over the (wide) splitting only available when splitting on the original
(“negative”) literals, where one considers |Dv| many branches when splitting on a
variable v, each branch fixing a value of v (the corresponding form of resolution
has been studied in some depth in [37] (generalised there through the use of ora-
cles)). This seems to be an inherent weakness of using generalised clause-sets for
SAT solving, but actually our model of generalised clause-sets allows the form of
binary splitting corresponding to splits on the boolean translation: Our literals can
express only “v 6= ε”, but since we allow arbitrary variable domains, we can have a
binary splitting with a domain collapse Dv 7→ {ε} in one branch (i.e., splitting on
the negative literal “v 6= ε”) and a domain restriction Dv 7→ Dv \ {ε} in the other
branch (splitting on the positive literal “v = ε”): In the first branch all literals
with variable v would become true or false, while in the second branch possibly the
literal stays, and only the domain of v is restricted (globally).6) Actually, if (Di)i∈I

is a partition of Dv then we can split into |I| branches where in branch i variable v
gets the new domain Di; if for a literal (v, ε) we have ε /∈ Di, then the literal (and
thus the clause) becomes true, while if Di = {ε}, then the literal becomes false,
and otherwise just the domain of v is restricted (globally). The splitting trees for
(generalised) clause-sets with domain-splittings “({ε}, Dv\{ε})” correspond exactly
to the splitting trees for the natural boolean translations. The price we have to pay
however for this more powerful branching is, that if we stick with (generalised)
clause-sets, then we cannot have (full) clause learning — if we want to use clause
learning, in this way reflecting the search process in the “clause-database”, then at
least for recording the learned clauses we need monosigned clauses to record these
binary splittings (and signed literals for more general domain splittings); this is

6)Note that since in the second branch we do not assign a value to variable v, we do not get rid
off v in the second branch. As a consequence, we need a global domain management.
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the reason why in the upcoming OKlibrary, a generic library for generalised SAT
solving, a distinction is made between “input logic” (which might use (generalised)
clause-sets) and “branching logic” (which might use an extension like monosigned
clause-sets).7)

1.5 Overview and main results

In Section 2 we present some preliminaries for our study of generalised clause-
sets: Partial assignments for non-boolean variables, and fundamental notions and
notations for graphs (while the hypergraphs notions and notations are collected
in Subsection 7.2). Then in Section 3 generalised clause-sets are introduced and
the main operations associated with them. Autarkies and autarky systems for
generalised clause-sets are reviewed in Subsection 3.5 (a useful result here is Lemma
3.1, showing how to actually find a non-trivial autarky when just given an oracle
deciding whether a non-trivial autarky exists or not), while resolution for generalised
clause-sets is the subject of Subsection 3.7 (in Theorem 3.2 it is proven, that a clause
can be used in some resolution refutation iff it cannot be satisfied by some autarky;
computation of the lean kernel via “intelligent backtracking solvers” follows). The
most basic polynomial time reductions for generalised clause-sets are presented in
Subsection 3.8, and finally in Subsection 3.9 the conflict graph and related notions
are introduced.

Section 4 on matching autarkies for generalised clause-sets is central for this
paper, and some of the main results are contained in here. First in Subsection 4.1
the notion of matching satisfiable clause-sets (first studied in [19]) is generalised
in a natural way to generalised clause-sets, based on the generalised notion of de-
ficiency. Theorem 4.7 in Subsection 4.2 as the first main result, guaranteeing the
existence of satisfying assignments “close enough” to matching satisfying assign-
ments, is established for generalised clause-sets, so that in Corollary 4.8 poly-time
satisfiability decision for generalised clause-sets with bounded maximal deficiency
can be derived, generalising and strengthening the approach from [16] (proving fixed
parameter tractability with respect to the maximal deficiency has to wait until the
next section, where further tools are provided). Then in Subsection 4.3 match-
ing autarkies for generalised clause-sets are introduced, and the main properties
are proven. A typical result here is the generalisation of “Tarsi’s Lemma” in Corol-
lary 4.21 (every generalised minimally unsatisfiable clause-set has deficiency at least
one). In Subsection 4.4 we review the notion of matching autarkies introduced here,
comparing it with an earlier version.

In Section 5 the canonical translation of generalised clause-sets into boolean
clause-sets is studied under the point of view of structure preservation, taking ad-
vantage of the fact, that due to the restriction to “negative literals” we do not need
the AMO clauses (incorporating them would destroy the structures the translation
should preserve). Besides preservation of satisfiability, minimal unsatisfiability and
leanness, in Subsection 5.3 we show that also a good deal of the matching structure is

7)This discussion shows in my opinion the main reason, while generalising boolean reasoning
proved to be difficult in the past, and (boolean) SAT solvers have an edge: Either we restrict
ourselves to wide branching, which is inherently inefficient, or we use more powerful branching, and
then we have to use a more complicated domain management than in the boolean case (where there
is none), and also finding out whether a literal actually became true or false becomes considerably
more complicated (while it’s trivial in the boolean case). Furthermore, if we want to use learning,
which seems of importance for many “real-world” problems, then we have to use more complicated
literal structures, and domain and literal (occurrence) management gets further complicated.
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preserved by the translation (including for example the deficiency). Equipped with
these tools, in Theorem 5.5 then we obtain FPT for SAT decision in the maximal
deficiency.

In Section 6 we turn to the study of generalised clause-sets which are minimally
unsatisfiable. Considering the larger class of irredundant generalised clause-sets
(no clause is implied by the others), we study the question when irredundancy is
preserved by applying partial assignments. The class of irredundant clause-sets
which stay irredundant for all partial assignments is characterised in Corollary 6.6
as the class of hitting clause-sets, while in Lemma 6.8 we consider the bigger class of
multihitting (generalised) clause-sets and show, that they have a unique minimally
unsatisfiable core (if they are unsatisfiable). In Subsection 6.3 we then discuss
the process of “saturation” as introduced [18]; for generalised clause-sets we have
to face a considerably more complicated situation here than in the boolean case,
and thus it seems that for generalised clause-sets saturation does not play the role
it does for boolean clause-sets. Without the saturation tool, proving the basic
Lemma 6.14 for the characterisation of MUSATδ=1 needs a different trick; we use
the good properties of the boolean translation. The main result of Subsection 6.4
then follows in Theorem 6.16 (the characterisation of minimally unsatisfiable clause-
sets of deficiency 1), and its two corollaries (the characterisation of saturated and
marginal minimally unsatisfiable clause-sets of deficiency 1).

The main result of Section 7 on linear autarkies for generalised clause-sets is
Theorem 7.8, providing a general criterion for the existence of a matching between
the vertices and the hyperedges of a hypergraph, such that all vertices are covered,
and generalising one of the main results from [1], namely that for a minimally non-
2-colourable hypergraph there exists a matching in the associated bipartite graph
which covers all vertex nodes. It is based on Lemma 7.2, which exploits balanced
linear autarkies, together with basic properties of (linear) autarkies regarding the
translation of hypergraphs into generalised clause-sets studied in Subsection 7.3. As
a first application we show in Lemma 7.10 how to derive the (generalised) Fisher
inequality for pairwise balanced designs.

A second application of Theorem 7.8 is given in Section 8, where we consider
hypergraph colouring. In Corollary 8.2 we generalise a well-known early result of
Seymour (similar to Tarsi’s Lemma, and also based on autarky theory now), which
yields a lower bound on the deficiency of minimally unsatisfiable colouring clause-
sets, and we discuss the relation to “crown decomposition”. Also a refinement of
the chromatic number, namely the “autarky number”, is outlined. We conclude
in Subsection 8.3 by interpreting a characterisation of Seymour of all intersecting
critical 3-colourable hypergraphs as (essentially) a classification of minimally un-
satisfiable multihitting colouring clause-sets with (relative) minimal deficiency; see
Theorem 8.14 for the full classification.

Finally we present a collection of open problems in Section 9.

2 Preliminaries

2.1 Variables and partial assignments

Fundamental for our considerations is the monoid (PASS, ◦, ∅) of partial as-
signments as introduced in Subsection 2.1 of [37], where the reader can find more
information. Here we just recall the basic definitions.

11



The universe of variables is denoted by the infinite set VA, while the universe
of domain elements is the infinite set DOM; a (value-)domain is a finite non-
empty subset ofDOM, and for each variable v ∈ VA byDv we denote the associated
(value-)domain (thus variables have fixed (value-)domains, and change of domain
(for example removal of values) must be performed by renaming). To avoid running
out of variables and to ease renaming, we make the assumption, that for all domains
D the set VAD has the same cardinality as VA itself. A variable v ∈ VA is called
boolean if Dv = {0, 1} (and thus VA{0,1} is the set of all boolean variables; by the
above cardinality assumption there is a bijection between VA and VA{0,1}).

A partial assignment is a map ϕ with finite domain var(ϕ) := dom(ϕ) ⊆ VA,
such that for all v ∈ var(ϕ) we have ϕ(v) ∈ Dv. The domain size of a partial
assignment ϕ is denoted by n(ϕ) := |var(ϕ)| ∈ N0. A special partial assignment
is the empty partial assignment ∅. The set of all partial assignments is denoted by
PASS. while for some set VA′ ⊆ VA of variables we denote by PASS(VA′) :=
{ϕ ∈ PASS : var(ϕ) ⊆ VA′} the set of partial assignments for variables from VA′

(thus PASS(VA{0,1}) is the set of partial assignments for boolean variables). We
use the notation 〈v1 → ε1, . . . , vm → εm〉 to denote the partial assignment ϕ with
n(ϕ) = m and ϕ(vi) = εi.

For two partial assignments ϕ,ψ ∈ PASS their composition ϕ ◦ ψ is defined
as the partial assignment ϕ ◦ψ with domain var(ϕ ◦ψ) = var(ϕ)∪ var(ψ) such that
first ψ is evaluated and then ϕ, i.e., (ϕ ◦ψ)(v) = ψ(v) if v ∈ var(ψ) while otherwise
(ϕ ◦ ψ)(v) = ϕ(v). It is (PASS, ◦, ∅) a monoid. An alternative representation of
this structure is obtained as follows: Make each Dv a semigroup (Dv, ·) by defining
ε1 · ε2 := ε2 for ε1, ε2 ∈ Dv. Adjoin an identity element “∗” to each Dv, obtaining
monoids D∗

v . Now PASS is isomorphic to the direct sum
∑

v∈VAD
∗
v of the monoids

(the sub-monoid of the direct product
∏

v∈VAD
∗
v given by those elements where

only finitely many components are different from ∗), where ϕ ∈ PASS corresponds
to the map ϕ∗ ∈

∏
v∈VAD

∗
v with ϕ(v) = ϕ∗(v) for v ∈ var(ϕ) and ϕ∗(v) = ∗ for

v ∈ VA \ var(ϕ). This representation of partial assignments as total maps with
distinguished “undefined” value ∗ actually has certain advantages over the above
representation, since working with total maps is often easier than working with
partial maps, and we get a somewhat richer algebraic structure; however in this
article we stick to the first representation of partial assignments.

2.2 Graphs

A (finite) graph G here is a pair G = (V,E) with finite vertex set V (G) = V and
edge set E(G) = E ⊆

(
V
2

)
, where for a set M and k ∈ N0 by

(
M
k

)
we denote the set

of all subsets T ⊆ M with |T | = k. So graphs here have no parallel edges and no
loops. A graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G);
G′ is called a partial subgraph of G if G′ is a subgraph of G and V (G′) = V (G). A
graph G is complete if all distinct vertices v, w ∈ V (G) are adjacent. G is bipartite,
if the chromatic number of G is at most 2, while G is complete bipartite if G is
bipartite and addition of any edge to G either destroys the graph property (i.e.,
creates a loop or a parallel edge) or the bipartiteness property. More generally, G
is called complete k-partite for k ∈ N0 if the chromatic number of G is at most
k, and addition of any edge to G either destroys the graph property or increases
the chromatic number. It is G complete k-partite iff G is the union of at most k
independent sets, such that each pair of vertices from different independent sets is
adjacent (equivalently, iff the complement of G is the disjoint union of at most k
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cliques).

A function f : S → R, where S is some set system stable under union and
intersection, is called submodular resp. supermodular if for all A,B ∈ S we have
f(A∪B)+f(A∩B) ≤ f(A)+f(B) resp. f(A∪B)+f(A∩B) ≥ f(A)+f(B), while
f is called modular if f is submodular and supermodular. A prototypical example
for a modular function is A ⊆ X 7→ f(A) := |A|, where X is some finite set. For a
graph G and a vertex set A ⊆ V (G) the neighbourset ΓG(A) is defined as the set
of vertices adjacent to at least one element of A. The function A ⊆ V (G) 7→ |Γ(A)|
a prototypical example for a submodular function, while the deficiency δ(A) :=
|A|−|Γ(A)| ∈ Z is a supermodular function (as the difference of a modular function
and a submodular function).

A matching M in a graph G is a set M ⊆ E(G) of edges such that two distinct
elements of M are non-adjacent. If G is a bipartite graph with bipartition (A,B)
(also called “colour classes”), then the maximal number of vertices of A which can
be covered by a matching is |A| − δ∗(A), where δ∗(A) := maxA′⊆A δ(A′) (see for
example Theorem 22.2 in [46], where the notion of “transversals” or “systems of dis-
tinct representatives” of set system is used (not to be mixed up with “transversals”
in hypergraphs), and where the set system is (ΓG({a}))a∈A).

See Subsection 7.2 for notions and notations regarding hypergraphs.

3 Generalised (multi-)clause-sets

In this section we review the notion of generalised multi-clause-sets and the basic
facts about them regarding autarkies and resolution.

In Subsection 3.1 we introduce the notion of “generalised multi-clause-sets” and
“generalised clause-sets”, while in Subsection 3.2 (partial) assignments and their
operation on (multi-)clause-sets is discussed. This introduction into “syntax and
semantics of generalised clause-sets” is completed in Subsection 3.4 with the discus-
sion of various operations on (multi-)clause-sets F regarding their variable structure
(that is, disregarding the different “polarities”, i.e., disregarding the literal struc-
ture).

Of central importance to our work is Subsection 3.5, where the notion of au-
tarkies (special partial assignments, which satisfy parts of the formula, and leave
the rest untouched) and autarky systems (allowing to tailor the notion of autarkies
for special purposes) for multi-clause-sets are introduced. In Subsection 3.7 then
resolution for generalised clause-sets is discussed, while in Section 3.8 we give the
most basic reductions for generalised clause-sets. Finally in Subsection 3.9 some
very basic notions regarding the conflict structure of generalised clause-sets are
introduced.

For more background information, see [37, 32] for a general, axiomatic framework
for “generalised satisfiability problems”, while in Subsection 2.3 of [37] generalised
clause-sets are discussed, and in Section 2 of [35] boolean multi-clause-sets are
considered (see also [34] for more information). In this paper, when we speak of
“clause-sets” then we always mean “generalised clause-sets”, while clause-sets in
the “traditional” sense are always qualified as “boolean clause-sets”; however in
lemmas, corollaries and theorems we always speak of “generalised clause-sets” to
ease independent access.
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3.1 Syntax: The notion of “multi-clause-sets”

A literal is a pair (v, ε) of a variable v ∈ VA and a value ε ∈ Dv; we write
var(v, ε) := v and val(v, ε) := ε. The set of all literals is denoted by LIT , and
for any VA′ ⊆ VA we write LIT (VA′) := {x ∈ LIT : var(x) ∈ VA′} for the
set of literals with variables from VA′ (thus LIT (VA{0,1}) is the set of boolean
literals). For a partial assignment ϕ ∈ PASS and a literal (v, ε) with v ∈ var(ϕ) we
set ϕ((v, ε)) = 1 if ϕ(v) 6= ε, while we set ϕ((v, ε)) = 0 if ϕ(v) = ε; thus a literal
(v, ε) has the meaning “v shall not get value ε”. Accordingly a literal (v, ε) is often
denoted by “v 6= ε”.

A clause C is a finite set of literals not containing “clashing literals”, that is
for literals x, y ∈ C with x 6= y we have var(x) 6= var(y). The set of all clauses is
denoted by CL. For a clause C we set var(C) := {var(x) : x ∈ C}, and for a set
VA′ ⊆ VA we write CL(VA′) := {C ∈ CL : var(C) ⊆ VA′} for the set of clauses
with variables from VA′ (thus CL(VA{0,1}) is the set of boolean clauses). The empty
clause is denoted by ⊥ ∈ CL.

Given a clause C, we obtain the corresponding partial assignment ϕC ∈ PASS
as the partial assignment ϕ with var(ϕ) = var(C) and ϕ(v) = ε for (v, ε) ∈ C; on
the other hand, given a partial assignment ϕ, we obtain the corresponding clause
Cϕ ∈ CL as the clause C with var(C) = var(ϕ) such that for ϕ(v) = ε we have
(v, ε) ∈ C. Using the representation of maps as ordered pairs of arguments and
values, actually ϕC = C and Cϕ = ϕ (and thus CL = PASS); explicitely said, a
clause corresponds to the partial assignment which sets exactly the literals in the
clause to false.8)

A (finite) multi-clause-set is a map F : CL → N0 (assigning to each clause its
number of occurrences) such that only for finitely many C ∈ CL we have F (C) 6= 0,
while a (finite)clause-sets is a finite subset of CL. Clause-sets F can be implicitly
converted to multi-clause-sets by setting F (C) := 1 for C ∈ F and F (C) := 0
otherwise, while for a multi-clause-set F the underlying clause-set t̂(F ) is defined
as t̂(F ) = {C ∈ CL : F (C) 6= 0}, and this conversion is only performed if necessary
to apply a definition. We have C ∈ F for a (multi-)clause-set F iff F (C) > 0. For a
(multi-)clause-set F we set var(F ) :=

⋃
{var(C) : C ∈ F}. For a (multi-)clause-set

F and a variable v ∈ VA we define valv(F ) := {ε ∈ Dv | ∃C ∈ F : (v, ε) ∈ C}. We
have var(F ) = {v ∈ VA : valv(F ) 6= ∅}. Finally the empty clause-set as well as the
empty multi-clause-set is denoted by >.

We use the following complexity measures for multi-clause-sets F of clauses:

1. #(v,ε)(F ) :=
∑

C∈F,(v,ε)∈C F (C) ∈ N0 measures the number of occurrences
of a literal;

2. #v(F ) :=
∑

ε∈Dv
#(v,ε)(F ) =

∑
C∈F,v∈var(C) F (C) ∈ N0 measures the num-

ber of occurrences of a variable;

3. s(v,ε)(F ) :=
∑

ε′∈Dv\{ε} #(v,ε)(F ) = #v(F ) − #(v,ε)(F ) ∈ N0 measures the
number of occurrences of literals with variable v and value different from ε

(this is the number of satisfied clauses when assigning value ε to v; see below);

4. n(F ) := |var(F )| ∈ N0 measures the number of variables;

5. c(F ) :=
∑

C∈F F (C) ∈ N0 measures the number of clauses;

8)The motivation is, that with a partial assignment ϕ we restrict the search space, and in case
the partial assignment ϕ is inconsistent with the clause-set F , then the clause Cϕ can be learned
(i.e., follows from F ).
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6. `(F ) :=
∑

C∈F F (C) · |C| =
∑

v∈var(F ) #v(F ) ∈ N0 measures the number of
literal occurrences;

7. mds(F ) := maxv∈var(F )|Dv| ∈ N0 measures the maximal domain size.

And for multi-clause-sets F1, F2 we use the following operations and relations:

1. the multi-clause-set F1 + F2 is defined by (F1 +F2)(C) := F1(C)+F2(C) for
clauses C;

2. the multi-clause-set F1 ∪ F2 resp. F1 ∩ F2 is given by setting (F1∪F2)(C) :=
max(F1(C), F2(C)) resp. (F1 ∩ F2)(C) := min(F1(C), F2(C)) for clauses C;
if F1, F2 are clause-sets, then these operations coincide with the ordinary set
operations;

3. if F2 is a clause-set, then the multi-clause-set F1 \ F2 is defined by setting
(F1 \ F2)(C) := 0 for C ∈ F2, while otherwise (F1 \ F2)(C) := F1(C); if also
F1 is a clause-set, then F1 \ F2 is the ordinary set operation;

4. the relation F1 ≤ F2 holds if for all clauses C we have F1(C) ≤ F2(C); we
use F ′ � F for F ′ ≤ F ∧ F ′ 6= F ; if F1, F2 are clause-sets, then F1 ≤ F2 ⇔
F1 ⊆ F2;

5. F1 is called a sub-multi-clause-set of F2 if F1 ≤ F2 holds, while F1 is called
an induced sub-multi-clause-set of F2 if F1 ≤ F2 and ∀C ∈ F1 : F1(C) =
F2(C) holds; every sub-clause-set of a clause-set is induced;

6. if F2 is a sub-multi-clause-set of F1, then the multi-clause-set F1 − F2 is
defined via (F1 − F2)(C) := F1(C)− F2(C) for clauses C.

The set of all multi-clause-sets is denoted by MCLS, the set of all clause-sets
by CLS, while for a set VA′ ⊆ VA of variables we use MCLS(VA′) := {F ∈
MCLS : var(F ) ⊆ VA′} and CLS(VA′) := {F ∈ CLS : var(F ) ⊆ VA′} (thus
MCLS(VA{0,1}) is the set of boolean multi-clause-sets, and CLS(VA{0,1}) is the
set of boolean clause-sets). If C is a set of multi-clause-sets and f : C → R, then by
Cf≤b for some b ∈ R we denote the set of all F ∈ C with f(F ) ≤ b; analogously we
define Cf=b, Cf≥b and so on. A special function usable here is sat : CLS → {0, 1}
with sat(F ) = 1 ⇔ F ∈ SAT (that is, sat is the characteristic function of the set of
satisfiable clause-sets defined below); we can combine several such indices, and for
typographical reasons we may use then for example MCLSg≤b′

f≤b . Finally, for p ∈ N0

we denote by p–MCLS resp. p–CLS the set of multi-clause-sets resp. clause-sets
F such that for C ∈ F we have |C| ≤ p.

3.2 Semantics: The operation of partial assignments

Now we define the operation ∗ : PASS×MCLS →MCLS of PASS on multi-clause-
sets, and the (derived) operation ∗ : PASS × CLS → CLS on clause-sets, which in
both cases have the meaning of substituting values for variables and carrying out
the resulting simplifications (viewing a clause as a disjunction of its literals, and a
(multi-)clause-set as a conjunction of its clauses), with the only difference that in
the case of clause-sets contractions in the result are carried out (distinct clauses can
become equal after a substitution). The case of clause-sets is reduced to the case of
multi-clause-sets, using the explicit transformation ť : CLS →MCLS of clause-sets
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into multi-clause-sets. For F ∈ MCLS and ϕ ∈ PASS we define ϕ ∗ F ∈ MCLS
by

(ϕ ∗ F )(C) =
∑

C′∈CL
ϕ∗{C′}={C}

F (C ′),

for C ∈ CL, where for a clause C we set ϕ ∗ {C} := > ∈ CLS if there exists a literal
x ∈ C with ϕ(x) = 1, while otherwise we set ϕ ∗ {C} := {C \ Cϕ} ∈ CLS (i.e., we
remove the falsified literals from C). And for F ∈ CLS we define ϕ ∗ F ∈ CLS as

ϕ ∗ F := t̂(ϕ ∗ ť(F )).

We have here (where F is a clause-set) ϕ ∗ F =
⋃

C∈F ϕ ∗ {C}. The effect on
the basic measures of applying a partial assignment 〈v → ε〉 to F ∈ MCLS with
v ∈ var(F ) is given by

n(〈v → ε〉 ∗ F ) ≤ n(F )− 1

c(〈v → ε〉 ∗ F ) = c(F )− s(v,ε)(F ).

A clause-set F ∈ CLS is satisfiable if there exists a partial assignment ϕ ∈ PASS
with ϕ∗F = >, while otherwise F is unsatisfiable; the set of all satisfiable clause-
sets is denoted by SAT , the set of all unsatisfiable clause-sets by USAT . A
multi-clause-set F ∈MCLS is called minimally unsatisfiable if F is unsatisfiable,
but every F ′ � F is satisfiable; obviously if F is minimally unsatisfiable, then F

actually is a clause-set. The set of all minimally unsatisfiable clause-sets is denoted
by MUSAT .

It is useful to have some notations for the set of satisfying assignments (“mod-
els”) as well as for the set of falsifying assignments. For a finite V ⊆ VA let
PASS(V ) be the set of ϕ ∈ PASS with var(ϕ) = V . Note that we have

|PASS(V )| =
∏
v∈V

|Dv|.

Now for a clause-set F ∈MCLS and for a finite set V of variables with var(F ) ⊆ V

let SV (F ) be the set of ϕ ∈ PASS(V ) with ϕ ∗ F = >, while FV (F ) is the set of
ϕ ∈ PASS(V ) with ⊥ ∈ ϕ ∗ F . Thus F is satisfiable iff SV (F ) 6= ∅; and for any
clause C with var(C) ⊆ V we have

|FV ({C})| = |PASS(V \ var(C))| =
∏

v∈V \var(C)

|Dv|.

Obviously SV (F )∩ FV (F ) = ∅ and SV (F )∪ FV (F ) = PASS(V ). By definition we
have

FV (F ) =
⋃

C∈F

FV ({C}).

For clause-sets F1, F2 we write F1 |= F2 (“F1 implies F2”) if for all ϕ ∈ PASS with
ϕ ∗ F1 = > we have ϕ ∗ F2 = > as well, and for clauses C we write F |= C instead
of F |= {C}. Trivially F is unsatisfiable iff F |= ⊥. Note that F1 |= F2 holds iff
for V := var(F1) ∪ var(F2) we have FV (F2) ⊆ FV (F1). We call F1, F2 equivalent
if F1 |= F2 and F2 |= F1.

The basic laws for the operation of partial assignments on multi-clause-sets are
as follows, using F, F1, F2 ∈MCLS and ϕ,ψ ∈ PASS:
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∅ ∗ F = F

ϕ ∗ > = >
(ϕ ◦ ψ) ∗ F = ϕ ∗ (ψ ∗ F )

ϕ ∗ (F1 + F2) = ϕ ∗ F1 + ϕ ∗ F2.

These four laws hold also for the operation of partial assignments on clause-sets. If
F1, F2 ∈ CLS, then we have

ϕ ∗ (F1 ∪ F2) = ϕ ∗ F1 ∪ ϕ ∗ F2

(but this does not hold for multi-clause-sets in general). Furthermore for a multi-
clause-set F and a clause-set F ′ we have ϕ ∗ (F \ F ′) ≥ (ϕ ∗ F ) \ (ϕ ∗ F ′).

3.3 Renaming variables

Consider a multi-clause-set F and variables v, w ∈ VA (which might be equal)
together with h : Dv → Dw such that in case of v 6= w we have w /∈ var(F ). Then
replacing v by w using h in F results in the multi-clause-set F ′ where every
occurrence of a literal (v, ε) is replaced by the literal (w, h(ε)). The map h here
is called the value transfer; if Dv ⊆ Dw and h is unspecified, then the canonical
injection is used.

Similarly, replacing v by w using h in a partial assignment ϕ, where in case
of v 6= w we have w /∈ var(ϕ), results in a partial assignment ϕ′ with dom(ϕ′) =
(dom(ϕ) \ {v})∪ {w} such that ϕ′(u) = ϕ(u) for u ∈ dom(ϕ′) \ {w}, while ϕ′(w) =
h(ϕ(v)). Here the value transfer needs to be specified only for the special value
ϕ(v). If v = w, then we just speak of flipping v to ε in ϕ for ε = h(ϕ(v)).

The replacement of v by w using h in F is injective, if for literals (v, ε), (v, ε′)
occurring in F with ε 6= ε′ we have h(ε) 6= h(ε′). If |Dw| ≥ #v(F ), then there is
always some h : Dv → Dw such that replacing v by w in F using h is injective.
For very injective h, replacing v by w in F using h is injective. Note that injective
replacements alter the meaning exactly in the case where a non-pure variable (a
variable such that all values occur in F ; see Subsection 3.8) is rendered a pure
variable by using a domain Dw with |Dw| > #v(F ). Special injective replacements
are renamings, where h is a bijection from Dv to Dw. If we have a renaming of
v by w using h in F , resulting in F ′, then we have the renaming of w to v using
h−1 in F ′, resulting in F . So the satisfying assignments for F ′ here are exactly the
satisfying assignments for F where v is replaced by w using h.

3.4 Three operations of sets of variables on multi-clause-sets

Finally we consider various operations with sets of variables. The operation V ∗ F
is defined for finite V ⊆ VA and F ∈MCLS via

(V ∗ F )(C) :=
∑

C′∈CL
V ∗C′=C

F (C ′),

where for a clause C we set V ∗ C := {x ∈ C : var(x) /∈ V } ∈ CL. That is, V ∗ F
is obtained from F by crossing out all literal occurrences x with var(x) ∈ V . Two
basic properties are
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var(V ∗ F ) = var(F ) \ V
c(V ∗ F ) = c(F ).

The operation V ∗ F for F ∈ CLS is defined by

V ∗ F := t̂(V ∗ ť(F )) ∈ CLS.

We have here V ∗ F = {V ∗C : C ∈ F}. The basic laws for F, F1, F2 ∈MCLS and
finite V, V ′ ⊆ VA are

∅ ∗ F = F

V ∗ > = >
(V ∪ V ′) ∗ F = V ∗ (V ′ ∗ F )

V ∗ (F1 + F2) = V ∗ F1 + V ∗ F2.

Again these four laws also hold for the operation of sets of variables on clause-sets.
If F1, F2 ∈ CLS, then we have

V ∗ (F1 ∪ F2) = V ∗ F1 ∪ V ∗ F2

(again this does not hold for multi-clause-sets in general).

We conclude with different forms of selecting parts of a multi-clause-set. By FV

we denote the induced sub-multi-clause-set of F with C ∈ FV ⇔ var(C) ∩ V 6= ∅;
in other words, FV = F \ {C ∈ F : var(C) ∩ V = ∅}. Basic properties are:

1. F∅ = > and Fvar(F ) = F \ {⊥}.
2. If V1 ⊆ V2, then FV1 is an induced sub-multi-clause-set of FV2 .

3. FV1∪V2 = FV1 ∪ FV2 .

4. For v ∈ VA we have c(F{v}) = #v(F ).

Finally

F [V ] := (var(F ) \ V ) ∗ FV = ((var(F ) \ V ) ∗ F ) \ {⊥} ∈ MCLS.

Basis properties are

1. F [∅] = > and F [var(F )] = F \ {⊥}.

2. c(F [V ]) = c(FV ), var(F [V ]) ⊆ var(FV ).

3. var(F [V ]) = V for V ⊆ var(F ).

To summarise: We obtain V ∗ F from F by keeping all clauses but removing those
literals x from them with var(x) ∈ V , while we obtain FV from F by removing those
clauses C from F with var(C) ∩ V = ∅ (while keeping all clauses intact); finally
F [V ] is obtained from F by first constructing FV , and then crossing out all literal
occurrences for literals x where there exists a clause C ∈ F with var(C) ∩ V = ∅
and var(x) ∈ var(C).

F [V ] is the formula derived from F when we want to consider total assignments
relative to the variable set V , and is basic for the theory of autarkies reviewed in the
subsequent subsection, while V ∗F and FV are fundamental constructions. As an ex-
ample for these operations consider boolean variables a, b, c (the domains of variables
do not matter here), and let C1 := {(a, 0), (b, 1), (c, 0)}, C2 := {(a, 0), (b, 0), (c, 1)},
C3 := {(a, 1), (b, 0), (c, 1)} and C4 := {(b, 1), (c, 1)}, and finally F :=

∑4
i=1{Ci}

(F corresponds to the CNF (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (b ∨ c)). Now
we have F{a} =

∑3
i=1{Ci}, {a} ∗ F = {{(b, 1), (c, 0)}} + 2 · {{(b, 0), (c, 1)}} +

{{(b, 1), (c, 1)}}, while F [{a}] = 2 · {{(a, 0)}}+ {{(a, 1)}}.
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3.5 Autarkies for generalised multi-clause-sets

Now we review the general properties of autarkies and autarky systems for gen-
eralised multi-clause-sets. See Section 3 in [32] for a general theory of autarkies
and autarky systems, while in Section 4 of [32] autarky systems for generalised
clause-sets have been discussed (easily generalised to autarky systems for gener-
alised multi-clause-sets). General properties of autarkies for boolean clause-sets
are thoroughly investigated in [31], Section 3, while autarky systems for boolean
clause-sets have been introduced in [33] (see Sections 4 and 8 for the general theory).

A partial assignment ϕ ∈ PASS is an autarky for F ∈MCLS if one (and thus
all) of the following four equivalent conditions is fulfilled:

1. for all clauses C ∈ F we have var(ϕ) ∩ var(C) 6= ∅ ⇒ ϕ ∗ {C} = >;

2. ∀F ′ ≤ F : ϕ ∗ F ′ ≤ F ′;

3. ϕ is a satisfying assignment for Fvar(ϕ);

4. ϕ is a satisfying assignment for F [var(ϕ)].

Obviously, ϕ is an autarky for F iff ϕ is an autarky for F \{⊥} iff ϕ is an autarky for
the underlying clause-set. The set of all autarkies for F is denoted by Auk(F ); it is
Auk(F ) a sub-monoid of PASS, containing all satisfying assignments for F in case
F is satisfiable, and Auk(F ) = Auk(t̂(F )). If F ′ ≤ F , then Auk(F ) ⊆ Auk(F ′),
and for finite V ⊆ VA we have {ϕ ∈ Auk(V ∗F ) : var(ϕ)∩V = ∅} = {ϕ ∈ Auk(F ) :
var(ϕ) ∩ V = ∅}. Furthermore we have Auk(F1 + F2) = Auk(F1) ∩ Auk(F2). If
ϕ ∈ Auk(F ) and ψ ∈ Auk(ϕ ∗ F ), then ψ ◦ ϕ ∈ Auk(F ). An autarky ϕ ∈ Auk(F )
is called non-trivial if var(ϕ) ∩ var(F ) 6= ∅ holds. F is called lean, if F has no
non-trivial autarky; the set of all lean multi-clause-sets is denoted by LEAN . A
sum of lean multi-clause-sets again is lean. If F is lean, so is V ∗ F for V ⊆ VA.

An autarky reduction is a reduction F → ϕ ∗ F for some non-trivial autarky
ϕ for F (note that ϕ ∗ F is satisfiability equivalent to F ). Autarky reduction is
terminating and confluent (generalising Lemma 4.1 in [33], a special case of Lemma
3.7 in [32]), and thus the result of iterated autarky reductions until no further
reductions are possible is uniquely determined; we denote it by NAuk(F ) ≤ F . It
is Na := NAuk a “kernel operator”, that is, Na(F ) ≤ F , Na(Na(F )) = Na(F ), and
F1 ≤ F2 ⇒ Na(F1) ≤ Na(F2); furthermore Na(F ) is satisfiability equivalent to F ,
and Na(F ) = > iff F ∈ SAT . We have Na(F ) ∈ LEAN , and Na(F ) is called the
lean kernel of F ; F is lean iff Na(F ) = F . There exists an autarky ϕ ∈ Auk(F )
with Na(F ) = ϕ∗F (while for all ϕ ∈ Auk(F ) we have Na(F ) ≤ ϕ∗F ). It is Na(F )
the largest lean sub-multi-clause-set of F .

An autark sub-multi-clause-set F ′ of F is an induced sub-multi-clause-set of
F , such that there exists an autarky ϕ ∈ Auk(F ) so that for C ∈ F we have C ∈ F ′

iff ϕ ∗ {C} = > (note that in this case we have F ′ = Fvar(ϕ)). The set of autark
sub-multi-clause-sets of F is closed under union, and contains the smallest element
> and the largest element F \ Na(F ). It is F ′ ≤ F an autark sub-multi-clause-set
of F iff there is V ⊆ var(F ) with FV = F ′ and F [V ] ∈ SAT .

The relation between the lean kernel of F and the largest autark sub-multi-
clause-set of F can be summarised as follows: For F ∈ MCLS there exist induced
sub-multi-clause-sets F1, F2 ≤ F with F1 + F2 = F , such that F1 is lean, while
var(F1) ∗ F2 is satisfiable; in this decomposition F1, F2 are uniquely determined,
namely F1 = Na(F ) is the largest lean sub-multi-clause-set (the lean kernel), while
F2 is the largest autark sub-multi-clause-set.
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For an example consider variables a, b, c, d with Da = Db = {0, 1, 2} and Dc =
Dd = {0, 1}, and consider the clause-set

F := F1 ∪ F2

F1 := {{a 6= 0, b 6= 0}, {a 6= 0, b 6= 1}, {a 6= 0, b 6= 2}, {a 6= 1}, {a 6= 2}}
F2 := {{a 6= 0, c 6= 0, d 6= 1}, {b 6= 0, c 6= 1, d 6= 0}}.

To see whether there is an autarky for F invoking exactly one variable we check
satisfiability of F [{v}] for v ∈ {a, b, c, d}; we see that all these clause-sets are un-
satisfiable (e.g., F [{c}] = {{c 6= 0}, {c 6= 1}}), and so the smallest non-trivial
autarky for F (if there is any) must involve at least two variables. Now F [{c, d}] =
{{c 6= 0, d 6= 1}, {c 6= 1, d 6= 0}} ∈ SAT , and thus the two partial assignments
〈c, d → 0〉, 〈c, d → 1〉 are autarkies for F ; applying one of them yields F1, which is
lean (F1 actually is minimally unsatisfiable), and thus F1 is the lean kernel of F ,
while F2 is the largest autark sub-clause-set of F .

3.6 Autarky systems

After having reviewed the general facts for autarkies for generalised multi-clause-
sets, we now consider “autarky systems”. The motivation for doing so is, that
instead of (computationally infeasible) general autarkies we want to consider re-
stricted autarkies, and under mild assumptions on these restricted autarkies all the
above facts carry over (in generalised form). The monoid (PASS, ◦, ∅) together with
the partial order (MCLS,≤,>) with least element and together with the operation
∗ of PASS on MCLS fulfils all the axioms required in Section 3 of [32], and thus
all the general results there on autarky systems hold here.

An autarky system for generalised multi-clause-sets is a map A, which assigns
to every F ∈MCLS a sub-monoid A(F ) of Auk(F ), such that for F1 ≤ F2 we have
A(F2) ⊆ A(F1). The elements of A(F ) are called A-autarkies for F . Further
possible restrictions on A are expressed by the following notions:

1. A is iterative, if for ϕ ∈ A(F ) and ψ ∈ A(ϕ∗F ) we always have ψ◦ϕ ∈ A(F ).

2. A is called standardised, if for a partial assignment ϕ ∈ PASS we have
ϕ ∈ A(F ) iff ϕ | var(F ) ∈ A(F ) (where ϕ | var(F ) is the restriction of the map
ϕ to the domain var(ϕ)∩var(F )). (Remark: Thus for a standardised autarky
system A all partial assignments ϕ with var(ϕ) ∩ var(F ) = ∅ are (trivial) A-
autarkies for F . In [32] only the direction “ϕ ∈ A(F ) ⇒ ϕ | var(F ) ∈ A(F )
is required, but now it seems more systematic to me to require also the other
direction.)

3. A is ⊥-invariant, if always A(F ) = A(F + {⊥}) holds (in [32, 33] this was
called “normal”).

4. A is stable under variable elimination, if for finite V ⊆ VA we always
have {ϕ ∈ A(V ∗ F ) : var(ϕ) ∩ V = ∅} = {ϕ ∈ A(F ) : var(ϕ) ∩ V = ∅}.

5. A is invariant under renaming, if for every F ′ obtained from F by renaming
v to w using h (recall Subsection 3.3) and for every autarky ϕ ∈ A(F ) we
have ϕ′ ∈ A(F ′) for the partial assignment ϕ′ obtained from ϕ by renaming
v to w using h.

6. A is stable for unused values, if for ϕ ∈ A(F ), v ∈ dom(ϕ) and for ε ∈ Dv

such that none of the two literals (v, ϕ(v)), (v, ε) occurs in F , also ϕ′ ∈ A(F )
holds, where ϕ′ is obtained from ϕ by flipping v to ε.
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An autarky system A is called normal, if it fulfils these six criteria, that is, if it
is iterative, standardised, ⊥-invariant, stable under variable elimination, invariant
under renaming and stable for unused values. Considering the boolean case (where
stability for unused values is covered by the standardisation condition, while in-
variance under renaming was not considered), in [32, 33] “normal autarky systems”
have been called “strong autarky systems”, but meanwhile the above properties
seem not so strong anymore to me, but quite “normal” (“ab-normality” is a defect
which can be repaired; see for example Lemma 8.4 in [33], which can be generalised
to generalised clause-sets). Examples for normal autarky systems are the smallest
standardised autarky system F ∈MCLS 7→ {ϕ ∈ PASS : var(ϕ)∩var(F ) = ∅} and
the largest autarky system F ∈MCLS 7→ Auk(F ). In this paper our main interest
is in normal autarky systems, and thus we don’t investigate further the relations
between the above notions and the other properties of autarky systems, but we will
state general results only either for all autarky systems or for all normal autarky
systems.

Consider an autarky system A. An A-reduction is a reduction F 7→ ϕ ∗ F
for some non-trivial ϕ ∈ A(F ). Since multi-clause-sets have finite variable sets, A-
reduction is terminating, and thus by Lemma 3.7 in [32] A-reduction is confluent,
and the result of applying A-reductions as long as possible is uniquely determined,
yielding a normal form NA(F ) ≤ F . As before, the operator NA is a kernel
operator, that is, NA(F ) ≤ F , NA(NA(F )) = NA(F ) and F1 ≤ F2 ⇒ NA(F1) ≤
NA(F2). Multi-clause-sets F with NA(F ) = > are called A-satisfiable, while in
case of NA(F ) = F we call F A-lean; the set of all A-satisfiable multi-clause-sets
is denoted by SATA, the set of all A-lean multi-clause-sets by LEANA. It is
F A-lean iff A(F ) contains no non-trivial autarky. The learn kernel NA(F ) is the
largest A-lean sub-multi-clause-set of F . A sum of A-lean multi-clause-sets again
is A-lean.

For the remainder of this subsection now assume that the autarky system A is
normal. Then F is A-satisfiable iff there exists ϕ ∈ A(F ) with ϕ ∗ F = >. More
generally, there always exists ϕ ∈ A(F ) with ϕ ∗ F = NA(F ). If F is A-lean,
then so is V ∗ F for finite V ⊆ VA. The A-autark sub-multi-clause-sets of F , i.e.,
those multi-clause-sets F ′ where there is ϕ ∈ A(F ) with F ′ = Fvar(ϕ), are exactly
those FV for some V ⊆ var(F ) where F [V ] is A-satisfiable. On the other hand,
if F is A-lean, then so is F [V ] (for all finite V ⊆ VA). The set of A-autark sub-
multi-clause-sets of F is closed under union, and contains the smallest element >
and the largest element F \ NA(F ). As before, the relation between the A-lean
kernel of F and the largest A-autark sub-multi-clause-set of F can be summarised
as follows: For F ∈ MCLS there exist induced sub-multi-clause-sets F1, F2 ≤ F

with F1 +F2 = F , such that F1 is A-lean, while var(F1) ∗F2 is A-satisfiable; in this
decomposition F1, F2 are uniquely determined, namely F1 = NA(F ) is the largest
A-lean sub-multi-clause-set (the A-lean kernel), while F2 is the largest A-autark
sub-multi-clause-set.

We finish our review on autarkies and autarky systems by generalising Lemma
8.6 in [33]. The proof can be literally transferred to our generalised context, and
thus is not reproduced here.

Lemma 3.1 Let A be a normal autarky system. Given decision of membership
in LEANA as an oracle, the normal form F 7→ NA(F ) for F ∈ MCLS can be
computed in polynomial time as follows:

1. If F ∈ LEANA then output F .
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2. Let var(F ) = {v1, . . . , vn(F )}.

3. Since ∅ ∗ F = F /∈ LEANA and var(F ) ∗ F = c(F ) · ť({⊥}) ∈ LEANA holds,
there is an index 1 ≤ i ≤ n(F ) with

{v1, . . . , vi−1} ∗ F /∈ LEANA and {v1, . . . , vi} ∗ F ∈ LEANA.

Replace F by the induced sub-multi-clause-set of F given by the clauses of F
not containing variable vi, and go to Step 1.

While the output of this procedure is Na(F ), if V is the set of variables vi selected
in Step 3, then FV is the largest autark subset of F .

The idea behind the algorithm of Lemma 3.1 is, that we want to find a variable v
such that there exists an autarky ϕ for F with v ∈ var(ϕ); if there is no such vari-
able, then F is lean while otherwise we can eliminate all clauses from F containing
variable v. Now the variable vi selected in Step 3 must be such a variable: Consider
a non-trivial autarky ϕi for Fi := {v1, . . . , vi−1} ∗ F with var(ϕi) ⊆ var(Fi). Since
{vi} ∗Fi is lean, it must vi ∈ var(ϕi) be the case, while ϕi is an autarky also for F .

3.7 Resolution

For autarky systems the number of occurrences of a clause in a multi-clause-set
might make a difference (as it is the case for matching autarkies introduced in
the subsequent section), however for all known resolution systems we do not need
this distinction, and thus only (generalised) clause-sets are considered for resolution
(that is, if multi-clause-sets F ∈MCLS are to be treated, then they are automati-
cally “downcast” to the underlying clause-set t̂(F )).

The resolution rule for generalised clause-sets is well-known. The most thorough
study for my knowledge in given in [37], where actually resolution is considered for
general “fipa-systems” (systems with finite instantiation by partial assignments) by
reducing resolution for such axiomatic systems to resolution for generalised clause-
sets, which act as “no-goods”, i.e., out of the general system we get the clauses C
belonging to the resolution refutation as clauses Cϕ associated with such partial
assignments, which led to a contradiction. In this subsection the most basic notions
are reviewed, and the interesting connection to autarkies is given.

Consider a variable v ∈ VA. “Parent clauses” C1, . . . , C|Dv| are called resolv-
able with resolution variable v, if valv({C1, . . . , C|Dv|}) = Dv and the resolvent
R :=

⋃|Dv|
i=1 {v}∗Ci actually is a clause (contains no clashing literals), that is, when-

ever there are literals x ∈ Ci, y ∈ Cj for some i, j ∈ {1, . . . , |Dv|} with x 6= y and
var(x) = var(y), then var(x) = v must be the case. Resolution is a complete and
sound refutation system; see for example Corollary 5.9 in [37], where, translating
branching trees into resolution trees, the existence of a resolution tree with at most
mds(F )n(F ) many leaves for unsatisfiable generalised clause-sets F is shown. Also
stated in [37] is the (well-known) “strong completeness” of resolution, that is, for a
multi-clause-set F ∈MCLS and a clause C ∈ CL we have F |= {C} iff there exists
a resolution tree with axioms from F deriving a clause C ′ ⊆ C.

In Theorem 3.16 in [31] it was shown for boolean clause-sets, that the lean
kernel of a clause-set F consists exactly of all clauses C ∈ F which can be used in
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some resolution refutation of F .9) This theorem can be immediately generalised to
generalised clause-sets, using exactly the proof from [31] (together with the proof
transformation tools provided in [37]). In [32], Theorem 4.1 this generalisation is
stated, but without a proof, which we now outline as follows. Consider the set
U(F ) of clauses C ∈ F for which there exists a tree resolution refutation of F
using C as an axiom. The direction, that a clause C ∈ F \ Na(F ) can not be
used in tree resolution refutations of F (i.e., U(F ) ⊆ Na(F )), is easily proved by
induction (an autarky of F satisfying C satisfies also all clauses derived from C

in the tree). For the reverse direction the main technical lemma is, that for each
variable v ∈ var(U(F )) and each ε ∈ Dv the unit-clause {(v, ε)} can be derived
from U(F ) by resolution (this is a little proof-theoretic exercise; see Lemma 3.14 in
[31] for the boolean case). Now it follows, that F \U(F ) is an autark sub-clause-set
of F , since if the clause-set var(U(F )) ∗ (F \ U(F )) would be unsatisfiable, then
there would be a tree resolution refutation T of var(U(F )) ∗ (F \ U(F )), where
the axioms of T could be derived from the clauses in F \ U(F ) and the clauses in
U(F ) by the above technical lemma, and thus we could construct a tree resolution
refutation involving some clause of F \ U(F ), contradicting the definition of U(F )
(compare with Lemma 3.15 in [31] for the boolean case). That F \U(F ) is an autark
sub-clause-set of F means Na(F ) ⊆ U(F ), and altogether we have shown

Theorem 3.2 For any generalised clause-set F ∈ CLS the lean kernel Na(F ) equals
the set U(F ) of clauses of F usable in some (tree) resolution refutation of F . Es-
pecially it is F lean if and only if F = U(F ), that is, if every clause of F can be
used in some (tree) resolution refutation of F .

As shown in Section 6 of [32], Theorem 3.2 yields an algorithm for computing
Na(F ) by using “intelligent backtracking solvers”, which on unsatisfiable instances
can return the set of variables used in some resolution refutation of the input.
Crossing out these variables from the input, removing the empty clause obtained,
and repeating this process, we finally obtain a satisfiable clause-set F ∗, and now
any satisfying assignment ϕ for F ∗ with var(ϕ) ⊆ var(F ∗) is an autarky for F with
ϕ ∗F = F \Na(F ). See [40] for more details on this computation of the lean kernel
(in [40] only boolean clause-sets are considered, but based on the results of the
present article, all (mathematical) results can be generalised in the natural way).

We conclude this subsection by defining the Davis-Putnam operator DP
for generalised clause-sets. Consider a clause-set F ∈ CLS and a variable v ∈
var(F ). Let Fv be the set of all resolvents of parent clauses in F with resolution
variable v. Now we set DPv(F ) := {C ∈ F : v /∈ var(C)} ∪ Fv. From the
completeness results for (generalised) resolution in [37] it follows immediately, that
DPv(F ) is satisfiability equivalent to F , and that F is unsatisfiable if and only if by
repeated applications of the Davis-Putnam operator we finally obtain the clause-
set {⊥} (while for satisfiable F finally we will obtain the clause-set >). We can
also generalise Lemma 7.6 in [39] about the commutativity of the Davis-Putnam
operator, that is, if G1 is the result of applying first DPv1 , then DPv2 , ..., and finally
applying DPvm , while G2 is the result of applying first DPvπ(1) , then DPvπ(2) , ...,
and finally applying DPvπ(m) , for some permutation π ∈ Sm, then after elimination
of subsumed clauses in G1 and G2 (see the following subsection) G1 becomes equal
to G2. It follows that for any set of variables V the operator DPV , computed by
running through the variables of V in some order, is uniquely determined up to

9)Where the resolution refutation may not contain “dead ends”, which can be most easily
enforced by considering only resolution trees.
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subsumption reduction in the result. We always have DPV (F ) = DPV (FV ) ∪ (F \
FV ). If for some V ⊆ var(F ) we have DPV (FV ) = >, then F and F \ FV are
satisfiability equivalent, generalising the elimination of autark sub-clause-sets: If
ϕ ∈ Auk(F ), then DPvar(ϕ)(Fvar(ϕ)) = >, while the reverse direction need not hold,
as the example F = {{v, a}, {v, a}} ∪ F ′, v /∈ var(F ′), with V = {v} shows (for
boolean variables). We see that the Davis-Putnam operator, whose application for
generalised clause-sets is basically the same as existential quantification, yields more
powerful reductions, but this at the cost of potential exponential space usage.

3.8 Reductions

In this subsection we review the most basic polynomial time reduction concepts.
For a thorough discussion in the boolean case, see [39]. We consider only clause-sets
F ∈ CLS, but all results are easily generalised to multi-clause-sets.

The most basic reduction (by which we mean a satisfiability-equivalent trans-
formation, simplifying the clause-set in some sense) is subsumption elimination,
the elimination of subsumed clauses, i.e., the transition F → F \ {C} for C ∈ F

in case there exists C ′ ∈ F with C ′ ⊂ C. Iterated elimination of subsumed clauses
is confluent, and thus the result of applying subsumption elimination as long as
possible is uniquely determined (namely it is the set of all minimal clauses of F ); if
F has no subsumed clauses, then we call F subsumption-free.

The next reduction can be called the trivial-domain reduction: If there exists
v ∈ var(F ) with |Dv| = 1, then for Dv = {ε} reduce F 7→ 〈v → ε〉 ∗ F .

Elimination of “pure literals” is now better called elimination of pure vari-
ables: If there is v ∈ var(F ) with |valv(F )| < |Dv|, then for some ε ∈ Dv \ valv(F )
reduce F 7→ 〈v → ε〉 ∗ F . This is the basic form of a pure autarky as mentioned
in Subsection 4.4 of [32].

Unit-clause elimination for generalised clause-sets is less powerful than in the
boolean case: If F contains a unit-clause {(v, ε)} ∈ F , then in case of Dv = {ε} by
trivial-domain reduction we conclude that F is unsatisfiable, but otherwise we can
only conclude that value ε is to be excluded from the domain of v, and in general
we cannot eliminate the variable v. In our context, where we fixed the domain of
each variable, thus unit-clause elimination for {(v, ε)} ∈ F replaces all C ∈ F by
C \ {(v, ε)} in case of Dv = {ε}, while otherwise we eliminate all clauses containing
the literal (v, ε) from F , and replace variable v in the remaining occurrences by a new
variable v′ with Dv′ = Dv \ {ε} 6= ∅ (using any value transfer which is injective on
Dv — this will ensure that the replacement in injective (recall Subsection 3.3)). The
effect of unit-clause elimination in the boolean case is obtained when combining this
generalised form of unit-clause elimination with trivial domain reduction. Repeated
unit-clause elimination (aka unit-clause propagation) in the boolean case is confluent
when combined with subsumption elimination in case the empty clause is created;
now the generalised form of unit-clause elimination combined with trivial-domain
reduction is confluent modulo renaming (again using subsumption elimination if the
empty clause is created by trivial-domain reduction); generalising the well-known
linear time algorithm for unit-clause propagation in the boolean case, this normal
form can be computed in linear time.

Considering clauses C ∈ CL as constraints of scope var(C) (see [12], Subsection
2.1.1), and thus clause-sets F ∈ CLS as constraint networks (or constraint satis-
faction problems), F is arc-consistent ([12], Definition 3.6) iff for all C ∈ F \ {⊥}
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we have |C| ≥ 2, while F is relational arc-consistent ([12], Definition 8.1) iff for all
v ∈ var(F ) we have |Dv| ≥ 2.

Finally we consider the most harmless cases for DP-reductions. In general,
application of DPv to F eliminates #v(F ) =

∑
ε∈Dv

#(v,ε)(F ) clauses and creates
up to

∏
ε∈Dv

#(v,ε)(F ) new clauses (with potential repetitions; less iff some of the
parent clause combinations are not eligible for resolution due to additional clashes).
Thus we have

c(DPv(F )) ≤ c(F )−
∑

ε∈Dv

#(v,ε)(F ) +
∏

ε∈Dv

#(v,ε)(F ). (1)

If in (1) we have a strict inequality or v is a pure variable for F , then we call v a de-
generated DP-variable w.r.t. F , while otherwise v is called a non-degenerated
DP-variable w.r.t. F . Note that a missing new clause due to additional clashes
is not the only cause of a strict inequality, but it is also possible that a resolvent
is already contained in the rest of F , or that two resolvents coincide (and thus in
both cases contraction occurs). If variable v ∈ var(F ) has a trivial domain (i.e.,
|Dv| = 1), then either we have a subsumption C,C∪{(v, ε)} ∈ F (for some clause C
not containing v), or v is a non-degenerated DP-variable with c(DPv(F )) = c(F ); in
any case DPv(F ) is the result of applying trivial domain reduction to F . If v is pure
w.r.t. F , then F is a degenerated DP-variable with c(DPv(F )) = c(F )−#v(F ), and
DPv(F ) is the result of applying elimination of pure variables to F . Besides these
cases, in this article we consider only one very restricted form of DP-resolution,
characterised by the condition that at most one of the factors in the product from
(1) might be greater than one:

We call a variable v which is not pure for F a singular DP-variable w.r.t. F
if there exists ε ∈ Dv such that for all ε′ ∈ Dv \ {ε} we have #(v,ε′)(F ) ≤ 1. In
such a case of a singular DP-variable, application of DPv eliminates |Dv| − 1 +
#(v,ε)(F ) clauses and creates up to #(v,ε)(F ) new clauses, so that the number of
clauses goes down at least by one if |Dv| 6= 1. If a singular DP-variable v is non-
degenerated then we have c(DPv(F )) = c(F )−|Dv|+1. If v is a degenerated singular
DP-variable, then at least one of the clauses in F containing v can be eliminated
satisfiability-equivalently, and we call such a clause elimination a singular DP-
degeneration reduction. Since a singular DP-degeneration reduction cannot be
applied to a minimally unsatisfiable clause-set, a singular variable w.r.t. a minimally
unsatisfiable clause-set must be non-degenerated. Actually more can be said here:

Lemma 3.3 Consider a generalised clause-set F ∈ CLS and a singular DP-variable
v w.r.t. F . Then the following two conditions are equivalent:

1. F is minimally unsatisfiable.

2. v is a non-degenerated DP-variable w.r.t. F and DPv(F ) is minimally unsat-
isfiable.

Proof: We have already seen, that if F is minimally unsatisfiable, then v is non-
degenerated. If DPv(F ) were not minimally unsatisfiable, then there would be a
clause C ∈ DPv(F ) such that DPv(F ) \ {C} would still be unsatisfiable, and thus
would have a resolution refutation — now it is easy to see that in this case we would
also obtain a resolution refutation of F not using one of the clauses in F .

For the reverse direction assume that v is non-degenerated and that DPv(F ) is
minimally unsatisfiable. By a similar argumentation as for the other direction, if
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there would be a resolution refutation of F not using one of the clauses from F ,
then one could construct a resolution refutation of DPv(F ) not using (at least) one
of the clauses from DPv(F ).

In the boolean case, such applications of DP-reduction are used at many places in
the literature (in [28], Appendix B, the application of DPv for non-degenerated sin-
gular DP-variables v is called “(1,∞)-reduction” (the boolean case)). We conclude
by another reduction arising from the DP-operator. The notion of blocked clauses
for boolean clause-sets (see [29, 30]) can be generalised by calling a clause C blocked
w.r.t. F if there exists a variable v ∈ var(C) with DPv(F ∪ {C}) = DPv(F \ {C}).
If C ∈ F is blocked w.r.t. F , then F is satisfiability equivalent to F \{C}, and such
a reduction is called elimination of blocked clauses. If v is a pure variable for
F , then all clauses of F containing variable v are blocked w.r.t. F . And if v is a
degenerated singular DP-variable, then F has at least one blocked clause contain-
ing v, and so singular DP-degeneration reduction is also covered by elimination of
blocked clauses.

3.9 Conflict structure

A study of the “combinatorics of conflicts” for boolean clause-sets has been initiated
with [34, 35] and continued with [21, 36]. We generalise here only a very few simple
notions used later in this article.

The conflict graph cg(F ) of a clause-set F ∈ MCLS has as vertices the
clauses of F , and edges joining two vertices C,D with a clashing literal between
C and D, that is, there is a literal x ∈ C for which there exists a literal y ∈ D with
var(x) = var(y) and x 6= y. A clause-set F is called a hitting clause-set if the
conflict graph of F is a complete graph, and the hitting degree hd(F ) ∈ N of a
hitting clause-set with at least two clauses is the maximum of the number of edges
joining two different vertices in the conflict multigraph of F . More specifically we
call F a r-uniform hitting clause-set for r ∈ N0 if for every two different clauses
in F have exactly r conflicts (thus if F is r-uniform hitting for r ≥ 1, then F is
hitting), while a uniform hitting clause-set is an r-uniform hitting clause-set for
some r ≥ 0, and we denote the set of uniform hitting clause-sets by UHIT .

More generally a clause-set F is called at most k-multihitting for some k ∈ N0

if the conflict graph of F is complete k-partite, while F is called multihitting if it
is at most k-multihitting for some k; let MHIT denote the set of all multihitting
clause-sets. While “at most k-multihitting” implies that the chromatic number of
the conflict graph is at most k, if we speak of k-multihitting then the chromatic
number of the conflict graph must be equal to k (so that F hitting iff F is c(F )-
multihitting). For a multihitting clause-set F the multihitting number mh(F ) ∈
N0 is the unique k such that F is k-multihitting. For a given multihitting clause-set
F there is a unique partition F of F (that is, F is a set of sub-clause-sets of F which
are non-empty and pairwise disjoint, such that their union is F ), so that for any
clauses C1, C2 ∈ F with Ci ∈ Fi ∈ F for i ∈ {1, 2} the clauses C1 and C2 clash if
and only if F1 6= F2; we call F the multipartition of F (if F is bihitting, then F is
also called the bipartition of F ).

26



4 Matching autarkies

In this section we introduce the autarky system for generalised clause-sets given by
“matching autarkies”, and we show various polynomial time procedures. “Matching
autarkies” for clause-sets with non-boolean variables have been introduced in [32],
and some basic properties have been stated regarding the standard translation of
clause-sets with non-boolean variables to clause-sets with boolean variables, but as
we will discuss in Subsection 4.4, this earlier version of the notion is actually too
restrictive (another example which shows, that the generalisations in this paper are
not completely straight-forward but invoke subtleties one needs to get right). An
overview on our results is as follows.

The purpose of Section 4.1 is to generalise the notion of deficiency δ(F ), which
has been introduced for boolean clause-sets F in [19] as δ(F ) = c(F )−n(F ). As for
boolean clause-sets we will obtain “matching satisfiable clause-sets” F characterised
by the condition δ∗(F ) = 0 (where δ∗(F ) is the maximal deficiency taken over all
sub-clause-sets of F ), which is equivalent to a certain matching situation. Whence
matching satisfiability can be decided in polynomial time by finding a maximum
matching, which yields also a satisfying assignment (called a “matching satisfying
assignment”) in the positive case.

In Section 4.2 we investigate the relation between general satisfiability and
matching satisfiability. We will see that if a clause-set F is satisfiable, then it
has a matching satisfiable sub-clause-set F ′ with at most δ∗(F ) less clauses than
F , and moreover there is a matching satisfying assignment ϕ0 for F ′ which can be
extended to a satisfying assignment ϕ for F using at most δ∗(F ) additional vari-
ables. The proof shows, that every satisfying assignment ϕ for F can be modified
to become such an extension by means of flips of (single) variable assignments such
that throughout the whole process we always have a satisfying assignment for F .10)

As an application we obtain in Corollary 4.9 that the hierarchy of clause-sets given
by the parameter δ∗ allows polynomial-time SAT decision for each level; in Theorem
5.5 we will see that actually this hierarchy is fixed-parameter tractable by combin-
ing the structural results from Subsection 4.3 with the fixed-parameter tractability
of the boolean case.

Having a (restricted) concept C of satisfying assignments, we can “typically”
obtain an autarky system (recall Subsection 3.5) by calling ϕ a “C-autarky” for a
clause-set F if ϕ is a C-satisfying assignment for F [var(ϕ)] (recall Subsection 3.4),
or, equivalently at least for general satisfiability, if ϕ is a C-satisfying assignment
for Fvar(ϕ). We have to leave such a general theory to future work, but in this
article we will consider “matching autarkies” obtained in this way from matching
satisfying assignments in Subsection 4.3. A central notion is the notion of a “tight
sub-clause-set” F ′ of a clause-set F , characterised by the condition δ(F ′) = δ∗(F )
(that is, F ′ realises the maximal deficiency of F ). Translating general results of
matching theory into our setting, the set of tight sub-clause-sets of F form a set-
lattice (i.e, union and intersection of tight sub-clause-sets are again tight), and so
we have a smallest and a largest tight sub-clause-set. In Corollary 4.19 we see that
the smallest tight sub-clause-set of F is identical to the lean kernel of F (obtained
from F by repeated matching-autarky reduction). It follows that if F is matching
lean, then all strict sub-clause-sets of F have a deficiency strictly less than the

10)This additional property is also new for the boolean case; it is implicitly contained in the
proofs from [16], which are not only generalised here, but also simplified in such a way, that the
construction becomes more lucid.
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deficiency of F (actually, this condition characterises matching leanness, as shown
in Lemma 4.16), and thus, since the empty sub-clause-set has deficiency 0, we obtain
δ(F ) ≥ 1 for non-empty matching lean clause-sets. We remark here, that applying
the general procedure from Lemma 3.1 we obtain polynomial-time computability of
the matching lean kernel (in Corollary 4.18), but that a direct computation using
matching arguments is more efficient (not discussed in this paper, since here we do
not go into algorithmic details).

Let us close the introduction to this section by two technical remarks:

1. Matching arguments are sensitive to repetition of clauses, and thus in this
section, instead of just using clause-sets we have to use the more general
notion of a multi-clause-set (recall Subsection 3.1).

2. In case of a pure variable v ∈ var(F ) for some F ∈ MCLS (that is, not all
values ε ∈ Dv are used in F ) we assume that Dv contains exactly one value
not used in F (i.e., |Dv| = |valv(F )| + 1); in this way we are not troubled
anymore by the unknown domain size Dv, but we can measure the size of F
just by `(F ), while this modification has no influence on any of the notions
and procedure in this article (regarding autarkies, all autarky systems studied
here are stable for unused values).

4.1 Matching satisfiable generalised clause-sets

We whish to generalise the notion of “matching satisfiable clause-sets”, introduced
in [33] for boolean clause-sets. Consider a multi-clause-set F together with a de-
composition F = F1 + · · ·+Fm for m ∈ N0 and Fi ∈MCLS, fulfilling the following
conditions:

(i) for i ∈ {1, . . . ,m} there are variables vi ∈ var(Fi) such that for all C ∈ Fi we
have vi ∈ var(C);

(ii) the variables v1, . . . , vm are pairwise different;

(iii) for all i ∈ {1, . . . ,m} we have |Dvi | > |valvi(Fi)|.

Given such a decomposition, we see that F is satisfiable, since for each i there exists
εi ∈ Dvi

\ valvi
(Fi), and the assignment 〈vi → εi : i ∈ {1, . . . ,m}〉 is a satisfying

assignment for F (note that none of the variables vi needs to be a pure variable in
F ). If we consider on the other hand an arbitrary partial assignment ϕ satisfying F
with var(ϕ) = {v1, . . . , vm}, and set Fi for i ∈ {1, . . . ,m} as the induced sub-multi-
clause-set of F given by the clauses C ∈ F with vi ∈ var(C) and (vi, ϕ(vi)) /∈ C,
then we obviously fulfil the above conditions, and we see that conditions (i) - (iii)
need to be restricted so that we can obtain a class of satisfiable clause-sets which
is decidable in polynomial time. We observe that c(Fi) ≥ |valvi(Fi)| is true for
arbitrary multi-clause-sets Fi, and thus condition

(iii)’ for all i ∈ {1, . . . ,m} we have |Dvi
| > c(Fi)

strengthens condition (iii). We call multi-clause-sets F ∈ MCLS having a de-
composition F = F1 + · · · + Fm fulfilling conditions (i), (ii) and (iii)’ matching
satisfiable, and the set of all matching satisfiable (generalised) multi-clause-sets is
denoted by MSAT .
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To understand the connection to matching problems, we introduce the bipartite
graph B(F ) for generalised multi-clause-sets F ∈MCLS:

• Let F :=
{

(C, i) : C ∈ F, i ∈ {1, . . . , F (C)}
}

V :=
{

(v, j) : v ∈ var(F ), j ∈ {1, . . . , |Dv| − 1}
}
.

• the vertex set of B(F ) is defined as V (B(F )) := F ]V ; (the elements of F are
called the clause-nodes, while the elements of V are called the variable-nodes)

• the edge set E(B(F )) is the set of all (undirected) edges {(C, i), (v, j)} over
V (B(F )) such that v ∈ var(C).

In other words, the graph B(F ) has as vertices F (C)-many copies of clauses C ∈ F
together with (|Dv| − 1)-many copies of variables v ∈ var(F ), while edges connect
copies of variables v with copies of clauses C such that v ∈ var(C). The canonical
bipartition of B(F ) is (F , V ). Consider for example the clause-set F = {C1, C2, C3}
with C1 = {(v1, a), (v2, a)}, C2 = {(v2, b), (v3, b)}, C3 = {(v3, c), (v1, c)}, where
Dvi

= {a, b, c}. Now B(F ) is (suppressing the indices for the clause-copies, since
here we just have a clause-set):

B(F ) = C1

uuuuuuuuu

IIIIIIIII

TTTTTTTTTTTTTTTTTTT C2

uuuuuuuuu

IIIIIIIII

TTTTTTTTTTTTTTTTTTT C3

uuuuuuuuu

cccccccccccccccccccccccccccccccccccccccccccccccccccc

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

(v1, 1) (v1, 2) (v2, 1) (v2, 2) (v3, 1) (v3, 2)

For a set V of variables we obtain B(V ∗F ) from B(F ) by deleting the variable-nodes
(v, j) of B(F ) with v ∈ V , while B(F [V ]) is the induced subgraph of B(F ) given by
the variable-nodes (v, j) of B(F ) with v ∈ V together with their neighbours (those
clause-nodes (C, i) with var(C) ∩ V 6= ∅).

Lemma 4.1 A multi-clause-set F is matching satisfiable iff there exists a matching
in B(F ) covering all vertices of F .

Proof: If F is matching satisfiable, then (using the notations in the definition of
matching satisfiability above) the clause-nodes corresponding to the clause-occur-
rences in Fi can all be covered by the the variable-nodes belonging to vi (since c(Fi)
does not exceed the number of copies of vi), and altogether we obtain a matching
covering all clause-nodes. If (for the other direction) we have a matching in B(F )
covering all vertices of F , then for each variable v involved in the matching consider
a sub-multi-clause-set Fv of F corresponding to the clause-vertices connected via
the matching to the variable-nodes associated with v. These Fv together constitute
the desired decomposition of F .

Using the weighted number of variables wn(F ) :=
∑

v∈var(F )(|Dv| − 1) ∈
N0, the number of vertices of B(F ) is |V (B(F ))| = c(F ) + wn(F ), while the num-
ber of edges is |E(B(F ))| =

∑
v∈var(F ) #v(F ) · (|Dv| − 1). We have wn(F ) =

(
∑

v∈var(F )|Dv|)− n(F ). If F is boolean, then wn(F ) = n(F ).

Let the deficiency of a (generalised) multi-clause-set F be defined as

δ(F ) := c(F )− wn(F ) ∈ Z,

while the maximal deficiency is defined as

δ∗(F ) := max
F ′≤F

δ(F ′) ∈ N0
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(we have δ∗(F ) ≥ 0 due to δ(>) = 0); by definition we have δ∗(F ) ≤ c(F ). Consid-
ering F ′ ≤ F as a subset of F , the deficiency δ(F ′) of F ′ ≤ F is just the deficiency
of this subset in B(F ) (as we have defined it for arbitrary graphs). By match-
ing theory the maximal number of nodes of F coverable by some matching thus is
c(F )− δ∗(F ). Summarising we have (generalising Lemma 7.2 in [33]):

Lemma 4.2 Consider a generalised multi-clause-set F ∈MCLS.

1. The maximal size of a matching satisfiable sub-multi-clause-set F ′ ≤ F is
c(F ′) = c(F )− δ∗(F ).

2. F is matching satisfiable if and only if δ∗(F ) = 0.

As an application we can generalise the well-known fact, apparently first men-
tioned in the literature in [49], that if a boolean clause-set F has minimal clause-
length k and maximal variable occurrence k for some k ≥ 1, then F must be
satisfiable (see [26] for recent further developments):

Corollary 4.3 Consider a generalised clause-set F ∈ CLS containing a non-empty
clause. Then

maxv∈var(F ) #v(F )
minC∈F |C|

≤ min
v∈var(F )

|Dv| − 1 =⇒ F ∈MSAT .

Proof: Assume the condition holds, and consider F ′ ⊆ F . We have to show
δ(F ′) ≤ 0. Let d := minv∈var(F )|Dv|. Then δ(F ′) ≤ c(F ′) − (d − 1)n(F ′), and a
sufficient condition for δ(F ′) ≤ 0 is c(F ′)

n(F ′) ≤ d− 1. Let a := maxv∈var(F ) #v(F ) and

b := minC∈F |C|. We know c(F ′) · b ≤ `(F ′) ≤ n(F ′) · a, and thus c(F ′)
n(F ′) ≤

a
b .

Since matchings of maximal size can be computed in polynomial time (see Chap-
ter 16 in [46]), we get the following poly-time results:

Lemma 4.4 For every generalised clause-set F ∈ MCLS, in polynomial time in
`(F ) we can compute F ′ ≤ F with F ′ ∈MSAT such that c(F ′) is maximal. Since
F ′ = F iff F is matching satisfiable, it follows that whether F is matching satisfiable
or not is decidable in polynomial time. And due to c(F ′) = c(F )−δ∗(F ) the maximal
deficiency δ∗(F ) is computable in polynomial time.

4.2 Satisfying assignments versus matching satisfying assign-
ments

Consider a (generalised) multi-clause-set F ∈MCLS and a partial assignment ϕ ∈
PASS. The partial subgraph Bϕ(F ) of B(F ) is obtained from B(F ) by eliminating
all edges {(C, i), (v, j)} such that for the literal (v, ε) ∈ C we have ϕ((v, ε)) = 0
(i.e., ϕ(v) = ε). Now ϕ is called a matching-satisfying assignment for F if
Bϕ(F ) contains a matching covering all clause-vertices (thus matching satisfying
assignments are satisfying assignments). By Lemma 4.1 we get that F is matching
satisfiable iff there exists a matching satisfying assignment for F . The following two
lemmas give simple basic properties regarding this notion.

Lemma 4.5 Consider a generalised multi-clause-set F ∈ MCLS and a partial
assignment ϕ ∈ PASS.
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1. If ϕ is satisfying for F , then there exists ϕ′ ⊆ ϕ with n(ϕ′) ≤ c(F ) such that
also ϕ′ is satisfying for F .

2. If ϕ is matching satisfying for F , then there exists ϕ′ ⊆ ϕ with n(ϕ′) = c(F )
such that also ϕ′ is matching-satisfying for F .

3. If ϕ is satisfying for F , and there is no ϕ′ ⊆ ϕ with n(ϕ′) < c(F ) such that
ϕ′ is satisfying for F , then ϕ is matching-satisfying for F .

Proof: Assertions 1 and 2 follow by definition, while assertion 3 follows by Hall’s
criterion.

Lemma 4.6 Consider a generalised multi-clause-set F ∈ MCLS and partial as-
signments ϕ,ψ ∈ PASS. If ϕ ◦ ψ is matching-satisfying for F , then ϕ is matching-
satisfying for ψ ∗ F .

The main result of this subsection is the following theorem.

Theorem 4.7 For a satisfiable generalised multi-clause-set F ∈MCLS there exists
a satisfying assignment ϕ for F and a sub-multi-clause-set F ′ ≤ F with c(F ′) =
c(F )− δ∗(F ), such that ϕ is matching-satisfying for F ′.

We obtain the following generalisation of Theorem 7.16 in [33]:

Corollary 4.8 For every satisfiable generalised multi-clause-set F ∈ MCLS there
exists a partial assignment ϕ ∈ PASS with n(ϕ) ≤ δ∗(F ) such that ϕ∗F is matching
satisfiable.

Proof: By Theorem 4.7 there exists a satisfying assignment ϕ0 for F and F ′ ≤ F

with c(F ′) = c(F ) − δ∗(F ), such that ϕ0 is matching-satisfying for F ′. Let F ′′ :=
F −F ′. We have c(F ′′) = δ∗(F ) and ϕ0 is satisfying for F ′′, so by Lemma 4.5, Part
1 there exists ϕ ⊆ ϕ0 with n(ϕ) ≤ δ∗(F ) such that ϕ is satisfying for F ′′. Now
ϕ0 = ϕ0 ◦ϕ is matching-satisfying for F ′, and thus by Lemma 4.6 it is ϕ0 matching-
satisfying for ϕ ∗ F ′, where ϕ ∗ F = ϕ ∗ (F ′ + F ′′) = ϕ ∗ F ′ + ϕ ∗ F ′′ = ϕ ∗ F ′, and
thus ϕ0 is matching-satisfying for ϕ ∗ F .

Corollary 4.9 The satisfiability problem for generalised multi-clause-sets F with
δ∗(F ) ≤ k for constant k ∈ N0 is decidable in polynomial time (and if F is satisfi-
able, then a satisfying assignment can be computed).

In [48] it was shown, that in the boolean case the satisfiability problem for bounded
maximal deficiency actually is fixed-parameter tractable. By reducing the general
case to the boolean case, we will show fixed-parameter tractability in Theorem 5.5
also for generalised clause-sets.

The remainder of this subsection is devoted to the proof of Theorem 4.7 (gener-
alising and simplifying the results on “admissible matchings” in [16]). A maximal
matching in a graph is one which can not be extended, while a maximum matching is
a matching of maximal size. The vertices covered by a matching M are the vertices
incident to one of the edges in M . We begin with two auxiliary lemmas, using the
following notions: Consider partial assignments ϕ,ϕ′ with var(ϕ), var(ϕ′) ⊇ var(F );
we call ϕ′ a good neighbour of ϕ w.r.t. F , if there is exactly one variable v ∈ var(F )
with ϕ(v) 6= ϕ′(v), and every clause of F falsified by ϕ′ is also falsified by ϕ.
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Lemma 4.10 Consider a generalised multi-clause-set F ∈ MCLS, a partial as-
signment ϕ ∈ PASS, a matching M in Bϕ(F ) and an edge {v, C} ∈ E(Bϕ(F ))
such that neither v nor C is covered by M . We assume furthermore, that if there
exists a matching M∗ ⊃M in Bϕ(F ), then M∗ does not cover v. Then there exists
a good neighbour ϕ′ of ϕ w.r.t. F , such that M ′ := M ∪ {{v, C}} is a matching in
Bϕ′(F ).

Proof: Let v0 be the underlying variable of variable-node v, and C0 the underlying
clause of clause-node C. Let E be the set of values ε ∈ Dv0 , such that there is an
edge {(v0, i), (A, j)} ∈ M with (v0, ε) ∈ A. Since v is not covered by M , we have
|E| ≤ |Dv0 | − 2, and thus there are ε1, ε2 ∈ Dv0 \ E, ε1 6= ε2. W.l.o.g. we can
assume ϕ(v0) = ε1 and (v0, ε1) ∈ C0 (otherwise M ′ would be a matching in Bϕ(F )
covering v). Set ϕ′ := ϕ ◦ 〈v0 → ε2〉. By definition it is M ′ a matching in Bϕ′(F ).
Now consider a clause A ∈ F falsified by ϕ′, and assume that A is not falsified
by ϕ. Thus (v0, ε2) ∈ A, and the literal (v0, ε2) is the only literal in A satisfied
by ϕ. So no clause-node covered by M has clause A associated with it. It follows
that M∗ := M ∪{{v, (A, 1)}} is a matching in Bϕ(F ) extending M and covering v,
contradicting the assumption.

Lemma 4.11 Consider a generalised multi-clause-set F ∈ MCLS, a partial as-
signment ϕ ∈ PASS, a maximal matching M ′ in Bϕ(F ) and an edge {v, C} ∈
E(Bϕ(F )) such that v is not covered by M ′, while C is covered by M ′ and thus
there is a (unique) edge {C,w} ∈ M ′. Then there exists a partial assignment ϕ′,
such that either ϕ′ = ϕ or ϕ′ is a good neighbour ϕ′ of ϕ w.r.t. F , and such that
M ′′ := (M ′ ∪ {{v, C}}) \ {{C,w}} is a matching in Bϕ′(F ) with |M ′′| = |M ′|,
variable-node w is not covered by M ′′, and the clause-nodes covered by M ′′ are
exactly the clause-nodes covered by M ′.

Proof: Let v0 be the underlying variable of variable-node v, C0 the underlying
clause of clause-node C, and let (v0, ε) ∈ C0. If ϕ((v0, ε)) = 1, then let ϕ′ := ϕ and
we are done. Otherwise let M := M ′ \ {{C,w}} and apply Lemma 4.10.

We further remind at the notion of an M -augmenting path for a matching M in
a graph G (see Section 16.1 in [46]), which is a path of odd length with endpoints
not covered by M and whose edges are alternatingly out of and in M .

Lemma 4.12 Consider a generalised multi-clause-set F ∈ MCLS, a partial as-
signment ϕ ∈ PASS, a matching M in Bϕ(F ) and an M -augmenting path in
B(F ) (note that here we can use all edges). Then we can construct (in polynomial
time) partial assignments ϕ0, . . . , ϕm, m ∈ N0, and a matching M+ in Bϕm

(F )
with |M+| = |M | + 1, such that ϕ0 = ϕ and ϕi is a good neighbour of ϕi−1 for
i ∈ {1, . . . ,m}.

Proof: In the following construction we will construct ϕ0, . . . , ϕm′ for some m′ ∈
N0, fulfilling the above conditions but allowing ϕi = ϕi+1 for some i; m ≤ m′ and
the final list of partial assignments is obtained by removing identical neighbours
from the list ϕ0, . . . , ϕm′ . W.l.o.g. we can assume that the augmenting path P

is of the form P = (v1, C1, v2, C2, . . . , vk, Ck), k ∈ N, where the vi are (distinct)
variable-nodes, and the Ci are (distinct) clause-nodes. We construct now partial
assignments ϕi and matchings Mi in Bϕi(F ) for i = 0, . . . ,m′, where 0 ≤ m′ < k is
determined by the following construction:

1. Set ϕ0 := ϕ and M0 := M .
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2. Set i := 1.

3. While i < k do

(a) if matching Mi−1 is not maximal in Bϕi−1(F ), then extend Mi−1 by one
edge to obtain M+, and with m′ := i − 1 we are done with the whole
construction;

(b) otherwise apply Lemma 4.11 with M ′ := Mi−1, ϕ := ϕi−1 and v := vi,
C := Ci, and let Mi := M ′′ and ϕi := ϕ′;

(c) set i := i+ 1.

4. After completing the while-loop (we now have i = k), apply Lemma 4.10 with
M := Mi−1, ϕ := ϕi−1 and v := vi, C := Ci, and we set m′ := i, ϕi := ϕ′

and M+ := M ′.

Using the fact, that if a matching in a graph is not maximum, then it has
an augmenting path (see Theorem 16.1 in [46]), we prove Theorem 4.7 as follows:
Start with any satisfying assignment ϕ0 for F and the empty matching M0. Apply
Lemma 4.12 repeatedly until a maximum matching M+ in B(F ) is obtained, and
set ϕ := ϕm.

4.3 Matching autarkies for generalised clause-sets

A partial assignment ϕ is called a matching autarky for F ∈ MCLS if ϕ is
matching-satisfying for Fvar(ϕ), which is equivalent to ϕ being matching-satisfying
for F [var(ϕ)]. The set of all matching autarkies for F is denoted by MAuk(F ).
Generalising Lemma 7.1 and the remarks in Section 8 of [33] we get

Lemma 4.13 It is F ∈MCLS 7→ MAuk(F ) ⊆ Auk(F ) a normal autarky system.

We denote by Nma := NMAuk the normal form for multi-clause-sets obtained by
eliminating all matching autarkies. According to our general results and definitions
on autarky systems, the set of MAuk-satisfiable multi-clause-sets is just MSAT ,
the set of matching satisfiable multi-clause-sets. The set of MAuk-lean clause-sets
is denoted by MLEAN , its elements are called matching lean multi-clause-sets.
We now seek to characterise MLEAN , and to compute Nma(F ) in polynomial time.

A sub-multi-clause-set F ′ ≤ F of a multi-clause-set F ∈MCLS is called tight if
δ(F ′) = δ∗(F ) holds. If F ′ is tight for F , then F ′ is an induced sub-multi-clause-set
of F . By supermodularity of the deficiency (for graphs) we immediately get

Lemma 4.14 Union and intersection of tight sub-multi-clause-sets of multi-clause-
sets are again tight. So the tight sub-clause-sets of a clause-set form a set-lattice
with smallest and largest element.

Generalising Lemma 7.3 in [33], we obtain the fundamental relation between
tight sub-multi-clause-sets and matching autarkies:

Lemma 4.15 Consider a generalised multi-clause-set F ∈MCLS.

1. For every autarky ϕ for F we have δ(ϕ ∗ F ) = δ(F )− δ(F [var(ϕ)]).

2. For every matching autarky ϕ for F we have δ(ϕ ∗ F ) ≥ δ(F ).
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3. Consider an induced sub-multi-clause-set F ′ of F .

(a) δ∗(var(F ′) ∗ (F − F ′)) ≤ δ∗(F )− δ(F ′).

(b) If F ′ is tight, then there is a matching autarky ϕ for F with ϕ ∗F = F ′.

Proof: For Part 1 note that by definition we have

c(F ) = c(ϕ ∗ F ) + c(F [var(ϕ)]), n(F ) = n(ϕ ∗ F ) + n(F [var(ϕ)])

due to F = ϕ ∗ F + Fvar(ϕ). Part 2 follows from Part 1. For Part 3a consider
G ≤ var(F ′) ∗ (F − F ′). There exists G0 ≤ F − F ′ with var(F ′) ∗G0 = G. Now

δ∗(F ) ≥ δ(F ′ +G0) = c(F ′ +G0)− wn(F ′ +G0) =

c(F ′) + c(G)− wn(F ′)− wn(G) = δ(F ′) + δ(G),

and thus δ(G) ≤ δ∗(F )− δ(F ′). Now Part 3b follows immediately from Part 3a due
to δ∗(var(F ′) ∗ (F − F ′)) ≤ δ∗(F ) − δ(F ′) = 0, i.e., F − F ′ is a matching autark
sub-multi-clause-set of F .

Generalising Theorem 7.5 in [33], we now can characterise matching lean multi-
clause-sets:

Lemma 4.16 Consider a generalised multi-clause-set F ∈ MCLS. The following
conditions are equivalent:

1. F is matching lean;

2. ∀C ∈ F : δ∗(F − {C}) < δ∗(F );

3. ∀F ′ � F : δ(F ′) < δ(F );

4. F is a tight sub-multi-clause-set of F , and there are no other tight sub-multi-
clause-sets of F .

Proof: From Part 1 follows Part 4 by Lemma 4.15, Part 3b. Obviously, Part 4
implies Part 3, and Part 3 implies Part 2. Finally, Part 1 follows from Part 2 by
Lemma 4.15, Part 2.

By Lemma 4.16, Part 2 we get

Corollary 4.17 It is decidable in polynomial time, whether a generalised multi-
clause-set F ∈MCLS is matching lean.

Thus by Lemma 3.1:

Corollary 4.18 The matching lean kernel Nma(F ) for generalised multi-clause-sets
F ∈MCLS is computable in polynomial time.

By Lemma 4.16, Part 4 together with Lemma 4.15, Part 3b we get

Corollary 4.19 For every generalised multi-clause-set F ∈MCLS the lean kernel
Nma(F ) is the intersection of all tight sub-multi-clause-sets of F . Thus Nma(F ) is
the smallest tight sub-multi-clause-set of F , and therefore δ∗(F ) = δ(Nma(F )).

Using δ(>) = 0, from Lemma 4.16, Part 3 we get the following generalisation of
“Tarsi’s Lemma” (see [1]):
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Corollary 4.20 If the generalised multi-clause-set F 6= > is matching lean, then
δ(F ) ≥ 1.

Obviously MUSAT ⊂ LEAN , and thus:

Corollary 4.21 If a generalised clause-set F ∈ CLS is minimally unsatisfiable,
then we have δ(F ) ≥ 1.

In [10], Theorem 4.5, arbitrary constraints over boolean variables are considered,
and a lower bound on the number of clauses in terms of the number of variables for
minimally unsatisfiable constraint satisfaction problems is derived, which necessarily
is much weaker than Corollary 4.21.

Removing any clause from a matching lean multi-clause-set F with δ(F ) = 1
yields a matching satisfiable multi-clause-set, and thus

Corollary 4.22 MUSATδ=1 = MLEANδ=1 ∩ USAT .

4.4 Comparison with an earlier version of “matching au-
tarkies”

In [32] an earlier version of matching autarkies has been introduced, which we will
call here “non-repetitive matching autarkies”: A partial assignment ϕ is called
non-repetitive matching satisfying for a multi-clause-set F ∈ MCLS, if for every
clause-occurrence C in F (taking multiple occurrences into account) a literal xC ∈ C
can be chosen with ϕ(xC) = 1 such that for different clause-occurrences C,C ′ we
have xC 6= xC′ . And ϕ is called a non-repetitive matching autarky for F if ϕ is
non-repetitive matching satisfying for Fvar(ϕ).

Recalling the three conditions (i) - (iii) from Subsection 4.1 and strengthening
condition (i) to

(i)’ for i ∈ {1, . . . ,m} there are variables vi ∈ var(Fi) such that for all clause-
occurrence C in Fi there are literals xC ∈ C with var(xC) = vi, and such that
for different clause-occurrences C,C ′ we have xC 6= xC′ ;

we get that F is non-repetitive matching satisfiable iff F has a decomposition ful-
filling (i)’, (ii) and (iii). By (i)’ we get c(Fi) = |valvi

(Fi)|, and thus from (iii) follows
(iii)’. Whence a non-repetitive matching satisfying assignment ϕ for F is matching
satisfying for F , and a non-repetitive matching autarky for F is also a matching
autarky for F .

For boolean clause-sets non-repetitive matching autarkies are the same as match-
ing autarkies, but in general non-repetitive matching autarkies are more restrictive
than matching autarkies; examples for (multi-)clause-sets F1, F2 which are match-
ing satisfiable but are lean w.r.t. non-repetitive matching autarkies are discussed
in Subsection 5.3. These examples actually show that non-repetitive matching au-
tarkies are preserved by the standard translation of (generalised) clause-sets into
boolean clause-sets, which in general is not the case for matching autarkies, and so
perhaps non-repetitive matching autarkies are preferable over matching autarkies?

The main problem with the notion of non-repetitive matching autarkies is that
it does not seem to support a natural notion of related deficiency (with the same
nice properties as the combination of matching autarkies and (standard) deficiency),
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and, related to this problem, it does not seem obvious how to achieve polynomial
time decision of the class of non-repetitive matching lean (multi-)clause-sets. The
whole problem boils down to the point, that non-repetitive matching autarkies do
not seem to be given solely by a matching condition, but require some other form of a
more global condition. Thus, to conclude, the generalisation of (boolean) matching
autarkies together with the generalisation of (boolean) deficiency introduced in this
section seems to be the right choice, as demonstrated by the theory build up in
this section, and as further validated by the results in the following sections on the
standard translation and on minimally unsatisfiable clause-sets of deficiency one.

5 Translating generalised clause-sets into boolean

clause-sets

In this section we investigate translations of generalised clause-sets into boolean
clause-sets. Different from previous research (for an overview see [45]), here we are
not interested in experimental results (and how good different translations perform
in various experiments for different SAT solvers), but we are interest in structure-
preserving translations. At least regarding our focus on (matching) autarkies and
the deficiency, the only reasonable possibility here seems to be what in [45] has
been coined the “multivalued encoding”, which is the “standard translation”, but
without AMO (“at most one”) clauses (since they would destroy the combinatorial
structure): For every literal (v, ε) we consider a boolean variable τ((v, ε)) expressing
that v shall not get value ε, and we add “ALO clauses” requiring that each variable
gets at least one value (if it gets more than one value, then one of the values could
be chosen).11)

In [32] in Subsection 4.5 (“An autarky preserving reduction to boolean clause-
sets”) it has already been stated that the standard translation not only preserves
satisfiability, unsatisfiability and minimally unsatisfiability, but also leanness. We
have to expand these results especially regarding the notions of matching autarkies
and deficiency, since in [32] only a restricted notion of “matching autarkies” has
been used (recall Subsection 4.4) without an associated notion of deficiency

Another source relevant here is [2], where “monosigned CNF formulas” are trans-
lated, a generalisation of “generalised clause-sets” allowing also to express that a
variable must get a certain value; in other words, where our literals (v, ε) express
“v 6= ε”, for monosigned formulas also “positive” literals “v = ε” are allowed. This
generalisation can be motivated by the fact, that these formulas are exactly those
which can be translated by the standard translation; however the price which have to
be paid here is that now the AMO clauses are necessary in the standard translation!
This adds further to the point we want to make, that generalised clause-sets in our
definition (allowing only “negative literals”) are the appropriate generalisation of
boolean conjunctive normal forms, while further generalisations (like “monosigned
formulas”) enter new areas, where the combinatorics of clause-sets no longer can
be applied. For a local search algorithm working directly with “monosigned CNF
formulas” see [20] (using the notion of “nb-formulas” (for “non-boolean”)).

It is worth to mention here, that in [44] it has been shown, that resolution
which works only with generalised clause-sets, that is, where in the corresponding
11)In the literature typically the variables denote “v shall get value ε”, which results only in

flipping signs here, but as hopefully this articles helps to point out, for conjunctive normal form
falsity is the norm (while for disjunctive normal forms verity is the norm), and thus our choice.
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branching approach for a variable v only a branching of width |Dv| assigning in each
branch one of the possible values to v (see [37]) is considered, can be exponentially
worse than resolution on the translation into boolean logic, where now branchings
“v gets value ε” and “v does not get value ε” are possible. From this is follows that
generalised DPLL-algorithms should not be restricted to branchings where in each
branch a variable needs to be fixed to some value; however the focus of this article
is not generalisation of SAT solvers, but generalisation of combinatorial structure,
and thus we do not further pursue these (important) investigations.

5.1 The details of the translation

Formally, the translation proceeds as follows. We consider some bijection τ :
LIT → VA{0,1} from the set of all (generalised) literals to the set of all boolean
variables (such a bijection exists due to our assumption on VA, since the set of
all literals has the same cardinality as the set of variables, as it is well known
from elementary set theory). The intended meaning of the (positive) boolean lit-
eral τ((v, ε)) for a literal (v, ε) ∈ LIT is the same as the interpretation of the
original (generalised) literal, namely “v shall not get value ε”. We obtain an in-
jection τ : CL → CL(VA{0,1}) by setting τ(C) := {τ(x) : x ∈ C} for C ∈ CL.
Actually τ : CL → CL(VA{0,1}) constitutes a bijection from CL to the set of all
positive boolean clauses. The translation τ can be further extended to an injec-
tion τ : CLS → CLS(VA{0,1}) by τ(F ) := {τ(C) : C ∈ F} for F ∈ CLS. Again,
τ : CLS → CLS(VA{0,1}) constitutes a bijection from the set of (generalised) clause-
sets to the set of boolean clause-sets containing only positive clauses. Finally, for
v ∈ VA let ALOv := {τ((v, ε)) : ε ∈ Dv} ∈ CL(VA{0,1}) be the (negative, boolean)
clause expressing that v gets assigned at least one of the values ε ∈ Dv, and let the
full translation Θ : CLS → CLS(VA{0,1}) (which again is an injection) by given as

Θ(F ) := τ(F ) ∪ {ALOv : v ∈ var(F )}

Note that the union in the definition of Θ(F ) is disjoint, since τ(F ) consists only
of positive clauses, while {ALOv : v ∈ var(F )} consists only of non-empty negative
clauses (and thus Θ(F ) is a “PN-clause-set” as defined in [21]). If F contains no pure
variables (recall Subsection 3.8), then the sub-clause-sets of Θ(F ) given by Θ(F ′)
for F ′ ⊆ F are exactly the sub-clause-sets of Θ(F ) not containing pure variables.

5.2 Preservation of general structure

Regarding set-theoretical operations we have, that Θ is an embedding of the semilat-
tice (CLS,∪) into (CLS(VA{0,1}),∪), that is, for F1, F2 ∈ CLS we have Θ(F1∪F2) =
Θ(F1)∪Θ(F2). Thus Θ is also an order embedding, i.e., F1 ⊆ F2 ⇔ Θ(F1) ⊆ Θ(F2).
By definition we have for F ∈ CLS the equalities

c(Θ(F )) = c(F ) + n(F )

n(Θ(F )) =
∑

v∈var(F )

|Dv|

δ(Θ(F )) = c(Θ(F ))− n(Θ(F )) = c(F )− wn(F ) = δ(F ),

and thus the translation Θ preserves the deficiency of clause–sets as defined in
Subsection 4.1. It follows immediately, that δ∗(Θ(F )) ≥ δ∗(F ) holds for all F ∈
CLS, but inequality can occur here (see Subsection 5.3).
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We consider now the relations between partial assignments ϕ ∈ PASS for
F ∈ CLS and partial assignments ψ ∈ PASS(VA{0,1}) for Θ(F ) ∈ CLS(VA{0,1}).
For ϕ ∈ PASS we define the partial assignment τ (ϕ) ∈ PASS(VA{0,1}) by let-
ting var(τ(ϕ)) := {τ((v, ε)) : v ∈ var(ϕ), ε ∈ Dv} be the set of all boolean vari-
ables corresponding via the translation to literals over the variables in var(ϕ), while
τ(ϕ)((v, ε)) = 0 iff ϕ(v) = ε. The partial assignments in PASS(VA{0,1}) of the form
τ(ϕ) for some ϕ ∈ PASS are called standard partial assignments (w.r.t. τ).
So τ constitutes a bijection between PASS and the standard partial assignments
(which are always boolean), and standard partial assignments ϕ ∈ PASS(VA{0,1})
are characterised by the condition, that whenever some τ((v, ε)) ∈ var(ϕ), then
for all ε′ ∈ Dv we have τ((v, ε′)) ∈ var(ϕ), and there is exactly one ε0 ∈ Dv with
ϕ(τ((v, ε0))) = 0; for the corresponding partial assignment τ−1(ϕ) ∈ PASS we then
have τ−1(ϕ)(v) = ε0.

In the following lemma we see that the properties of ϕ regarding touching or
satisfying clauses are well reflected by τ(ϕ), and hence the translation is invariant
regarding the autarky property and the property of satisfying a clause-set.

Lemma 5.1 For ϕ ∈ PASS, C ∈ CL and F ∈ CLS we have

1. ϕ touches resp. satisfies C if and only if τ(ϕ) touches resp. satisfies τ(C).
Thus

τ(Fvar(ϕ)) = τ(F )var(τ(ϕ))

Θ(F [var(ϕ)]) = Θ(F )[var(τ(ϕ))].

2. τ(ϕ) is an autarky for the set of clauses {ALOv : v ∈ VA}.

3. ϕ is an autarky for F if and only if τ(ϕ) is an autarky for Θ(F ).

4. If τ(ϕ) satisfies Θ(F ), then ϕ satisfies F . If on the other hand ϕ satisfies F
and var(ϕ) ⊇ var(F ) holds, then τ(ϕ) satisfies Θ(F ).

Proof: Parts 1, 2 follow directly from the definitions, while Part 3 follows from
Parts 1, 2, and Part 4 follows from Parts 1, 3.

For the reverse direction, from partial assignments in PASS(VA{0,1}) to partial
assignments in PASS, call ϕ ∈ PASS(VA{0,1}) admissible if ϕ is an autarky for
the set of clauses {ALOv : v ∈ VA}, that is, if τ((v, ε)) ∈ var(ϕ), then there is
ε0 ∈ Dv with ϕ(τ((v, ε0))) = 0; in words: a partial assignment ϕ for the boolean
variables is admissible iff in case it has some variable τ((v, ε)) in its domain, then
there exists a value ε0 ∈ Dv such that τ((v, ε0)) is in the domain of ϕ as well with
ϕ(τ((v, ε0))) = 0. Note that an autarky ϕ ∈ PASS(VA{0,1}) for Θ(F ) (this includes
satisfying assignments) with var(ϕ) ⊆ var(Θ(F )) is always admissible.

Call a standard partial assignment ψ ∈ PASS(VA{0,1}) a standard extension
of an admissible ϕ ∈ PASS(VA{0,1}) if ψ touches (satisfies) exactly the same ALO-
clauses as ϕ, and if from ψ(τ((v, ε))) = 0 always follows ϕ(τ((v, ε))) = 0; in other
words a standard extension ψ of an admissible ϕ is obtained from ϕ by considering
all variables v such that ε ∈ Dv with τ((v, ε)) ∈ var(ϕ) exists, choosing ε0 ∈ Dv

with ϕ(τ((v, ε0))) = 0, and setting ψ(τ((v, ε′))) := 1 for ε′ ∈ Dv \ {ε0}, while
ψ(τ((v, ε0))) := 0.

The purpose of standard extensions is, that they allow to “lift” an autarky ϕ for
Θ(F ) to an autarky ψ for Θ(F ), such that ψ is a standard extension of ϕ — now
by Lemma 5.1 we can reflect ψ back to a an autarky for F . The following lemma
(with obvious proofs) states the basic properties of standard extensions.
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Lemma 5.2 For C ∈ CL and F ∈ CLS, an admissible ϕ ∈ PASS(VA{0,1}) and a
standard extension ψ ∈ PASS(VA{0,1}) of ϕ we have

1. If ϕ touches resp. satisfies τ(C) then ψ touches resp. satisfies τ(C).

2. If ϕ is an autarky for Θ(F ) then ψ is an autarky for Θ(F ).

Lemma 5.3 For a (generalised) clause-set F ∈ CLS we have:

1. F ∈ SAT ⇔ Θ(F ) ∈ SAT .

2. F ∈MUSAT ⇔ Θ(F ) ∈MUSAT .

3. F ∈ LEAN ⇔ Θ(F ) ∈ LEAN .

Proof: If F ∈ SAT then Θ(F ) ∈ SAT with Lemma 5.1, Part 4, and if Θ(F ) ∈
SAT , then F ∈ SAT with Lemma 5.2, Part 1 and Lemma 5.1, Part 4.

If F ∈ MUSAT , but there were some minimally unsatisfiable F ∗ ⊂ Θ(F ),
then there would be F ′ ⊂ F with Θ(F ′) = F ∗ (since F ∗ does not contain pure
variables), and thus F ′ would be unsatisfiable by Part 1. If on the other hand
Θ(F ) ∈MUSAT , but there were some unsatisfiable F ′ ⊂ F , then Θ(F ′) would be
unsatisfiable as well by Part 1.

Finally, if F ∈ LEAN then Θ(F ) ∈ LEAN by Lemma 5.2, Part 2 and Lemma
5.1, Part 3, and if Θ(F ) ∈ LEAN then F ∈ LEAN by Lemma 5.1, Part 3 (the
other direction).

Parts 1 and 3 have been concluded in Corollary 20 in [32] from the stronger
property Na(Θ(F )) = Θ(Na(F )) (recall that Na is the lean kernel operator); in this
article we do not go further with the study of the translation Θ, but we restrict
ourselves to the minimum required to understand our applications.

5.3 Preservation of matching structure

Lemma 5.4 For ϕ ∈ PASS, C ∈ CL and F ∈ CLS we have

1. If τ(ϕ) matching satisfies Θ(F ), then ϕ matching satisfies F .

2. If τ(ϕ) is a matching autarky for Θ(F ), then ϕ is a matching autarky for F .

Proof: If τ(ϕ) matching satisfies Θ(F ), then for each clause D ∈ Θ(F ) one can
choose a literal xD ∈ D with ϕ(xD) = 1, such that for the variables var(xD) =
τ((vD, εD)) the map D ∈ Θ(F ) 7→ τ((vD, εD)) is injective (whence D ∈ Θ(F ) 7→
(vD, εD) is injective). Now the map C ∈ F 7→ vτ(C) has for each image vτ(C) at
most |Dv| − 1 inverse images, since for each ε ∈ Dv there is at most one D ∈ Θ(F )
with vD = vτ(C) and εD = ε, and exactly one of these D is the clause ALOvD

.

For Part 2 recall that ϕ is a matching autarky for F iff ϕ matching satisfies
F [var(ϕ)], which by Part 1 follows from τ(ϕ) matching satisfying Θ(F [var(ϕ)]),
where by Lemma 5.1, Part 1 we have Θ(F [var(ϕ)]) = Θ(F )[var(τ(ϕ))], and thus
the latter assertion is equivalent to τ(ϕ) being a matching autarky for Θ(F ).

Lemma 19, Part (1)(d) of [32] rephrased in the terminology of Subsection 4.4
says, that if ϕ is a non-repetitive matching autarky for F then τ(ϕ) is a matching
autarky for Θ(F ); in follows then in Corollary 20 of [32], that if Θ(F ) is matching
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lean, then F is lean w.r.t. non-repetitive matching autarkies. These properties do
not hold for matching autarkies in general (in the presence of non-boolean variables),
as the following examples show.

An example, where a matching autarky ϕ for a (generalised) clause-set F ∈ CLS
does not yield a matching autarky τ(ϕ) for Θ(F ), is given for multi -clause-sets by
the multi-clause-set F1 := 2 · {(v, 0)} for a variable v with Dv = {0, 1, 2}: F1 is
matching satisfiable (but note that F1 is lean w.r.t. non-repetitive matching au-
tarkies), while Nma(Θ(F1)) = τ(F1) (via matching autarkies we can only eliminate
the ALO-clause), and thus Θ(F1) is not matching satisfiable. One sees that the
problem with transferring matching autarkies from generalised (multi-)clause-sets
to their boolean translation lies in the possibility that a matching in the clause-
variable graph B(F ) might use the same literal several times, which is not possible
for the translated literals. To obtain an example using clause-sets, consider two
boolean variables w,w′ and let

F2 =
{
{v 6= 0, w 6= 0}, {v 6= 0, w′ 6= 0}, {w 6= 1}, {w′ 6= 1}

}
.

The partial assignment ϕ := 〈v → 1, w → 0, w′ → 0〉 is matching satisfying for F2

(note that again F2 is lean w.r.t. non-repetitive matching autarkies), but τ(ϕ) is
not a matching autarky for Θ(F2), and moreover the matching lean kernel of Θ(F2)
is Θ(F2)\{ALOv} (again only the ALO-clause for v can be eliminated via matching
autarkies), and thus Θ(F2) is not matching satisfiable. Furthermore we have in this
example δ∗(F2) = 0 and δ∗(Θ(F2)) = 1.

Now consider the transfer of matching autarkies in the other direction, that is,
we have given a matching autarky ϕ ∈ PASS(VA{0,1}) for Θ(F ), and we want to
obtain some associated matching autarky for F . The problem here is, that ϕ might
use some variable τ((v, ε)), but not a variable τ((v, ε′)) for some ε′ ∈ Dv \ {ε},
and such situations cannot be translated back to F . The simplest example for
this phenomenon is (again) given by a multi -clause-set F3 := {(v, 1)} + 2 · {(v, 2)}
for a variable v with Dv = {0, 1, 2}: It is F3 matching lean, but Nma(Θ(F3)) =
τ(2 · {(v, 2)}) (via the matching autarky 〈τ((v, 0)) → 0, τ((v, 1)) → 1〉 for Θ(F3)).
A clause-set F4, where F4 is matching lean but Θ(F4) is not is given by

F4 :=
{
{v 6= 1}, {v 6= 2}, {v 6= 2, w 6= 0}, {w 6= 1}

}
for a boolean variable w, since here

Nma(Θ(F4)) = τ({{v 6= 2}, {v 6= 2, w 6= 0}, {w 6= 1}}) ∪ {ALOw}

via the matching autarky 〈τ((v, 0)) → 0, τ((v, 1)) → 1〉 for Θ(F4).

As we have seen now, matching autarkies for (generalised) clause-sets F ∈ CLS
and matching autarkies for Θ(F ) ∈ CLS(VA{0,1}) in general are incomparable.
Nevertheless we can use them to show fixed-parameter tractability for generalised
clause-sets w.r.t. the parameter δ∗(F ) as follows.

Theorem 5.5 SAT decision for (generalised) clause-sets F ∈ CLS can be done in
time O

(
2δ∗(F ) · (

∑
v∈var(F )|Dv|)3

)
Proof: Consider F ∈ CLS and let F ∗ be the result of reducing Θ(F ) w.r.t. match-
ing autarkies and pure autarkies (thus F ∗ is the unique maximal sub-clause-set of F
which is matching lean and does not contain pure variables). We can compute F ∗ in
polynomial time, and F ∗ is satisfiability equivalent to F . Since F ∗ contains no pure
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literals, it corresponds to a sub-clause-set of F , and thus we have δ(F ∗) ≤ δ∗(F ),
and since F ∗ is matching lean we have δ∗(F ∗) = δ(F ∗). Theorem 4 in [48] says,
that satisfiability of F ∗ can be tested in time O(2δ∗(F∗) · n(F ∗)3), where in this
procedure actually already the cost of reducing Θ(F ) to F ∗ is included if we use
n(Θ(F )) instead of n(F ∗) in the big-Oh expression (see Section 5 in [48]), and the
theorem follows.

6 Irredundant and minimally unsatisfiable gener-

alised clause-sets

One of the main motivation for the notion of “lean clause-sets” is, that in this way
we get a “smooth” and flexible generalisation of the “rigid” (but important) notion
of minimally unsatisfiable clause-sets. In this section we will consider some of the
basic facts on minimally unsatisfiable clause-sets in our generalised setting. We
start in Subsection 6.1 with a discussion of the notion of “irredundant clause-sets”
(a notion applicable also to satisfiable clause-sets). In the boolean case, irredundant
clause-sets have been studied in [9] (using the notion of a “clause minimal formula”),
concentrating on complexity theoretical questions; we consider the basic question
of preservation of irredundancy under application of partial assignments.

In Subsection 6.2 we consider the in some sense most extreme case of irredun-
dant clause-sets, namely “hitting clause-sets” (every two different clauses clash,
that is, have no common falsifying assignment; in other words, the conflict graph is
complete), and the natural generalisation to “multihitting clause-sets” (the conflict
graph is multipartite). In Corollary 6.6 we show that hitting clause-sets are exactly
those clause-sets which are irredundant after application of any partial assignment,
and thus unsatisfiable hitting clause-sets are exactly those clause-sets which are min-
imally unsatisfiable after application of any partial assignment (Corollary 6.7). For
unsatisfiable multihitting clause-sets in Lemma 6.8 it is shown that they have ex-
actly one minimally unsatisfiable sub-clause-set (which can be computed efficiently
by subsumption-elimination), and in Lemma 6.10 we show that the satisfiability
problem for bihitting clause-sets (where the conflict graph is bipartite) is solvable
in quasi-polynomial time (this problem is essentially the same problem as the hy-
pergraph transversal problem).

In Subsection 6.3 “saturated minimally unsatisfiable clause-sets” are discussed;
here we see a concrete example, where generalised clause-sets behave essentially
more complicated than boolean clause-sets. Finally in Subsection 6.4 we charac-
terise minimally unsatisfiable generalised clause-sets of deficiency one as well as the
special cases of saturated and marginal clause-sets.

6.1 Irredundant clause-sets

A clause C ∈ F is called redundant for clause-set F ∈ CLS if F \ {C} |= C

holds, while otherwise C is called irredundant for F . It is C redundant for
F if and only if the set Fvar(F )(C) of falsifying assignments for C is covered by
(Fvar(F )(C ′))C′∈F\{C}, the set of falsifying assignments for the remaining clauses.
We are interested here in the question, given a partial assignment ϕ and a clause
C ∈ F with ϕ ∗ {C} 6= >, under what circumstances is the clause ϕ ∗ C = C \ Cϕ

redundant for ϕ ∗ F ? We will see, that this question is closely related to the ques-
tion, how “much irredundant” C is for F , that is, how much of Fvar(F )(C) is covered
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by (Fvar(F )(C ′))C′∈F\{C}, which can be recast as the question, whether for some
C ′ ⊇ C we have F \ {C} |= C ′.

Assume that ϕ ∗ C is redundant for ϕ ∗ F , that is, (ϕ ∗ F ) \ (ϕ ∗ {C}) |= ϕ ∗ C
holds. Due to (ϕ ∗ F ) \ (ϕ ∗ {C}) ⊆ ϕ ∗ (F \ {C}) it follows ϕ ∗ (F \ {C}) |= ϕ ∗C,
which is equivalent to F \ {C} |= C ∪ Cϕ. Let us call C ϕ-redundant for F if
F \ {C} |= C ∪ Cϕ holds, and otherwise ϕ-irredundant. In other words, C is ϕ-
redundant for F iff the part of Fvar(F )(C) which consists of assignments compatible
with ϕ is covered by (Fvar(F )(C ′))C′∈F\{C}.

If C is ϕ-irredundant for F , then ϕ ∗C is irredundant for ϕ ∗F , but the reverse
direction is not true in general due to the fact, that there might be other clauses
C ′ ∈ F with ϕ ∗ C ′ = ϕ ∗ C. To repair this, let us call clause C contraction-ϕ-
redundant for F if

F \ {C ′ ∈ F : ϕ ∗ {C ′} = ϕ ∗ {C}} |= C ∪ Cϕ,

while otherwise we call C contraction-ϕ-irredundant for F . We summarise (and
extend) the foregoing discussion in Lemma 6.1, whose proof should be obvious by
now.

Lemma 6.1 Consider a generalised clause-set F ∈ CLS, a clause C ∈ F and a
partial assignment ϕ ∈ PASS such that ϕ ∗ {C} 6= >.

1. ϕ∗C is (ir)redundant for ϕ∗F if and only if C is contraction-ϕ-(ir)redundant
for F .

2. (a) If C is ϕ-irredundant for F , then C is contraction-ϕ-irredundant for F .

(b) If there is no clause C ′ ∈ F \ {C} with ϕ ∗ {C ′} = ϕ ∗ {C} (that is, C is
“contraction-free” in F w.r.t. ϕ), then also the reverse direction holds,
that is, if C is contraction-ϕ-irredundant for F then C is ϕ-irredundant
for F . It is C contraction-free in F w.r.t. ϕ in the following cases:

(i) n(ϕ) = 0 (i.e., ϕ is the empty partial assignment);
(ii) n(ϕ) = 1 and F is subsumption-free;
(iii) C clashes with every C ′ ∈ F \ {C}.

Corollary 6.2 Consider a generalised clause-set F ∈ CLS which is subsumption-
free, a clause C ∈ F and a variable v ∈ VA together with ε ∈ Dv such that for all
ε′ ∈ Dv \ {ε} we have (v, ε′) /∈ C. Then 〈v → ε〉 ∗ C = C \ {(v, ε)} is irredundant
for 〈v → ε〉 ∗F if and only if C is 〈v → ε〉-irredundant for F , that is, iff F \ {C} 6|=
C ∪ {(v, ε)}.

A (generalised) clause-set F ∈ CLS is called irredundant if all C ∈ F are
irredundant for F , otherwise F is called redundant. A clause-set F is minimally
unsatisfiable if and only if F is unsatisfiable and irredundant. Obviously irredundant
clause-sets are subsumption-free, and from Corollary 6.2 we get immediately:

Corollary 6.3 Consider an irredundant generalised clause-set F ∈ CLS, a clause
C ∈ F and a variable v ∈ VA together with ε ∈ Dv.

1. If there exists ε′ ∈ Dv \ {ε} with (v, ε′) ∈ C, then clause C vanishes when
applying 〈v → ε〉 to F (and in that sense it becomes redundant in 〈v → ε〉).
So assume valv({C}) ⊆ {ε} in the sequel.
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2. If (v, ε) ∈ C, then 〈v → ε〉 ∗ C = C \ {(v, ε)} is irredundant for 〈v → ε〉 ∗ F .

3. If (v, ε) /∈ C, then C is irredundant for 〈v → ε〉 ∗ F if and only if C is
〈v → ε〉-irredundant for F , i.e., iff F \ {C} 6|= C ∪ {(v, ε)}.

Considering a clause C ∈ F , we called C redundant for F iff F \ {C} |= C; now
for arbitrary clauses C we can call C “dependent” on F if F |= C holds (that is,
if the set of falsifying assignments of F covers the set of falsifying assignments of
C), and otherwise “independent”. If C ∈ F , then C is dependent on F , while C is
redundant for F iff C is dependent on F \ {C}. The relation of C depending on F
allows two dimensions for minimisation: Considering a minimal clause C which is
dependent on F we arrive at the notion of a prime implicant of F , while considering
a minimal clause-set F such that C depends on F we arrive at a “minimal premise
set” for C. The following lemma states the relation between minimal premise sets
and minimally unsatisfiable clause-sets.

Lemma 6.4 Consider a generalised clause-set F ∈ CLS and a clause C ∈ CL.
Then the following assertions are equivalent:

1. F is a minimal premise set for C.

2. ϕC ∗ F is minimally unsatisfiable, no clause of F is satisfied by ϕ, and F

is ϕ-contraction free, that is, there are no clauses C,C ′ ∈ F , C 6= C ′, with
ϕ ∗ {C} = ϕ ∗ {C ′}.

6.2 Hitting and multihitting clause-sets

The next lemma answers the question which clauses C remain irredundant for a
clause-set F under all applications of partial assignments; this strongest form of
irredundancy of C for F turns out to be equivalent to the condition, that the set
of falsifying assignments for C is not covered at all by (Fvar(F )(C ′))C′∈F\{C} (i.e.,
these two sets are disjoint). A simple but important observation here is, that for
two clauses C,C ′ and var(C)∪ var(C ′) ⊆ V we have FV (C)∩ FV (C ′) = ∅ iff C and
C ′ clash.

Lemma 6.5 Consider a generalised clause-set F ∈ CLS and a clause C ∈ CL.
Then the following assertions are equivalent:

(i) C is ϕ-irredundant for all ϕ ∈ PASS.

(ii) C is contraction-ϕ-irredundant for all ϕ ∈ PASS.

(iii) Fvar(F )(C) ∩
⋃

C′∈F\{C} Fvar(F )(C ′) = ∅.

(iv) C clashes with every C ′ ∈ F \ {C}, i.e., clause C is connected in the conflict
graph cg(F ) to every other vertex.

Proof: By the above remark we see that (iii) and (iv) are equivalent. By definition
(iii) is equivalent to (i), while by Lemma 6.1, part 2 it is (i) equivalent to (ii).

Corollary 6.6 A generalised clause-set F ∈ CLS is a hitting clause-set if and only
if for all ϕ ∈ PASS it is ϕ ∗ F irredundant.
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Generalising Theorem 32 in [35]:

Corollary 6.7 A generalised clause-set F ∈ CLS is an unsatisfiable hitting clause-
set if and only if for every partial assignment ϕ ∈ PASS it is ϕ ∗ F minimally
unsatisfiable.

Hitting clause-sets are irredundant; the more general class of multihitting clause-
sets (clause-sets with complete multipartite conflict graph) contains redundant
clause-sets, but all redundancies can be removed efficiently (and canonically), as the
following lemma shows. We use the notion of an irredundant core of a clause-set
F ∈ CLS which is an irredundant F ′ ⊆ F such that F ′ is equivalent to F . An
irredundant core of an unsatisfiable clause-set is called a minimally unsatisfiable
core.

Lemma 6.8 Consider a generalised clause-set F ∈ CLS which is multihitting. Let
F be the multipartition of F , and V := var(F ).

1. For F1, F2 ∈ F, F1 6= F2 we have FV (F1) ∩ FV (F2) = ∅.

2. If for F ′ ⊆ F and C ∈ F \ F ′ we have F ′ |= C, then there must be some
C ′ ∈ F ′ with C ′ ⊂ C.

3. F has exactly one irredundant core, which is obtained from F by subsumption-
elimination. Thus if F is unsatisfiable, then F has exactly one minimally
unsatisfiable core, which is obtained from F by subsumption-elimination.

4. A hitting clause-set F is unsatisfiable iff
∑

C∈F |FV ({C})| = |PASS(V )|.

Proof: Part 1 follows by definition. In Part 2 it is FV ({C}) covered by FV (F ′),
and thus by Part 1 in fact FV ({C}) is covered by FV (F ′ ∩FC), where FC ∈ F with
C ∈ FC ; i.e., FC ∩F ′ |= {C}. By the strong completeness of resolution and the fact
that within FC no clashes exist, it follows that there must be C ′ ∈ F ′ ∩ FC with
C ′ ⊂ C. Part 3 follows immediately from Part 2. Finally Part 4 follows immediately
from Part 1.

Corollary 6.9 A multihitting clause-set is irredundant if and only if F is subsump-
tion-free. Thus an unsatisfiable multihitting clause-set is minimally unsatisfiable if
and only if F is subsumption-free.

Using |Fvar(F )(C)| =
∏

v∈var(F )\var(C)|Dv| for C ∈ F it follows that satisfiability
for generalised hitting clause-sets is decidable in polynomial time (generalising the
well-known special case for boolean clause-sets). For boolean bihitting clause-sets
(where the conflict graph is bipartite) in [21] it was shown, that satisfiability de-
cision can be done in quasi-polynomial time (where “quasi-polynomial” means a
“polynomial” upper bound with the exponent of logarithmic order in the size of the
input); this can immediately be generalised:

Lemma 6.10 Satisfiability for generalised clause-sets which are bihitting is decid-
able in quasi-polynomial time.

Proof: Variables with a domain size greater than two appearing in a bihitting
clause-set must be pure variables, since if a generalised clause-set contains a variable
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of domain size k, then the conflict graph contains the complete graph Kk (which is
not bipartite).

It seems to be a very interesting question, to what degree (generalised) multi-
hitting clause-sets have efficient satisfiability decision (see [36] for more information
in the boolean case).

6.3 Saturated minimally unsatisfiable clause-sets

A clause-set F ∈ CLS is called saturated minimally unsatisfiable, if F is un-
satisfiable, but for any clause C ∈ F replacing C in F by C ∪ {x} for any literal
x with var(x) /∈ var(C) and |Dvar(x)| ≥ 2 yields a satisfiable clause-set. Saturated
minimally unsatisfiable clause-sets are minimally unsatisfiable (consider x such that
var(x) /∈ var(F )), and actually a clause-set F is saturated minimally unsatisfiable
iff it is minimally unsatisfiable and addition of a literal x with var(x) ∈ var(F ) to
any clause C with var(x) /∈ var(C) yields a satisfiable clause-sets. The set of all
saturated minimally unsatisfiable clause-sets is called SMUSAT . By Lemma 6.8,
part 4 we see that unsatisfiable hitting clause-sets are in SMUSAT .

Lemma 6.11 Every minimally unsatisfiable clause-set F ∈ MUSAT can be sat-

urated, that is there exists F ∗ ∈ SMUSAT with var(F ∗) = var(F ) and a bijection
π : F → F ∗ such that for all C ∈ F we have C ⊆ π(C).

Proof: The observation needed here is, that if for a minimally unsatisfiable clause-
set F we replace some clause C ∈ F by a clause C ′ ⊃ C, obtaining F ′ := (F \{C})∪
{C ′}, then F ′ is minimally unsatisfiable if F ′ is unsatisfiable (the only possibly
redundant clause in F ′ is C ′, and if C ′ is redundant in F ′, then F ′ is satisfiable,
since F ′ \{C ′} = F \{C} ∈ SAT ). So we can add literals x with var(x) ∈ var(F ) to
clauses such that we maintain (minimally) unsatisfiability, and finally we will end
up with a saturated F ∗.

For boolean clause-sets the characterisation of SMUSAT from Lemma C.1 in
[28] is fundamental: A minimally unsatisfiable boolean clause-set F is saturated if
and only if for every variable v ∈ var(F ) and each ε ∈ Dv = {0, 1} it is 〈v → ε〉 ∗ F
minimally unsatisfiable. Together with saturation this characterisation provides a
powerful method for proving properties of minimally unsatisfiable clause-sets via
induction on the number of variables. For generalised clause-sets saturatedness is
weaker, and the above condition is only sufficient for being minimally unsatisfiable,
but is no longer necessary. The following lemma develops these fundamental facts,
using the following notion: We say that addition of literal x renders clause-set F
satisfiable iff for all clauses C ∈ F with var(x) /∈ var(C) the clause-set (F \ {C}) ∪
{C ∪ {x}} is satisfiable (thus a clause-set F is saturated minimally unsatisfiable iff
F is unsatisfiable and addition of any literal renders F satisfiable).

Lemma 6.12 Consider a generalised clause-set F ∈MUSAT and a literal (v, ε) ∈
LIT .

1. If 〈v → ε〉 ∗F ∈MUSAT , then for all ε′ ∈ Dv \ {ε} addition of literal (v, ε′)
renders F satisfiable.

2. If v is boolean, and for ε′ ∈ Dv \ {ε} addition of literal (v, ε′) renders F
satisfiable, then 〈v → ε〉 ∗ F ∈MUSAT .
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Proof: For Part 1 assume that there is C ∈ F , v /∈ var(C) and ε′ ∈ Dv \ {ε} such
that F ′ := (F \ {C}) ∪ {C ∪ {(v, ε′)}} is unsatisfiable. Then 〈v → ε〉 ∗ F ′ ∈ USAT
with 〈v → ε〉 ∗ F ′ = (〈v → ε〉 ∗ F ) \ {C}, and thus C would be redundant in
〈v → ε〉 ∗ F .

For Part 2 assume that 〈v → ε〉 ∗F is not minimally unsatisfiable; by Corollary
6.3 thus there is a clause C ∈ F , v /∈ var(C) such that F \ {C} |= C ∪ {(v, ε)}.
It follows that for F ′ := (F \ {C}) ∪ {C ∪ {(v, ε′)}} we have F ′ |= C (using one
resolution step), and thus F ′ would be unsatisfiable.

Corollary 6.13 If for the generalised clause-set F ∈ CLS for every partial assign-
ment ϕ ∈ PASS with n(ϕ) ≤ 1 we have ϕ ∗ F ∈ MUSAT , then F ∈ SMUSAT .
If F is boolean, then also the reverse direction holds, that is, F ∈ SMUSAT
if and only if for every partial assignment ϕ ∈ PASS with n(ϕ) ≤ 1 we have
ϕ ∗ F ∈MUSAT .

An example to show that the implication “F ∈ SMUSAT ⇒ 〈v → ε〉 ∗ F ∈
MUSAT ” in Corollary 6.13 does not hold for generalised clause-sets is as follows:
Consider variables a, b with Da = Db = {0, 1, 2}, and let F be the following clause-
set with 4 binary clauses and 2 unary clauses:

F :=
{
{a 6= 0, b 6= 0}, {a 6= 1, b 6= 0}, {a 6= 0, b 6= 1}, {a 6= 1, b 6= 1},

{a 6= 2}, {b 6= 2}
}
.

It is F ∈ SMUSAT (as can be verified directly), while 〈a → 2〉 ∗ F = {⊥, {b 6=
2}} /∈MUSAT (as well as 〈b→ 2〉 ∗ F = {⊥, {a 6= 2}} /∈MUSAT ).

An important application of the process of saturation for boolean clause-sets is
given by Lemma C.2 in [28], proving that for every F ∈MUSAT , F 6= {⊥} there is
a variable v ∈ var(F ) such that for ε ∈ Dv = {0, 1} we have #(v,ε)(F ) ≤ δ(F ). The
proof is based on the characterisation of saturated minimally unsatisfiable boolean
clause-sets in Corollary 6.13 and uses δ(F ) ≥ 1 for F ′ ∈ MUSAT , where F ′ is
obtained from F by applying suitable partial assignments ϕ with n(ϕ) = 1. It is
not clear to me how to obtain a full generalisation for generalised clause-sets (the
problem is that saturation is not that powerful anymore); in Lemma 6.14 we obtain
the generalisation of Lemma C.2 ([28]) to generalised clause-sets in the special case
of deficiency one.

6.4 Characterisation of the basic case of deficiency one

Generalising the tree construction from [28] (exploiting a formula class introduced
by Stephen Cook and communicated to me by Alasdair Urquhart), let a deficiency-
1 tree representation (in the remainder of this section just called “tree represen-
tation”) be a 4-tuple (T, r, v, ε), where

• (T, r) is a finite tree with root r (inner nodes (that is, nodes which are not
leaves) can have an arbitrary number of children).

• v labels each inner node w of (T, r) with a variable v(w).

• ε labels each edge e leading from a node w to a node w′ (edges are directed
from the root towards the leaves) with a value ε(e) ∈ Dv(w) such that the
labelling of the edges going out from w yields a bijection to Dv(w).
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If an order on the value set Dv(w) is given, then also the outgoing edges are ordered
by the same order; in the special case of boolean variables thus we can speak of
“left” and “right” branches, corresponding to the positive and negative literal. An
example R is given as follows.
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This tree representation R uses six variables a, . . . , f with Da = Dc = {0, 1, 2},
Db = Df = {0, 1} (thus b, f are boolean variables), and Dd = De = {0}.

Given a tree representation (T, r, v, ε), to every node w of (T, r) we associate a
clause Cw by considering the path w0, e1, w1, . . . , em, wm from the root to w in T

(thus w0 = r, wm = w, and the ei are the connecting edges from wi−1 to wi, while m
is the length of the path), and setting Cw := {(v(wi), ε(ei+1)) : i ∈ {0, . . . ,m− 1}}.
The clause-set F (T, r, v, ε) is defined as the set of all clauses Cw for leaves w of
(T, r). For the above example R we get

F (R) =
{
{a 6= 0, b 6= 0}, {a 6= 0, b 6= 1, e 6= 0},

{a 6= 1, c 6= 0}, {a 6= 1, c 6= 1}, {a 6= 1c 6= 2},
{a 6= 2, d 6= 0, f 6= 0}, {a 6= 2, d 6= 0, f 6= 1}

}
.

We list some basic properties of the clause-sets F (T, r, v, ε):

1. The rooted tree (T, r) yields a resolution tree for F (T, r, v, ε) by labelling the
nodes w with clauses Cw and considering the variables v(w) for inner nodes w
as resolution variables; since Cr = ⊥ we see that F (T, r, v, ε) is unsatisfiable.

2. F (T, r, v, ε) is a 1-uniform hitting clause-set (for two different clauses Cw1 , Cw2

the unique clashing variable is v(w0) for the root w0 of the smallest subtree
of (T, r) containing w1 and w2). It follows that F (T, r, v, ε) is saturated min-
imally unsatisfiable.

3. δ(F (T, r, v, ε)) = 1, since c(F (T, r, v, ε)) is the number of leaves of (T, r), while
wn(F (T, r, v, ε)) is the number of edges of T minus the number of inner nodes
of (T, r), and thus δ(F (T, r, v, ε)) is the difference of the number of vertices
and the number of edges of T , which is 1 for every tree.

4. If n(F (T, r, v, ε)) > 0 (that is, if (T, r) is not trivial), then we have:

(a) There is exactly one variable occurring in every clause of F (T, r, v, ε)
(namely v(r)).

(b) Every clause C ∈ F (T, r, v, ε) contains a literal x ∈ C with #x(F ) = 1
(namely with var(x) = v(w0), where C = Cw and w0 is the parent node
of w).
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(c) There exists a variable v ∈ var(F (T, r, v, ε)) such that for all ε ∈ Dv we
have #(v,ε)(F (T, r, v, ε)) = 1 (choose v = v(w) for an inner node w of
(T, r) such that all children of w are leaves).

We can read off many more properties of F (T, r, v, ε) directly from the tree rep-
resentation, for example the minimal resp. maximal clause-length is the minimal
resp. maximal depth of a leaf, but we need here only the above listed properties.
Using UHIT for the set of uniform hitting clause-sets and hd for the hitting degree,
as introduced before, we have F (T, r, v, ε) ∈ UHIT sat=0

hd=1,δ=1.

We say that a clause-set F ′ ∈ CLS is obtained from F (T, r, v, ε) by literal elim-
ination if F ′ is obtained from F (T, r, v, ε) by eliminating some literal occurrences
(at least one) without ever creating a pure variable. Replacing “F (T, r, v, ε)” by F ′,
Properties 1, 3, 4b, 4c are still valid, while Properties 2, 4a are lost: F ′ is definitely
not a hitting clause-set anymore, and there does not need to exist a variable occur-
ring in every clause. It is furthermore F ′ definitely not saturated anymore (by the
definition of F ′), however F ′ is still minimally unsatisfiable (since removal of any
clause either creates a pure variable or removes the only clause).

In Lemma C.5 from [28] it is shown, that the boolean elements of SMUSATδ=1

are exactly the clause-sets F (T, r, v, ε) using only boolean variables, while the ele-
ments of MUSATδ=1\SMUSATδ=1 are exactly the clause-sets obtained from such
F (T, r, v, ε) by literal elimination. To generalise this characterisation, the following
lemma is central (compare Property 4c from above).

Lemma 6.14 For every (generalised) clause-set F ∈ MUSATδ=1 with n(F ) > 0
there exists a variable v ∈ var(F ) such that for all ε ∈ Dv we have #(v,ε)(F ) = 1.

Proof: Consider F ∈ MUSATδ=1. We investigate the structure of Θ(F ) (recall
Section 5). As we remarked in Subsection 5.2, we have δ(Θ(F )) = 1, and thus by
Lemma 5.3 we have Θ(F ) ∈ MUSATδ=1. Since Θ(F ) is a boolean clause-set, we
can conclude that Θ(F ) has a tree representation (T, r, v, ε) as defined above (using
only boolean variables).

Θ(F ) always has the following special properties:

(i) Θ(F ) is a PN-clause-set, that is, every clause is either positive or negative.

(ii) For every negative clause N ∈ Θ(F ) we have ∀x ∈ N : #x(F ) = 1 (recall that
the negative clauses are the ALO-clauses introduced by the translation Θ).

Call a boolean F ∈MUSATδ=1 special if these two conditions are fulfilled. (These
“special” boolean clause-sets constitute exactly the image Θ(MUSATδ=1) of the
translation, but we do not need this simple fact here.) Consider a tree representation
(T, r, v, ε) of a special F ; obviously also all clause-sets given by the subtrees of (T, r)
are special again. Now we proof by induction on the height of the tree representation
of special formulas F with n(F ) > 0, that there always exists a negative clause
N ∈ F such that ∀x ∈ N : #x(F ) = 1, using the standard complement notation
for boolean literals here; this proves the lemma by definition of the translation Θ.

If the height of (T, r) is 1, then F is {{v(r)}, {v(r)}}, and the assertion is true.
So assume the height of (T, r) is greater than 1, and consider the left subtree T0

and the right subtree T1 of T with associated special F0, F1 ∈ MUSATδ=1. If T0

is not the trivial tree (has more than one node), then by the induction hypothesis
there exists a negative clause (non-empty) N0 ∈ F0 with ∀x ∈ N0 : #x(F0) = 1.
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Now we must have N0 ∈ F , since otherwise N0 ∪ {v} ∈ F , where this clause is
neither positive nor negative; using N := N0 proves the assertion (since none of the
variables in N0 occurs in T1). So the remaining case is that T0 is the trivial tree.
Again by the induction hypothesis there is a negative clause (non-empty) N1 ∈ F1

with ∀x ∈ N1 : #x(F1) = 1. Either we have N := N1 ∈ F or N := N1 ∪ {v} ∈ F ,
proving the assertion (in the second case due to the triviality of T0).

For the proof of the main results, we need to generalise some well-known basic
facts about DP-reduction, which are obvious by the remarks made before Lemma
3.3:

Lemma 6.15 Consider a generalised clause-set F ∈ CLS and a singular DP-
variable v w.r.t. F .

1. δ(DPv(F )) ≤ δ(F ).

2. If v is non-degenerated, then δ(DPv(F )) = δ(F ).

Finally we are able to generalise Lemma C.5 in [28]:

Theorem 6.16 The class MUSATδ=1 of minimally unsatisfiable (generalised)
clause-sets of deficiency 1 is exactly the class of all clause-sets F (T, r, v, ε) together
with all clause-sets F ′ derived by literal elimination from such clause-sets.

Proof: It remains to show that every F ∈MUSATδ=1 can be obtained from some
F (T, r, v, ε) by a (possibly) empty sequence of literal eliminations. We show this by
induction on n(F ). If n(F ) = 0, then F = {⊥}, and we can take the trivial rooted
tree. So assume n(F ) > 0. By Lemma 6.14 there exists a variable v ∈ var(F ) such
that for all ε ∈ Dv we have #(v,ε)(F ) = 1. Thus v is a singular DP-variable w.r.t. F .
Let G := DPv(F ). By Lemma 3.3 and Lemma 6.15 it is G ∈ MUSATδ=1, and we
can apply the induction hypothesis to G; the assertion follows now immediately by
extending the tree representation of G at the (single) new resolvent (obtained by
the DP-reduction) by adding leaves corresponding to the occurrences of v in F .

Corollary 6.17 The class SMUSATδ=1 of saturated minimally unsatisfiable (gen-
eralised) clause-sets of deficiency 1 is exactly the class of all clause-sets F (T, r, v, ε).
It follows that the following conditions are equivalent for a clause-set F ∈ CLS:

1. F = F (T, r, v, ε) for some deficiency-1 tree representation (T, r, v, ε).

2. F is an unsatisfiable 1-uniform hitting clause-set of deficiency 1 (i.e., F ∈
UHIT sat=0

hd=1,δ=1).

3. F is an unsatisfiable uniform hitting clause-set of deficiency 1 (i.e., F ∈
UHIT sat=0

δ=1 ).

4. F is an unsatisfiable hitting clause-set of deficiency 1 (i.e., F ∈ HIT sat=0
δ=1 ).

5. F is a saturated minimally unsatisfiable clause-set of deficiency 1 (i.e., F ∈
SMUSATδ=1).

If a minimally unsatisfiable clause-set is hitting, then it is saturated; Corollary
6.17 proves the reverse for deficiency 1 (which does not hold for higher deficiencies).
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While saturated minimally unsatisfiable clause-sets do not allow addition of any
literal occurrence to any clause without destroying the property of being minimally
unsatisfiable, on the other end of the spectrum we have marginal minimally un-
satisfiable clause-sets, which are minimally unsatisfiable clause-sets such that
removing any literal occurrence destroys the property of being minimally unsatisfi-
able.

Corollary 6.18 The class of marginal minimally unsatisfiable (generalised) clause-
sets of deficiency 1 is exactly the class of all F ∈MUSATδ=1 for which no further
literal eliminations are possible, which is equivalent to the property, that for every
variable v ∈ var(F ) and every ε ∈ Dv we have #(v,ε)(F ) = 1.

If for a minimally unsatisfiable clause-set F every literal in it occurs exactly
once, then obviously it is marginal; Corollary 6.18 proves the reverse for deficiency
1 (which does not hold for higher deficiencies).

7 Linear autarkies and hypergraph inequalities

The main result of this section is Theorem 7.8, which covers two applications of
linear algebra in hypergraph theory, namely the (generalised) Fisher inequality (in
design theory; see Lemma 7.10) and the Seymour inequality (for minimally non-
2-colourable hypergraphs; see Corollary 8.2). “Balanced linear autarkies” provide
here the link, similar to the role played by matching autarkies for establishing
minimal deficiency one for minimally unsatisfiable clause-sets; the core result here
is Lemma 7.2.

7.1 Linear and balanced linear autarkies

The notion of a “linear autarky”, introduced for boolean clause-sets in [31] and
further investigated in [50, 33], has the following natural generalisation to gener-
alised clause-sets: A partial assignment ϕ ∈ PASS is called a linear autarky for
F ∈ CLS if there is a weight function w : var(F ) → Q>0, assigning to each variable
in F a positive rational number, such that for all clauses C ∈ F we have∑

x∈C,ϕ(x)=1

w(var(x)) ≥
∑

x∈C,ϕ(x)=0

w(var(x)), (2)

that is, if for every clause the sum of the weights of the underlying variables of
literals satisfied by ϕ is not smaller than that sum over the literals falsified by
ϕ.12) Obviously, every linear autarky for F is an autarky for F (if a clause contains
a falsified literal, then by (2) it must also contain a satisfied literal). Choosing
a constant weight function we see that every satisfiable generalised clause-set F ∈
2–CLS is satisfiable by a linear autarky, and thus, since for example graph colouring
can be expressed with clause-sets from 2–CLS (see Subsection 8.1), we see that
deciding the existence of a linear autarky for generalised clause-sets is NP-hard even
for inputs from 2–CLS (while in the boolean case the (general) decision problem is
solvable in polynomial time as shown in [31]).

Linear autarkies fulfil all conditions for a normal autarky system except that
the iteration condition is not fulfilled (recall Subsection 3.6; the problem with the

12)Literals with underlying variables not in the domain of ϕ are not taken into account.
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iteration condition is that if ϕ is a linear autarky for F , and ψ a linear autarky
for ϕ ∗ F , then ψ might behave irresponsible on the clauses already satisfied by
ϕ, and thus ψ ◦ ϕ might not be a linear autarky for F ). In this article we do not
further investigate the notion of linear autarkies for generalised clause-sets (see [32]
for some hints on further developments), but we take a closer look at “balanced
linear autarkies”.

As introduced in [33] (Section 6), a balanced linear autarky for a generalised
clause-set F ∈ CLS is a linear autarky for F where in (2) for all clauses equality
holds. Again, balanced linear autarky yield an autarky system which fulfils all
normality conditions except of the iteration condition.

In the boolean case, the existence problem for balanced linear autarkies can be
decided in polynomial time. The existence problem for linear autarkies for (gener-
alised) clause-sets was above shown to be NP-hard even for inputs from 2–CLS, and
so let us examine balanced linear autarkies for F ∈ 2–CLS. For such F by defini-
tion balanced linear autarkies are the partial assignments which in every clause of F
they touch satisfy one literal and falsify the other literal (in general, balanced linear
autarkies cannot touch unit clauses). It follows that balanced linear autarkies on
2–CLS in fact yield a normal autarky system, and satisfiability by balanced linear
autarkies generalise the NOT-ALL-EQUAL-2-SAT problem from boolean clause-
sets to generalised clause-sets. Satisfiability of generalised 2-clause-sets by balanced
linear autarkies is in NP due to this characterisation, and the guess is that it is also
NP-complete, though at present we do not have a proof (it is well known that the
boolean case is poly-time decidable, and this follows also from the efficient procedure
for finding balanced linear autarkies for boolean clause-sets mentioned above).

As remarked at the end of Section 6 in [33], we have the following fundamental
property of balanced linear autarkies for boolean clause-sets:

Lemma 7.1 A boolean clause-set F has no non-trivial balanced linear autarky (i.e.,
F is lean w.r.t. balanced linear autarkies) iff the columns of the clause-variable
matrix M(F ) of F are linearly independent (where the clause-variable matrix M(F )
of a multi-clause-set F is a c(F ) × n(F ) matrix over {−1, 0,+1}, containing the
natural encoding of the clauses in the rows).

It follows that if F is balanced-linearly lean, then δ(F ) ≥ 0. We will later
see, that this is the heart of the statement proven in [47], that a minimally non-
2-colourable hypergraph without non-covered vertices has as least as many edges
as vertices. In Theorem 2 of [1] this statement was strengthened to the statement,
that in a minimally non-2-colourable hypergraph G without non-covered vertices
there exists a matching in the bipartite graph B(G) corresponding to G (the vertices
and the hyperedges of G constitute the bipartition of B(G), and a vertex node v is
joined with a hyperedge node H if v ∈ H) covering all vertices. We will see that
the following lemma generalises this strengthening.

Lemma 7.2 Consider a boolean clause-set F ∈ CLS(VA{0,1}) which is balanced
linearly lean. Then δ∗(F ) = δ(F ) holds, i.e., there is a matching in B(F ) covering
all variable nodes. (Since δ∗(F ) ≥ 0, this statement includes δ(F ) ≥ 0.)

Proof: Assume δ∗(F ) > δ(F ), and consider a tight F ′ for F . By Lemma 4.15,
Part 3b there is a matching autarky ϕ for F with ϕ ∗ F = F ′. Let V := var(ϕ).
Since δ(F ′) > δ(F ), by Lemma 4.15, Part 1 we get δ(F [V ]) < 0. In general a multi-
clause-set G ∈ MCLS has a non-trivial balanced linear autarky iff M(G) · ~x = 0

51



has a non-trivial solution (over the rational or over the real numbers), and this
is guaranteed if this system of linear equations is under-constrained, that is, if
δ(G) < 0 holds. Thus F [V ] has a non-trivial balanced linear autarky, which yields
a (non-trivial) balanced linear autarky for F .

For balanced-linearly lean boolean clause-sets F we thus know ∀F ′ ⊆ F :
δ(F ′) ≤ δ(F ), which is weaker than ∀F ′ ⊂ F : δ(F ′) < δ(F ), shown in Lemma
4.16 to be equivalent to F being matching lean. But the notion of balanced lin-
ear autarkies is incomparable to the notion of matching autarkies, as the following
examples show.

1. Consider three (different) boolean variables x, y, z ∈ VA and a clause-set F
containing 6 (different) clauses C with var(C) = {x, y, z} (and nothing else).
Consider (different) boolean variables a, b ∈ VA\{x, y, z}, and add the literals
a, b to all 6 clauses in F . The partial assignment 〈a→ 1, b→ 0〉 is a balanced
linear autarky for F (choose some constant weighting) satisfying F , while F
is matching lean, since δ(F ) = 6 − 5 = 1, while for > 6= F ′ ⊂ F we have
n(F ′) = 5 and c(F ′) ≤ 5, and thus δ(F ′) ≤ 0.

2. The most trivial example for a matching satisfiable boolean clause-set which is
balanced-linearly lean is {{a}}, while an example not containing unit-clauses
is {{a, b}, {a, b}}.

A typical criterion to establish that a boolean clause-set is balanced linearly
lean is given by the following lemma (which follows from elementary linear algebra
together with Lemma 7.1).

Lemma 7.3 Consider a boolean clause-set F ∈ CLS(VA{0,1}). If M(F )t ·M(F ) is
non-singular, then F is balanced linearly lean.

Besides Lemma 7.2, our use of balanced linear autarkies is based on the following
lemma (which follows directly from the definitions), allowing to conclude from a
boolean clause-set F ∪ {C : C ∈ F} being linearly lean, that F is balanced linearly
lean (suitably generalised in the next subsection). For a boolean literal (x, ε) we
use (v, ε) := (v, 1 − ε), while for a boolean clause C we use C := {x : x ∈ C}, and
finally for a boolean clause-set F we set F := {C : C ∈ F}.

Lemma 7.4 Consider a boolean clause-set F ∈ CLS(VA{0,1}). A partial assign-
ment ϕ ∈ PASS(VA{0,1}) is a balanced linear autarky for F if and only if ϕ is a
linear autarky for F ∪ F . Thus F is balanced linearly lean if and only if F ∪ F is
linearly lean.

7.2 Preliminaries on hypergraphs

A (finite) hypergraph G is a pair G = (V,E), where the finite set V (G) = V is
the set of “vertices” of G, while E(G) = E ⊆ P(V ) is the set of “hyperedges” of
G (often also just called “edges”). Every graph is a hypergraph. An non-covered
vertex v of a hypergraph G is an element of V (G) \

⋃
E(G). A hypergraph G is

simple if there are no H,H ′ ∈ E(G) with H ⊂ H ′ (i.e., there are no subsumed
hyperedges).

The underlying variable hypergraph of a multi-clause-set F has vertex set
var(F ), while the hyperedges are the sets var(C) for C ∈ F .
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A C-colouring of a hypergraphG for some “colour-set” C is a map f : V (G) → C

such that for all hyperedges e ∈ E(G) there exist vertices v, w ∈ e with f(v) 6= f(w);
a k-colouring for k ∈ N0 is a {1, . . . , k}-colouring. A hypergraph G containing
a hyperedge e ∈ E(G) with |e| ≤ 1 has no C-colouring for any C, and thus is
called uncolourable, while otherwise the identity yields a V (G)-colouring for every
hypergraph G, and G is called colourable.13) The chromatic number χ(G) of a
colourable hypergraph G is the minimal cardinality of a set C such that a C-
colouring of G exists. We have 0 ≤ χ(G) ≤ |V (G)|, where χ(G) = 0 iff V (G) =
E(G) = ∅ and χ(G) = 1 iff V (G) 6= ∅ and E(G) = ∅. A (colourable) hypergraph G
is called k-chromatic critical (or critical k-colourable) for k ∈ N0 if χ(G) = k, and
for every edge e ∈ E(G) we have χ((V (G), E(G) \ {e})) < k; note that if χ(G) ≤ 1,
then G is automatically critically χ(G)-colourable, since there are no edges. A
hypergraph G is minimally non-k-colourable for k ∈ Z≥−1 if G is not k-colourable,
but for all edges e ∈ E(G) the hypergraph (V (G), E(G) \ {e}) is k-colourable; if G
is (k + 1)-chromatic critical, then G is also minimally non-k-colourable, while the
converse holds exactly for the colourable hypergraphs.14)

An independent set in a hypergraph G is a subset S ⊆ V (G) such that there is
no hyperedge H ∈ E(G) with H ⊆ S, while a transversal of G is a subset T ⊆ V (G)
such that for all hyperedge H ∈ E(G) we have T ∩H 6= ∅. It is S an independent
subset of G iff V (G) \S is a transversal of G. A hypergraph G is 2-colourable iff G

has an independent transversal.

A (finite) general hypergraph is a triple (V,E, E), where E, V are finite sets
and E = E(G) : E → P(V ) assigns to each hyperedge H ∈ E(G) the vertex set
E(H) ⊆ V . A hypergraph G can be implicitly promoted to a general hypergraph
(V (G), E(G), E) with E(H) := H for H ∈ E(G), while the underlying hypergraph
of a general hypergraph G is (V (G), {E(H) : H ∈ E(G)}), and this conversion
is applied only if necessary. The dual Gt of a general hypergraph is given by
V (Gt) = E(G) and E(Gt) = V (G), while to each hyperedge in Gt, which is a
vertex of G, the set of incident hyperedges of G (vertices of Gt) is assigned. A
general hypergraph G is called square if |E(G)| = |V (G)|. A general hypergraph
G is called intersecting if for all H,H ′ ∈ E(G) we have E(H) ∩ E(H ′) 6= ∅ (thus
a hypergraph without hyperedges is intersecting, while in the presence of some
hyperedge an intersecting general hypergraph cannot contain an empty hyperedge).

A pairwise balanced design with index λ ∈ N0 is a general hypergraph G such
that for every two vertices v, w ∈ V (G), v 6= w, there are exactly λ hyperedges
H ∈ E(G) with v, w ∈ E(H); in the context of design theory vertices are called
“points” and hyperedges “blocks”, and points are “incident” with blocks if they are
contained in the associated vertex set, and then this condition states that every two
points are incident with exactly λ blocks. A pairwise balanced design is a pairwise
balanced design with some index (in N0). We use general hypergraphs here to

13)Typically, in hypergraph theory colourings ignore hyperedges of size at most one (see for
example Chapter 7 in [24]), which unnecessarily breaks the natural connection to the theory of
generalised clause-sets. It seems better to me to depart from this tradition. In this way we are
also consistent with the notion of colourings for graphs: If a (general) graph has a loop, then it has
no colouring at all, and in the same spirit, if a hypergraph contains the empty edge or an edge of
size one, then it has no colouring at all. When considering the canonical translation of hypergraph
colouring problems into satisfiability problems for generalised clause-sets, then hypergraphs with
hyperedges of size one or zero translate into clause-sets which are (“automatically”) unsatisfiable.
14)If G is uncolourable, then G is minimally non-k-colourable for some k iff |E(G)| = 1, where

in case of V (G) = ∅ (and thus E(G) = {∅}) it is G minimally non-k-colourable for all k ≥ −1,
while otherwise (that is, V (G) 6= ∅ and E(G) = {{v}} for some v ∈ V (G)) G is minimally
non-k-colourable for all k ≥ 0.
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allow blocks with the same point set. We call a pairwise balanced design G non-
degenerated, if G has at least two points (thus we have at least λ blocks in G), and
every block contains at least two points. A trivial pairwise balanced design with
index λ ∈ N0 is a general hypergraph G with |E(G)| = λ, while for all H ∈ E(G)
we have E(H) = V (G) (i.e., G consists just of λ full blocks; a non-degenerated
pairwise balanced designs is trivial iff it has the minimal number of blocks).

A (finite) linear design is a pairwise balanced design with index 1. Blocks of
linear designs are also called “lines”. A dual linear design is the dual of a linear
design. A (finite) projective incidence plane is a linear design G which is also a dual
linear design, and such that there exist four (different) points in G so that for any
three of them there exists no line incident with all of them. A linear design which
is also a dual linear design but which is not a projective incidence plane is called
a degenerated projective incidence plane. If G is a projective incidence plane, then
we have

1. G is an intersecting hypergraph (without repeated blocks) with at least 7
points and 7 lines;

2. there is n ∈ N, n ≥ 2, the order of G, such that each line of G is incident with
(exactly) n + 1 points, and each point of G is incident with (exactly) n + 1
lines (in other words, in G as well as in Gt every hyperedge has length n+1);

3. |V (G)| = |E(G)| = (n+ 1)2 − n = n2 + n+ 1, and thus G is square.

We do not make (full) use of the following facts (and non-facts) for projective inci-
dence planes, but they seem instructive to me (especially since the open existence
problems might be approachable (in the future) for SAT solvers): For p a prime
number and e ∈ N it is known that there are projective incidence planes PG(2, pe)
of order pe given by the usual construction of projective geometry: Let F be a
field of order pe (thus F is necessarily commutative), let the points of PG(2, pe) be
the 1-dimensional linear subspaces of the F -vector space F 3, let the lines be the
2-dimensional linear subspaces of the F 3, and let a point of PG(2, pe) be incident
with a line if the point is a subset of the line (as subsets of F 3). Projective incidence
planes isomorphic to some PG(2, pe) are called desarguesian. It is known that for
pe ≥ 9 and e ≥ 2 always non-desarguesian projective incidence planes of order pe

exist, while for n ≤ 8 every projective incidence plane of order n is desarguesian
(see Section 3.2 in [13]). It is open whether there are non-desarguesian projective
incidence planes of order p ≥ 11, and it is open whether there are projective in-
cidence planes of order n ≥ 12 not a prime power (i.e., with two different prime
divisors).

7.3 Applications to hypergraph inequalities

We make use of the following connection between vertices and variables: All hyper-
graphs G fulfil V (G) ⊆ U for some fixed universe U , and for every domain D there
is a bijection varD : U → VAD, i.e., for a fixed domain D there is a one-to-one cor-
respondence between “vertices” (at all) and variables with domain D; in this way
we have an easy way of translation between vertices and variables (with a given
domain), and also an easy way of changing the domain of variables. Now back to
the first problem of generalising Lemma 7.4.

Since for generalised clause-sets we do not have complementation (negation),
in order to generalise Lemma 7.4, we need to fix in some sense the signs of the

54



variables. Since a sign-less clause-set is nothing else than a hypergraph, this is most
easily established by considering a hypergraph G, a domain D and a sub-domain
∅ 6= D′ ⊆ D, and defining the clause-set F[D′,D](G) ∈ CLS(VAD) by

F[D′,D](G) :=
⋃

ε∈D′

{varD(H)× {ε} : H ∈ E(G)}.

In words, F[D′,D](G) is obtained from G by collecting for each edge H ∈ E(G) and
each value ε ∈ D′ the clauses {(varD(v), ε) : v ∈ H} (recall that varD(v) is the vari-
able with domain D corresponding to vertex v). We have n(F[D′,D](G)) = |V (G)|
and wn(F[D′,D](G)) = (|D| − 1) · |V (G)|. The variable hypergraph of F[D′,D](G)) is
G. Parameter D′ is used for technical purposes, so that we can express

F[D′,D](G) =
⋃

ε∈D′

F[{ε},D](G). (3)

The most important case is D′ = D; let F[D](G) := F[D,D](G). The union in
(3) is disjoint if ∅ /∈ E(G). The clause-set F[D′,D](G) depends only on the edge
set of G, ignoring non-covered vertices in G. It is F[D](G) multihitting iff G is
intersecting, where if an intersecting G has at least one edge, then F[D](G) is |D|-
multihitting, while for G without an edge F[D](G) is 1-multihitting if G has vertices,
and 0-multihitting otherwise.

For the ease of reference we collect some obvious properties related to (balanced)
linear autarkies for 2-colourability problems in the following lemma.

Lemma 7.5 Consider a hypergraph G.

1. For ε ∈ {0, 1} we have

F[{ε},{0,1}](G) = F[{1−ε},{0,1}](G).

2. Thus F[{0,1}](G) is linearly lean iff F[{0},{0,1}](G) is balanced linearly lean (by
Lemma 7.4).

3. A partial assignment ϕ ∈ PASS(VA{0,1}), considered here as a partial map
assigning “colours” 0, 1 to (some) vertices of G, is a balanced linear autarky
for F[{0},{0,1}](G) if and only if for every hyperedge H of G the number of
vertices assigned colour 0 equals the number of vertices assigned colour 1.

4. More generally, for every domain D and ε ∈ D we have, that ϕ ∈ PASS(VAD)
is a balanced linear autarky for F[{ε},D](G) if and only if for every hyperedge
H of G the number of vertices assigned colour ε equals the number of vertices
assigned a colour from D \ {ε}.

5. Thus F[{0},{0,1}](G) is balanced linearly lean if and only if F[{ε},D](G) for any
domain D with at least two elements and for any ε ∈ D is balanced linearly
lean.15)

We remark that B(F[{0},{0,1}](G)) is isomorphic to B(G) via the bijection mapping
vertex nodes resp. hyperedge nodes of B(G) to variable nodes resp. clause nodes of
B(F[{0},{0,1}](G)).

15)Actually, for every autarky system A which is invariant under renaming and stable for unused
values we have the same equivalence, that is, F[{0},{0,1}](G) is A-lean iff F[{ε},D](G) is A-lean.
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In general, if ∅ /∈ E(G) then c(F[D′,D](G)) = |D′| · |E(G)|, and thus

δ(F[D](G)) = |D| · (|E(G)| − |V (G)|) + |V (G)|. (4)

A generalised clause-set F ∈ CLS is called colouring (see Section 8 for the
motivation for this naming), if there is a domain D and a hypergraph G such that
F = F[D](G). Note that G is the variable hypergraph of F here (since D 6= ∅), while
we can recover D =: D(F ) from F in case we have at least one variable (that is,
G contains at least one non-empty edge); if var(F ) = ∅, then we set D(F ) := {0}.
Thus, colouring clause-sets F are characterised by having a universal domain D(F )
and consisting of |D(F )| many copies of some hypergraph G, where each copy has
one of the values of D(F ) as the constant value of all literals in it. We denote the
set of all colouring clause-sets by CCLS. A clause-set F ∈ CLS is colouring iff
F \ {⊥} is iff F ∪ {⊥} is. If for F ∈ CCLS we have |D(F )| ≤ 1, then F is lean.

Lemma 7.6 Consider a hypergraph G, domains D1, D2 with ∅ 6= D1 ⊆ D2, and a
partial assignment ϕ1 ∈ PASS(VAD1). Obtain ϕ2 ∈ PASS(VAD2) from ϕ1 by re-
placing variables v1 ∈ dom(ϕ1) by the corresponding variable v2 ∈ varD2(var−1

D1
(v))

and setting ϕ2(v2) := ϕ1(v1).

1. If ϕ1 is an autarky for F[D1](G), then ϕ2 is an autarky for F[D2](G). Thus if
F[D2](G) is lean, then so is F[D1](G).

2. If ϕ1 is a linear autarky for F[D1](G), then ϕ2 is a linear autarky for F[D2](G).
Thus if F[D2](G) is linearly lean, then so is F[D1](G).

Proof: Part 1 follows by the observation, that for the clauses in F[D2](G) corre-
sponding to the clauses in F[D1](G) (obtained by replacing variables varD1(v) by
varD2(v) for v ∈ V (G)) nothing changes, while the additional clauses all get sat-
isfied. For Part 2 we additionally note, that actually all literals in the additional
clauses become true, and thus ϕ1 is always a linear autarky w.r.t. the additional
clauses.

Lemma 7.7 Consider a hypergraph G and a domain D with 0, 1 ∈ D.

1. Consider some ε ∈ D. If a partial assignment ϕ is a balanced linear autarky
for F[{ε},D](G), then ϕ is a linear autarky for F[D](G).

2. Thus, if F[D](G) is linearly lean, then F[{0},{0,1}](G) is balanced linearly lean.

Proof: For Part 1 note, that if ϕ is a balanced linear autarky for F[{ε},D](G), then
for every hyperedge touched by ϕ (using the correspondence between vertices and
variables of domain D) there is a vertex (variable) v in H with ϕ(v) = ε, and thus
ϕ satisfies all clauses in F[D\{ε},D](G) it touches. Part 2 follows from Part 1 and
Lemma 7.5, Part 5.

We remark that if G has no hyperedge of length at most one, then F[D](G) is
linearly satisfiable for every domain D with |D| ≥ |V (G)|.

Theorem 7.8 Consider a hypergraph G without non-covered vertices. If there ex-
ists a domain D with |D| ≥ 2 such that F[D](G) is linearly lean, then there is a
matching in B(G) covering all vertex nodes, whence |E(G)| ≥ |V (G)|.

56



Proof: W.l.o.g. 0, 1 ∈ D. By Lemma 7.7, Part 2 it follows that F[{0},{0,1}](G) is
balanced linearly lean. By Lemma 7.2 then we obtain a matching as required.

Some remarks:

1. By virtue of Lemma 7.5, in case of D = {0, 1} Theorem 7.8 is a special case
of Lemma 7.2; so the point of Theorem 7.8 is the generalised domain. In
Lemma 7.10 we give an application of Theorem 7.8 which boils down to the
boolean case, exploiting (essentially) Lemma 7.3 and thus actually establish-
ing balanced linear leanness directly; however in Corollary 8.2 we will infer
linear leanness from minimally unsatisfiability, and there the generalisation of
Theorem 7.8 plays its role.

2. Consider a hypergraph G without non-covered vertices and without the empty
edge, and a domain D. Then by (4) we have

(a) |E(G)| ≥ |V (G)| ⇔ δ(F[D](G)) ≥ n(F )

(b) |E(G)| = |V (G)| ⇔ δ(F[D](G)) = n(F ).

Thus G is square iff F[D](G) has the minimal possible deficiency.

3. If we allow G with non-covered vertices, then the these vertices are ignored
by the matching and the counting of vertices in Theorem 7.8.

7.4 The inequality of Fisher

To conclude this section, we give an application of Theorem 7.8 to a well-known
inequality from design theory, in order to illustrate the role of autarky theory for
this kind of investigations (there is no really new element in the proof, but the
main point is the application of the general framework we developed). First a
(well-known) lemma from elementary linear algebra:

Lemma 7.9 For n ∈ N let A be a square matrix of dimension n and let a ∈ R>0,
such that all non-diagonal entries of A are equal to a, while all diagonal entries are
strictly greater than a. Then A is non-singular.

Now we prove the (generalised) inequality of Fisher (see Section II.2 in [4], or
Section 2 in [23], or Theorem 5.12 in [15]):

Lemma 7.10 Consider a non-trivial and non-degenerated pairwise balanced design
G, and let G0 be the underlying hypergraph of G. Then B(G0) contains a matching
covering all points of G0, whence |E(G)| ≥ |E(G0)| ≥ |V (G0)| = |V (G)|.

Proof: We show that F[{0,1}](G0) is linearly lean, which proofs the assertion by
Theorem 7.8. Let V (G) = {v1, . . . , vn}, n = |V (G)| and E(G) = {H1, . . . ,Hm},
m = |E(G)|. Consider the point-adjacency matrix A of G, which is a square matrix
of dimension n, having entries at position (i, j) equal to the number of blocks
incident with points vi, vj (simultaneously). By definition all non-diagonal entries
are equal to the index λ of G, while elementary reasoning shows that all diagonal
entries are strictly greater than λ (otherwise G would be a trivial). Thus by Lemma
7.9 we obtain, that A is non-singular. Now consider the point-block incidence matrix
M of G, which is an n×m-matrix over {0, 1} with the entry at position (i, j) equal
to 1 iff vi is incident with Hj . By definition we have M ·M t = A, and thus the
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column-rank of M must be at least n (by elementary linear algebra). It follows that
the column-rank of M0, the point-block incidence matrix of G0, must be at least n
as well, since removal of repeated columns does not change the column rank. By
equality of column-rank and row-rank M0 thus has linearly independent rows, or, in
other words, the clause-variable-matrixM(F[{0},{0,1}](G0)) has linearly independent
columns. By Lemma 7.1 it follows that F[{0},{0,1}](G0) is balanced linearly lean,
which in turn is equivalent to F[{0,1}](G0) being linearly lean (see Lemma 7.5).

Since we used only a boolean domain in the proof of Lemma 7.10, we could
have used Lemma 7.2 instead of Theorem 7.8, however it seems that the general
“interface” for access to hypergraph inequalities “|E(G)| ≥ |V (G)|” is given by
Theorem 7.8, and so we wanted to emphasise the use of this general tool. In the
next section a genuine application of Theorem 7.8 is presented.

8 Applications to/of hypergraph colouring

Like the graph colouring problem, the hypergraph colouring problems lacks a notion
of “substitution”, which for example would allow to split a hypergraph k-colouring
problem into k hypergraph k-colouring subproblems by giving some distinct vertex
one of the k possible colours. By embedding the hypergraph colouring problem into
the richer context of satisfiability problems for (generalised) clause-sets we gain such
closure under substitution, while the translation is very direct, and does not mask
structure. In a certain sense this translation “annotates” the hypergraph colouring
problem, making available the rich set of operations on (generalised) clause-sets.

In Subsection 8.1 we discuss basic properties of the canonical translation (which
was already introduced in Subsection 7.3), while the inequality of Seymour and
related subjects (including “crown decompositions”) one finds in Subsection 8.2.
Finally in Subsection 8.3 the task of characterising minimally unsatisfiable colouring
clause-sets of minimal deficiency is discussed, exploiting the central result of [47].

8.1 Translating hypergraph colouring problems

Consider a hypergraph G and k ∈ N. We associate the generalised clause-set
F[k](G) := F[{1,...,k}] ∈ CLS to G (recall Subsection 7.3), that is, the variables
of F[k](G) are the vertices of G, while the clauses of F[k](G) are the hyperedges of G
in k versions corresponding to the k choices for the colour. We have that n(F[k](G))
is the number of vertices of G which are not non-covered, Dv = {1, . . . , k} for all
v ∈ var(F[k](G)), c(F[k](G)) = k · |E(G)|, and `(F[k](G)) = k ·

∑
E∈E(G)|E|. By def-

inition it is G k-colourable if and only if F[k](G) is satisfiable, and moreover the set
of k-colourings of G is identical to Svar(F[k](G))(F[k](G)). The variable hypergraph
of F[k](G) is G. If actually we have a “list hypergraph colouring” problem, that is,
for each vertex v only a subset of all colours is available, then we model this by
restricting the domain Dv of variable v accordingly, and by removing all clauses C
from F[k](G) containing a literal (v, ε) with ε /∈ Dv.

If we want to solve F[k](G) by a (generalised) SAT solver, then it is useful to
break the symmetry between the values 1, . . . , k of the colouring as follows: Choose
(different) variables v1, . . . , vk−1 ∈ V (G) and use the restricted domains Dvi =
{1, . . . , i} for i ∈ {1, . . . , k − 1}; the clause-set obtained in this way is satisfiability-
equivalent to F[k](G), but the search space has been reduced. In practice, the savings
obtained by this simple method are quite considerable, but for theoretical reasoning
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we gain only unnecessary complications, and thus in this paper we do not use
this elementary symmetry breaking, but we only use the canonical transformation
G 7→ F[k](G).

Clause-sets expressing hypergraph colouring problems are up to renaming ex-
actly the colouring clause-sets as defined in Subsection 7.3. A colouring clause-set F
is satisfiable iff the variable-hypergraph of F is |D(F )|-colourable. Boolean colour-
ing clause-sets are special cases of “PN-clause-sets” as introduced in [21] (boolean
clause-sets, where each clause either is positive or negative), which are the heart of
the class of bipartite clause-sets (clause-sets, where the conflict graph is bipartite).

Lemma 8.1 A colouring clause-set F ∈ CCLS is minimally unsatisfiable if and
only if the variable hypergraph of F is minimally non-|D(F )|)-colourable. Put into
the hypergraph perspective: A hypergraph G is minimally non-k-colourable for k ∈ N
if and only if F[k](G) is minimally unsatisfiable.

Proof: Consider a colouring clause-set F , let k := |D(F )| ∈ N, and let G denote
the variable hypergraph of F . Obviously, if F is minimally unsatisfiable, then G

is minimally non-k-colourable. Now assume that G is minimally non-k-colourable,
but F is not minimally unsatisfiable. Thus there exists C ∈ F such that F \ {C} is
unsatisfiable. If C = ⊥, then G = (∅, {∅}), and thus F = {⊥} would be minimally
unsatisfiable; so let ε ∈ D(F ) be the common value of the literals in C. The
hypergraph G minus the edge var(C) has a D(F )-colouring f . It must f colour all
vertices in hyperedge var(C) with the same colour ε′ ∈ D(F ). Consider a bijection
π ∈ SD(F ) with π(ε′) = ε, and set f ′ := π◦f . Now f ′ (which still is aD(F )-colouring
for G) is a satisfying assignment for F \ {C} contradicting the assumption.

8.2 On an inequality of Seymour

Lemma 8.1 together with Theorem 7.8 yields immediately

Corollary 8.2 Consider a hypergraph G without non-covered vertices, which is
minimally non-k-colourable for some k ≥ 2. Then there is a matching in B(G)
covering all vertex nodes, whence |E(G)| ≥ |V (G)|.

Corollary 8.2 shows the potential of the approach of translating hypergraph colour-
ing problems into satisfiability problems for generalised clause-sets: If a hypergraph
G is critical k-colourable, then G is not critical k-colourable for any k′ < k, and
thus there is no direct way to reduce the assertion for k > 2 to the known case
k = 2. However from F[k](G) being minimally unsatisfiable we can conclude that
F[k](G) is lean, and if F[k](G) is lean, then also F[k′](G) is lean for all k′ < k (an
autarky for F[k′](G) is also an autarky for F[k](G) modulo the (injective) variable
replacements involved). And the lower bound on the deficiency does not need a
minimality condition, but only a certain leanness condition.

More precisely, we need that F[2](G) is linearly lean, and since the lean ker-
nel of F[2](G) w.r.t. linear autarkies is computable in polynomial time (together
with a corresponding sequence of linear autarkies; see [33]), we get the following
strengthening of Corollary 8.2:

Corollary 8.3 Consider a hypergraph G. In polynomial time a map f : V ′ → {1, 2}
for some V ′ ⊆ V (G) can be computed, such that f is a (proper) 2-colouring of
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G′ := (V ′, {E ∈ E(G) : E ∩ V ′ 6= ∅}) (the hypergraph with vertex set V ′ and
hyperedges the hyperedges from G which have some vertex in common with V ′), and
such that G′′ := (V \ V ′, {E ∈ E(G) : E ∩ V ′ = ∅}) fulfils |E(G′′)| ≥ |V (G′′)|. (If
G is minimally non-k-colourable for some k ≥ 2, and has no non-covered vertices,
then necessarily G′′ = G holds.)

For general boolean clause-sets F for the computation of the lean kernel w.r.t. linear
autarkies a series of linear programming problems needs to be solved. However, if
F is colouring, every linear autarky is a balanced linear autarky, and thus instead
of finding a non-trivial solution of M(F ) ·x ≥ 0 (where M(F ) is the clause-variable
matrix) we only need to solve systems M(F ) · x = 0 of linear equations. So the
polynomial-time computation for Corollary 8.3 is quite practical.

Corollary 8.3 is essentially the same as Corollary 6 in [43], but for their proof
the authors used so-called “crown decomposition”, which in this setting is closely
related to reductions by matching autarkies (see Lemma 5 in [43]).

To conclude this subsection, I would like to point out the following interesting
relaxation of the chromatic number of hypergraphs:

Consider a colourable hypergraph G. It is F[1](G) lean, while F[χ(G)](F ) is
satisfiable, and thus not lean in case of V (G) 6= ∅. And if F[k](G) is lean, then so is
F[k′](G) for k′ ≤ k. So I propose to study the autarky number χa(G) ≤ χ(G),
the maximal k so that F[k](G) is lean. Corollary 8.2 then can be generalised as
the assertion, that a hypergraph without non-covered vertices and with χa(G) ≥ 2
has at least as many edges as vertices. Via the use of autarky systems the autarky
number of hypergraphs can be generalised (considering for example the matching
autarky number); by introducing an appropriate normal autarky system capturing
“boolean balanced linear autarkies”, and using the autarky number associated with
that autarky system we then arrive at what looks as a very natural “most general
condition” for having at least as many edges as vertices.

8.3 Characterising minimally unsatisfiable colouring clause-
sets

For a clause-set F denote by G(F ) the variable hypergraph of F . And let

MUCCLS := MUSAT ∩ CCLS

be the set of minimally unsatisfiable colouring clause-sets. In this final section we
look into the issue of characterising MUCCLS, those minimally unsatisfiable clause-
sets F which are determined by their variable graph G(F ) (and the chromatic
number of G(F )). The following lemma recollects the basic information about
(minimally unsatisfiable) colouring clause-sets.

Lemma 8.4 The class CCLS of colouring clause-sets has the following properties:

1. (a) For all domains D,D′ and all hypergraphs G,G′ without non-covered
vertices we have F[D](G) ∈ CCLS, where F[D](G) = F[D′](G′) if and only
if (D = D′ and G = G′) or (G = G′ and V (G) = V (G′) = ∅).

(b) For every F ∈ CCLS we have F = F[D(F )](G(F )).

(c) For every F ∈ CCLS we have F ∈ MUSAT if and only if G(F ) is
minimally non-|D(F )|-colourable.
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2. For a clause-set F ∈ CLS we have:

(a) F ∈ CCLS ⇔ F \ {⊥} ∈ CCLS.

(b) var(F ) = ∅ ⇒ F ∈ CCLS.

(c) Assume ⊥ /∈ F and var(F ) 6= ∅. Then F ∈ CCLS holds if and only if
there is a domain D and ε : F → D with the following properties:

i. For variables v ∈ var(F ) we have Dv = D.
ii. For C ∈ F and x ∈ C we have val(x) = ε(C).
iii. For C,C ′ ∈ F we have C = C ′ ⇔ var(C) = var(C ′) ∧ ε(C) = ε(C ′).
iv. c(F ) = |D| · |E(G(F ))|.
D and ε are uniquely determined here.

3. The set of all F ∈ MUCCLS |D|=1 is the set of all F[D](G) for |D| = 1 and
|E(G)| = 1 (and thus MUCCLS |D|=1 ⊂MUSATδ=1).

4. For F ∈MUCCLS with |D(F )| ≥ 2 we have δ(F ) ≥ n(F ).

5. For F ∈MUCCLS we have δ(F ) = n(F ) if and only if G(F ) is square.

Proof: Follows by Remark 2 to Theorem 7.8, and with Lemma 8.1 and Corollary
8.2.

We set out to classify MUCCLSδ=n, the set of minimally unsatisfiable colouring
clause-sets where the deficiency equals the number of variables, which by Lemma
8.4 amounts to classify all pairs (G, k) such that k ∈ N and G is a minimally non-k-
colourable square hypergraph G. Except of the trivial instances of MUCCLS char-
acterised in Lemma 8.4, Part 3, MUCCLSδ=n is the set of instances of MUCCLS
with “relatively lowest” deficiency.

Now actually it is not clear classifying MUCCLSδ=n is feasible (at all); here we
will only classify the class MUCCLSδ=n ∩MHIT (the multihitting minimally un-
satisfiable colouring clause-sets of minimal deficiency), which can be subdivided into
the level MUCCLSmh=k

δ=n for k ∈ N. For fixed k the classification of MUCCLSmh=k
δ=n

amounts to classify all intersecting minimally non-k-colourable square hypergraphs.

From Corollary 6.9 we get, that a subsumption-free multihitting clause-set is
already minimally unsatisfiable if it is just unsatisfiable. Thus

Corollary 8.5 Consider a simple intersecting hypergraph G and k ∈ N. Then G

is minimally non-k-colourable if and only if G is not k-colourable.

Simple intersecting hypergraphs are “almost” 2-colourable:

Lemma 8.6 Consider a simple intersecting hypergraph G. For all hyperedges H ∈
E(G) then G− {E} = (V (G), E(G) \ {E}) is 2-colourable.

Proof: Define a map f : V (G) → {1, 2} by mapping the points of H to 1, and
every other point to 2. f is a 2-colouring of G−{H}, since any hyperedge different
from H has a non-empty intersection with H and contains vertices not in H.

A hypergraphG is called a square pencil ifG is square, intersecting and |V (G)| =
1 (thus for v ∈ V (G) we have E(G) = {{v}}). Note that square pencils are not
colourable.
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Corollary 8.7 An intersecting hypergraph G is 3-colourable if and only if G is not
a square pencil.

For the ease of reference we note the following direct implication of Lemma 8.6
(some designs will yield key examples):

Corollary 8.8 Consider a dual linear design G with at least 2 points on each line.
G is 2-colourable if any line is removed (only from the line set, while the point set
is kept). Thus G is 3-colourable, while G is critical 3-colourable if and only if G is
not 2-colourable (that is, has no blocking set).

For multihitting colouring clause-sets we see, that regarding (un)satisfiability
only boolean clause-sets are of real interest:

Corollary 8.9 A multihitting colouring clause-set F with multihitting number at
least three is unsatisfiable if and only if n(F ) = 1 = δ(F ).

Regarding the classification of minimally unsatisfiable multihitting colouring
clause-set we obtain, that all levels MUCCLSmh=k

δ=n for k 6= 2 are trivial:

Lemma 8.10 The elements of MUCCLSmh=k
δ=n for k ∈ N \ {2} are the F[D](G) for

domains D with |D| = k where G is a square pencils.

Proof: The case k = 1 is trivial, while the remaining cases follow from Corollary
8.9.

For the remaining case k = 2 we investigate projective incidence planes.

Lemma 8.11 A projective incidence plane G of order k ∈ N0 is minimally non-
2-colourable iff k = 2, and in this case F[2](G) ∈ MUCCLSmh=2

δ=n , while G is 2-
colourable for k ≥ 3. Among the degenerated projective incidence planes exactly the
following types are square and minimally non-k-colourable for some k ∈ N:

1. A square pencil P ; here F[k](P ) ∈MUCCLSmh=k
δ=n for all k ∈ N.

2. A “near pencil”, a hypergraph N with |V (N)| ≥ 3 and |E(N)| = |V (N)|
containing a (unique) point v ∈ V (N) such that E(N) = {V (N) \ {v}} ∪
{{v, w}}w∈V (N)\{v}; these N are intersecting and minimally non-2-colourable.
Thus F[2](N) ∈MUCCLSmh=2

δ=n .

Proof: As we have remarked, 2-colourability of G is equivalent to the existence
of a blocking set (an independent transversal), and a projective plane contains a
blocking set iff the order is at least 3 (this is well known, and follows also immediately
from Corollary 8.13 below). The remaining assertions follow by Corollary 8.8 and
elementary reasoning.

Lemma 8.11 yields three key examples of intersecting minimally non-2-colourable
square hypergraphs:

1. The square pencil ({1}, {{1}}).

2. The near pencil with three vertices, i.e., the triangle

C3 = ({1, 2, 3}, {{1, 2}, {2, 3}, {1, 3}}).
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3. The projective plane PG(2, 2) of order 2, i.e., the Fano plane

({1, . . . , 7},
{
{1, 2, 3}, {3, 4, 5}, {1, 5, 6}, {1, 4, 7}, {2, 5, 7}, {3, 6, 7}, {2, 4, 6}

}
).

In [47] (Proposition 7) it was shown that these three hypergraphs plus a certain
extension process exactly produce all intersecting minimally non-2-colourable square
hypergraphs (solving the classification of MUCCLSmh=2

δ=n ):

Theorem 8.12 [47] The class of intersecting minimally non-2-colourable square
hypergraphs is the class of hypergraphs containing square pencils and projective
planes of order 2, and all “2-extensions of C3”, which is the class of hypergraphs
containing near pencils with three vertices and if G belongs to this class, then also
G′ arising from G by choosing an edge {x1, x2} ∈ E(G) of length 2 and some new
vertex z /∈ V (G), and adding the edge {x1, z} as well as adding the vertex z to all
edges of G except of {x1, x2}.

Corollary 8.13 Every intersecting simple square hypergraph G (by definition, this
includes square dual linear designs) fulfilling at least one the following (sufficient)
criterions is 2-colourable (and thus has a blocking set):

1. G has only hyperedges of size at least 4.

2. G has only hyperedges of size at least 3, and G has also hyperedges of size at
least 4 or |V (G)| ≥ 8.

3. G contains hyperedges of sizes 1 and 2.

Proof: By Theorem 8.12 such a hypergraph is not minimally non-2-colourable,
and thus by Corollary 8.5 it must be 2-colourable.

By Lemma 8.10 and Theorem 8.12 we finally obtain:

Theorem 8.14 The class MUCCLSδ=n∩MHIT is exactly the class of clause-sets
F fulfilling the following conditions:

1. If F contains a unit-clause, then G(F ) is a square pencil.

Otherwise |D(F )| = 2 must hold, i.e, up to renaming now F is boolean for the
remaining cases.

2. If F contains a binary clause, then G(F ) is a 2-extension of C3 (see Theorem
8.12).

3. Otherwise G(F ) is isomorphic to the Fano plane.

Corollary 8.15 For F ∈ CCLSδ=n ∩MHIT each of the following conditions is
sufficient to guarantee satisfiability of F :

1. F has only clauses of length at least 4.

2. F has only clauses of length at least 3, and F has also clauses of size at least
3 or n(F ) ≥ 8 or c(F ) ≥ 15.

3. G contains clauses of sizes 1 and 2.
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9 Conclusion and open problems

The first purpose of this article was to set the stage for the study of generalised
clause-sets as sets of “no-goods”, where literals are given by one “forbidden value”:
We defined and summarised the basic properties of syntax, semantics, resolution
calculus and autarky systems. Then we considered the generalisation of the notion
of deficiency for these generalised clause-sets, and we studied the basic autarky
systems related to this notion, matching autarkies and balanced linear autarkies.
We showed fixed parameter tractability of generalised clause-sets in the maximal
deficiency. For autarky systems both the application of autarkies as reductions and
the properties of autarky-free, i.e., lean clause-sets are of interest. Lean clause-sets
are a generalisation of minimally unsatisfiable clause-sets, for which we considered
the basic problem, when the property of being minimally unsatisfiable is preserved
under application of partial assignments, and we characterised also minimally un-
satisfiable clause-sets of minimal deficiency. Besides using the generalised tools
transferred from the boolean case, also the structure preserving properties of the
boolean translation are important, and we investigated basic cases.

Turning to hypergraph theory, we gave a general method for proving that a
hypergraph has a matching between vertices and hyperedges covering all vertices,
exploiting here linear algebra, while in proving the analogous result for minimally
unsatisfiable clause-sets we used matching theory. We applied this general method
to Fisher’s inequality, and, using the canonical translation of hypergraph colour-
ing problems into generalised satisfiability problems, we obtained a generalisation
of a well-known result of Seymour. Regarding the project of classifying minimally
unsatisfiable clause-sets, the results of Seymour have been interpreted as the charac-
terisation of the first non-trivial level of minimally unsatisfiable colouring clause-sets
of minimal deficiency (where colouring clause-sets are those generalised clause-sets
characterised completely by their variable hypergraph and their (uniform) variable
domain).

The embedding of the hypergraph colouring problem into the richer space of
generalised satisfiability problems enables operations which are external to the hy-
pergraph environment, and can be expressed at this level only in clumsy ways.
(However, it seems essential that this richer space is still “close enough” to the orig-
inal space.) One of these operations is the operation of autarkies. Autarky-freeness
(“leanness”) yields a natural and “smooth” extension of the notion of “minimality”.

There is a host of open problems, which seem to be non-trivial and opening new
pathways into structural investigations of clause-sets and hypergraphs, which we
will discuss in the remainder.

9.1 Minimally unsatisfiable clause-sets of low deficiency

Having transferred the characterisation of minimally unsatisfiable clause-sets of de-
ficiency one from the boolean case in Subsection 6.4, the next question concerns
the generalisation of the structure of boolean MUSATδ=2 as studied in [6]. This
generalisation seems to be not straightforward, but we believe that minimally un-
satisfiable generalised clause-sets of deficiency two are still quite close to the boolean
case (while from deficiency three on generalised clause-sets behave more wildly).

In [28] it was shown that for every boolean minimally unsatisfiable clause-set F
with n(F ) > 0 there exists a variable v ∈ var(F ) such that for both ε ∈ {0, 1} we
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have #(v,ε)(F ) ≤ δ(F ). In Lemma 6.14 this property was shown to hold also for
(generalised) minimally unsatisfiable clause-sets in case of δ(F ) = 1 — does it also
hold for arbitrary (generalised) minimally unsatisfiable clause-sets ?

9.2 Uniform hitting clause-sets

Regarding the base case of deficiency 1 for minimally unsatisfiable clause-sets, a
natural question is, whether every uniform unsatisfiable hitting clause-set has nec-
essarily deficiency 1 ? (We remark here that obviously UHIT sat=0

hd=r is empty for
r ≥ 2, since no resolution is possible here.) We conjecture that this is the case:

Conjecture 9.1 UHIT sat=0 = UHIT sat=0
δ=1 .

From Conjecture 9.1 it would follow by Corollary 6.17, that the class of unsat-
isfiable hitting (generalised) clause-sets is equal to the class of saturated minimally
unsatisfiable clause-sets of deficiency 1, generalising Corollary 34 in [35].

In [35] the property δ(F ) ≤ 1 was actually shown for arbitrary (not necessarily
unsatisfiable) boolean uniform hitting clause-sets F . Whether this holds for gener-
alised clause-sets seems to be a non-trivial problem, since the notion of hermitian
rank exploited in [35] is specifically tailored to the use of matrices (which are inher-
ently two-dimensional) and real numbers (with positive and negative values) and
hence boolean clause-sets. Though we do not know how to prove it, we nevertheless
believe that the generalisation holds true:

Conjecture 9.2 UHIT = UHITδ≤1.

Note that Conjecture 9.2 implies Conjecture 9.1 (using Corollary 4.21). In the
terminology of graph partitions, Conjecture 9.2 generalises “Witsenhausen’s Theo-
rem”, the special case of the Graham-Pollak Theorem asserting that every biclique
partition of a complete graph Km needs at least m− 1 bicliques:

Now we allow to partition the edge set of r · Km (exactly r edges joining two
different nodes) into complete multipartite graphs, where every complete k-partite
component (k ≥ 2) contributes the “cost” k − 1, and Conjecture 9.2 says, that
the total cost must be at least m − 1 (allowing only k = 2 is the Theorem of
Witsenhausen, while allowing only k = m is trivial).

9.3 Autarkies

Is the problem NOT-ALL-EQUAL-2-SAT for generalised (2-)clause-sets NP-comp-
lete? (As discussed in Subsection 7.1, this is equivalent to the problem of deciding
whether a generalised 2-clause-sets is satisfiable by a balanced linear autarky.)

Is the concept of linear autarkies for generalised clause-sets useful? For example
are there interesting poly-time computable subclasses (besides the boolean sub-
case)?

9.4 Hypergraphs

Are there further applications of Theorem 7.8? Can the autarky number of hyper-
graphs as discussed in Subsection 8.2 be made useful?
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9.5 Characterising minimally unsatisfiable colouring clause-
sets of minimal deficiency

What about the classification of MUCCLSδ=n ? Is one of the following classes
poly-time decidable:

1. MUCCLSδ=n ?

2. MUCCLSδ=n ∩MHIT ? (As we have seen, deciding this class boils down to
deciding MUCCLSmh=2

δ=n ).

Finally, we can wonder whether there might be a generalised structure theorem
for classes of minimally unsatisfiable (generalised) clause-sets of “relative” minimal
deficiency? Can for example the de Bruijn-Erdös classification of square linear
designs be made fruitful here?
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