
Constraint Satisfaction with Succinctly Specified
Relations

Hubie Chen and Martin Grohe

1 Departament de Tecnologia
Universitat Pompeu Fabra

Barcelona, Spain
hubie.chen@upf.edu

2 Institut für Informatik
Humboldt-Universität Berlin

Unter den Linden 6, D-10099 Berlin, Germany
grohe@informatik.hu-berlin.de

Abstract. The general intractability of the constraint satisfaction prob-
lem (CSP) has motivated the study of the complexity of restricted cases
of this problem. Thus far, the literature has primarily considered the for-
mulation of the CSP where constraint relations are given explicitly. We
initiate the systematic study of CSP complexity with succinctly specified
constraint relations.

1. Introduction

Constraint satisfaction problems give a uniform framework for a large number of
algorithmic problems in many different areas of computer science, for example,
artificial intelligence, database systems, or programming languages. While in-
tractable in general, many restricted constraint satisfaction problems are known
to be efficiently solvable. Considerable effort went into analysing the precise con-
ditions that lead to tractable problems; recent results include [2, 8, 3, 16, 7, 6, 1,
5, 17].

An instance of a constraint satisfaction problem (CSP) is a triple (V,D,C)
consisting of a set V of variables, a domain D, and a set C of constraints. The
objective is to find an assignment to the variables, of values from D, such that
all constraints in C are satisfied. The constraints are expressions of the form
Rx1 . . . xk, where R is a k-ary relation on D and x1, . . . , xk are variables. A
constraint is satisfied if the k-tuple of values assigned to the variables x1, . . . , xk

belongs to the relation R. As a running example for this introduction, let us view
SAT, the satisfiability problem for CNF-formulas, as a constraint satisfaction
over the domain {0, 1}. Constraints are given by the clauses of the input formula.
For example, the clause (x∨¬y∨¬z) corresponds to a constraint Rxyz, where R is
the ternary relation {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
on the domain {0, 1}.

Two types of restriction on CSP-instances are commonly studied in the lit-
erature: restrictions of the constraint language and structural restrictions. The

Dagstuhl Seminar Proceedings 06401
Complexity of Constraints
http://drops.dagstuhl.de/opus/volltexte/2006/802

former restrict the relations on the domain that are permitted in the constraints.
For example, HORN-SAT is the restriction of SAT where all constraint relations
are specified by Horn clauses, that is, clauses with at most one negative literal.
It is known that HORN-SAT can be solved in polynomial time. SAT itself has
a restricted constraint language where all constraint relations are specified by
disjunctions of literals. The main open problem is the dichotomy conjecture by
Feder and Vardi [11], which states that for each constraint language the restricted
CSP is either in polynomial time or NP-complete. Currently, this problem still
seems to be wide open.

Structural restrictions on CSP-instances are restrictions on the structure in-
duced by the constraints on the variables. A well-known example is the restriction
to instances of bounded tree-width. Here a graph on the variables is defined by
letting two variables be adjacent if they occur together in some constraint. It is
known that for every k the restriction of the general CSP to instances where this
graph has tree width at most k, is in polynomial time [10, 13]. The complexity
of structural restrictions is better understood than that of constraint language
restrictions. If the maximum arity of the constraint relations is bounded, a com-
plete complexity theoretic classification is known [16]; we will state it later in
this paper. If the arity is unbounded, interesting classes of tractable problems
are known [15, 14, 6, 1, 5, 17], but no complete complexity classification is.

In this paper, we study both restrictions of the constraint language and
structural restrictions. We focus on the case of constraint relations of unbounded
arity. What is new here is that we pay attention to the way the constraint
relations are specified in the problem instances.

In the complexity-theoretic investigations of constraint satisfaction problems
it is usually assumed that the constraint relations occurring in a CSP-instance
are specified simply by listing all the tuples in the relation, as we did above for
the relation specified by the clause (x∨¬y ∨¬z). We call this the explicit repre-
sentation. In practice, the constraint relations are often represented implicitly.
For example, in SAT-instances, the clauses and not the relations they represent
are given. Obviously, the implicit clausal representation is exponentially more
succinct than the explicit representation, and this may affect the complexity. As
long as the arity of the constraint relations is bounded a priori, as in 3-SAT,
it does not make much of difference, because the size of the explicit and any
implicit representations differ only in a polynomial factor in terms of the overall
instance size. If the domain is fixed, they even differ only by a constant factor.
However, for CSPs of unbounded arity, it can make a big difference. What this
means in the complexity theoretic context is that algorithms whose running time
is polynomial in the size of the explicitly represented instances may become ex-
ponential if the instances are represented implicitly. In particular, this is the case
for all recent algorithms that exploit a structural restriction called bounded hy-
pertree width and related restrictions [6, 1, 5, 17]. Indeed, these algorithms have
been criticised for precisely the reason that they are only polynomial relative to
the explicit representation, which is perceived as unrealistic by some researchers.
While we do not share this criticism in general, we agree that there are many

2

examples of CSPs where implicit representations are more natural, such as SAT
and systems of equalities or inequalities over some numerical domain. This paper
initiates a systematic study of the complexity of CSPs with succinctly specified
constraint relations.

Before we can state our main results, we have to get a bit more technical.

1.1. Succinctly specified constraint relations. How can we specify con-
straints implicitly, and how does this affect the complexity of the CSPs? It
will be convenient to consider the Boolean domain {0, 1} first. An abstract
implicit representation is to not specify the constraint relations at all, but
just assume a membership oracle for each relation. That is, an algorithm may
ask if a specific tuple of values belongs to the relation and get an answer in
the next step. However, this may lead to CSPs being highly intractable just
because their constraint relations are. Consider the family of CSP-instances
In := ({v1, . . . , vn}, {0, 1}, {Rnv1 . . . vn}). To solve such instances, the best an
algorithm that knows nothing about Rn and only has access to a membership
oracle can do is enumerate all tuples in {0, 1}n and query the oracle for each of
them. Thus the running time will be exponential in the worst case, even though
the instances In, having just one constraint, are very simple. This type of com-
plexity is clearly not what we are interested in here. Therefore, specifying the
constraint relations by membership oracles is “too implicit”; our implicit repre-
sentation has to be a bit more explicit. A natural and somewhat generic repre-
sentation of constraint relations over the Boolean domain is by Boolean circuits.
Now consider the family of instances IC := ({v1, . . . , vn}, {0, 1}, {RCv1 . . . vn}),
where RC is the n-ary relation specified by the Boolean circuit C with n inputs.
Again, this is a family of very simple instances with just one constraint. However,
solving the instances in this family amounts to solving the Boolean satisfiability
problem, which is NP-complete. Therefore, it seems reasonable that an implicit
representation has a tractable nonemptiness problem. (The nonemptiness prob-
lem for relations specified by circuits is the circuit satisfiability problem.) This
not only rules out the representation by arbitrary Boolean circuits, but actu-
ally the representation by every class of circuits that contains all CNF-formulas.
Thus, in some sense, the generic representation not ruled out by these consid-
erations is the representation by DNF-formulas. This is the representation we
shall study on this paper. Of course there are other natural representations that
deserve further study, for example, the representation of the constraint relations
by ordered binary decision diagrams, but we defer this to future work.

The DNF representation of constraint relations on the Boolean domain has
a natural generalisation to arbitrary domains D: We say that a generalised DNF
(GDNF) representation of a relation R ⊆ Dk is an expression of the form

m⋃
i=1

(Pi1 × · · · × Pik) (?)

where Pij ⊆ D for 1 ≤ i ≤ m, 1 ≤ j ≤ k. Note that the GDNF enables us to
represent relations of size Ω(Dk) by expressions of size O(m · |D| · k). As the
GDNF-representation is the only succinct representation that we study in this

3

paper, from now on we refer to CSPs with constraint relations represented in
GDNF as succinctly represented CSPs (sCSPs).

Related previous work has studied restrictions on the SAT problem that lead
to tractability [19], which in this discussion corresponds to the case where the
domain is boolean and the constraint relations are simply given as a disjunction
of literals. In contrast, this paper studies a more general representation and does
not impose any size restrictions, other than finiteness, on the domain.

1.2. Main Results. We study the complexity of both structural and constraint
language restrictions of succinctly represented CSPs.

We give a complete complexity theoretic classification for structural restric-
tion, which generalises the classification for the bounded arity case obtained
in [16]. A structural restriction can be described by a class A of relational struc-
tures; we denote the corresponding restricted succinctly represented CSP by
sCSP(A,−). We prove that, under the complexity theoretic assumption FPT 6=
W[1], that sCSP(A,−) is in polynomial time if and only if the structures in A are
homomorphically equivalent to structures whose incidence graph has bounded
tree width (Theorem 8). We refer to this condition by saying that the class A
has bounded incidence width modulo homomorphic equivalence.

Constraint language restrictions can also be described by a class B of struc-
tures, and we denote them by sCSP(−,B). We prove that two general tractability
results can be generalised from the explicitly represented to succinctly repre-
sented CSPs. These results are formulated in the algebraic language of polymor-
phisms of the constraint language. We prove that sCSP(−,B) is in polynomial
time if B is a class of relational structures having a near unanimity polymor-
phism (Theorem 12), or if B is a class of relational structures invariant under a
set function (Theorem 13); the corresponding results for explicitly represented
constraint relations are from [18, 9].

2. Preliminaries, Definitions, and Basic Facts

We use [n] to denote the set containing the first n positive integers, {1, . . . , n}.

2.1. Relational structures and homomorphisms. As observed by Feder
and Vardi [11], constraint satisfaction problems may be viewed as homomor-
phism problems for relational structures. For the rest of this paper, it will be
convenient for us to take this point of view. We review the relevant definitions.
A relational signature is a finite set of relation symbols, each of which has an as-
sociated arity. A relational structure A (over signature σ, for short: σ-structure)
consists of a universe A and a relation RA over A for each relation symbol R
(of σ), such that the arity of RA matches the arity associated to R. When A is
a σ-structure and R ∈ σ, the elements of RA are called A-tuples. Throughout
this paper, we assume that all relational structures under discussion are finite,
that is, have a finite universe. We use boldface letters A,B, . . . to denote rela-
tional structures, and the corresponding non-boldface letters A,B, . . . to denote
their universes. The arity of a vocabulary σ is the maximum of the arities of the
relation symbols in σ, and the arity of a relational structure is the arity of its

4

vocabulary. A class A of relational structures has bounded arity if there is a k
such that every structure in A has arity at most k.

A substructure of a relational structure A is a relational structure B over
the same signature σ as A where B ⊆ A and RB ⊆ RA for all R ∈ σ. A
homomorphism from a relational structure A to another relational structure
B is a mapping h from the universe of A to the universe of B such that
for every relation symbol R and every tuple (a1, . . . , ak) ∈ RA, it holds that
(h(a1), . . . , h(ak)) ∈ RB. (Here, k denotes the arity of R.)

2.2. Explicitly and Succinctly Represented Constraint Satisfaction
Problems. With each CSP-instance I = (V,D,C) we associate two rela-
tional structures AI and BI as follows: The signature σI of AI and BI con-
sists of a k-ary relation symbol R for each k-ary constraint relation RI ⊆ Dk

of I. The universe of BI is D, and for each relation symbol R ∈ σI we let
RB = RI . The universe of AI is V , for each k-ary relation symbol R ∈ σI we
let RA = {(x1, . . . , xk) | Rx1 . . . xk ∈ C}. Then a mapping f from V = AI to
D = BI is a satisfying assignment for I if and only if it is a homomorphism
from AI to BI . Thus instance I is satisfiable if and only if there is a homo-
morphism from AI to BI . Conversely, with every pair (A,B) of σ-structures we
can associate a CSP-instance I such that A = AI and B = BI . From now on,
we will view CSP-instances as pairs (A,B) of relational structures of the same
signature. For succinctly represented instances, the relations of the structure B
are represented in GDNF.

For all classes A,B of structures we let CSP(A,B) be the restricted CSP
with instances (A,B) ∈ A × B. We write CSP(−,B) or CSP(A,−) if A or B,
respectively, is the class of all structures. Constraint language restrictions are
restrictions of the form CSP(−,B), and structural restrictions are restrictions
of the form CSP(A,−). We write sCSP(A,B), sCSP(−,B), and sCSP(A,−) to
denote the respective succinctly represented problems.

The following proposition states two simple facts about the relation between
explicitly and succinctly represented CSPs.

Proposition 1. Let A and B be two classes of relational structures.

1. CSP(A,B) is polynomial time reducible to sCSP(A,B).
2. If A has bounded arity, then CSP(A,B) and sCSP(A,B) are polynomial time

equivalent.

Proof. To prove (1), note that a GDNF-representation of a structure B is ob-
tained by representing each k-ary relation RB by the expression⋃

(b1,...,bk)∈B

({b1} × . . .× {bk}).

Clearly, this GDNF-representation can be computed from the explicit represen-
tation in polynomial time.

To prove (2), just note that the explicit representation of a k-ary relation
RB over a domain B can be computed from any GDNF-representation in time

5

O(m + |B|k), where m is the size of the GDNF-expression representing RB.
If k is bounded by a constant, this is polynomial in the size of the GDNF-
representation. ut

2.3. Tree Width. A tree decomposition of a σ-structure A is a pair (T,X),
where T = (I, F) is a tree, and X = (Xi)i∈I is a family of subsets of A such
that for each R ∈ σ, say, of arity k, and each (a1, . . . , ak) ∈ RA there is a node
i ∈ I such that {a1, . . . , ak} ⊆ Xi, and for each a ∈ A the set {i ∈ I | a ∈ Xi} is
connected in T . The sets Xi are called the bags of the decomposition. The width
of the decomposition (T,X) is max{|Xi| | i ∈ I} − 1, and the tree width of A,
denoted by tw(A), is the minimum of the widths of all tree decompositions of
A.

2.4. Cores. A core of a relational structure A is a substructure A′ ⊆ A such
that there is a homomorphism from A to A′, but there is no homomorphism
from A to a proper substructure of A′. We say that a relational structure A
is a core if it is its own core. We will make use of the following known and
straightforward-to-verify facts concerning cores of finite relational structures: 1)
every relational structure A has a core, 2) any core of a relational structure A
is homomorphically equivalent to A itself, 3) all cores of a relational structure
A are isomorphic, and 4) a relational structure A is a core if and only if every
homomorphism from A to A is surjective. In light of (3), we will use core(A) to
denote a relational structure from the isomorphism class of the cores of A.

The following simple (and known) lemma will be used later:

Lemma 2. Let A be a relational structure and k ≥ 1. Then A is homomorphi-
cally equivalent to a relational structure of tree width at most k if and only if
tw(core(A)) ≤ k.

2.5. Previous Complexity Results. A class A of structures has bounded tree
width if there is a k such that every structure in A has tree width at most k.
The class A has bounded tree width modulo homomorphic equivalence if there is
a k such that every structure in A is homomorphically equivalent to a structure
of tree width at most k.

We will make use of the following previously established results on structural
tractability.

Theorem 3 (Dalmau, Kolaitis, and Vardi [8]). Let A be a class of rela-
tional structures. If A has bounded tree width modulo homomorphic equivalence,
then CSP(A,−) is in polynomial time.

Theorem 4 (Grohe [16]). Assume that FPT 6= W[1]. Let A be a recursively
enumerable class of relational structures of bounded arity. If CSP(A,−) is in
polynomial time, then A has bounded tree width modulo homomorphic equiva-
lence.

Note that FPT and W[1] are two complexity classes (from parameterized
complexity theory) that are believed to be distinct. It is not necessary for this
paper to know about these classes.

6

The assumption that A be recursively enumerable in the last theorem is
inessential and can be dropped if the complexity theoretic assumption FPT 6=
W[1] is replaced by a slightly stronger assumption. Then for classes A of bounded
arity, the combination of the two theorems completely characterises the tractable
structural restrictions. There are classes of unbounded arity that are not of
bounded tree width modulo homomorphic equivalence, but still have a tractable
CSP. Examples are all classes that have bounded generalised hypertree width
modulo homomorphic equivalence [5].

3. Structural Restrictions

The goal of this section is to generalise the characterisation of tractable struc-
tural restrictions of explicitly represented CSPs of bounded arity provided by
Theorems 3 and 4 to succinctly represented CSPs (of possibly unbounded ar-
ity). First observe that the theorems can immediately transfered to succinctly
represented CSPs in the bounded arity case, simply because for all classes A
of bounded arity the problems sCSP(A,−) and CSP(A,−) are polynomial time
equivalent (Proposition 1). Thus we obtain the following corollary of Theorems 3
and 4:

Corollary 5. Assume that FPT 6= W[1]. Let A be a recursively enumerable class
of relational structures of bounded arity. Then sCSP(A,−) is in polynomial time
if and only if A has bounded tree width modulo homomorphic equivalence.

3.1. Incidence Width.

Definition 6. 1. The incidence signature inc(σ) of a relational signature σ
contains k relation symbols R1, . . . , Rk of arity two for every relation symbol
R of σ having arity k.

2. Let A be a relational structure over signature σ. The incidence structure
inc(A) of A is the relational structure over signature inc(σ)
– having universe A ∪

⋃
R∈σ{(R, a1, . . . , ak) : (a1, . . . , ak) ∈ RA}, and

– where for each relation symbol R of σ having arity k, we define

R
inc(A)
i = {((R, a1, . . . , ak), ai) : (a1, . . . , ak) ∈ RA}

for all i ∈ [k].

Note that the incidence structure inc(A) of a structure A is a binary structure
that carries the same information as A. It also has about the same size, if we
count as the size of a structure as the size of the universe plus the size of all
tuples in all relations. However, the incidence structure can have much smaller
tree width: If A is a structure with universe [n] and one relation RA

n that only
contains the tuple (1, . . . , n), then tw(A) = n− 1 and tw(inc(A)) = 1.

Definition 7. The incidence width iw(A) of a relational structure A is the tree
width of its incidence structure, that is,

iw(A) = tw(inc(A)).

7

The measure of incidence width has been previously studied (e.g., [12, 19]).
It is easy to see that for every structure A we have

iw(A) ≤ tw(A) + 1.

The example given right before the definition of incidence width shows that the
inequality can be strict.

3.2. Characterisation of tractable restrictions. A class A of structures
has bounded incidence width modulo homomorphic equivalence if there is a k
such that every structure in A is homomorphically equivalent to a structure of
incidence width at most k.

Theorem 8. Assume that FPT 6= W[1]. Let A be a recursively enumerable class
of relational structures. Then sCSP(A,−) is in polynomial time if and only if A
has bounded incidence width modulo homomorphic equivalence.

The rest of this section is devoted to a proof of this theorem. We require
some more preparatory lemmas. The proofs of Lemmas 9 and 10 can be found
in the appendix.

Lemma 9. Let A and B be relational structures over the same signature, and
let h be a homomorphism from A to B.

– There is a unique extension h′ of h that is a homomorphism from inc(A) to
inc(B), given by

h′(R, a1, . . . , ak) = (R, h(a1), . . . , h(ak))

for all tuples (R, a1, . . . , ak) in the universe of inc(A).
– The restriction to A of any homomorphism from inc(A) to inc(B) is a ho-

momorphism from A to B.

Lemma 10. For any relational structure A, it holds that the relational struc-
tures core(inc(A)) and inc(core(A)) are isomorphic.

For a class A of structures, we let inc(A) = {inc(A) | A ∈ A} and similarly
core(A) = {core(A) | A ∈ A}.

Lemma 11. For every class A of relational structures, the following four state-
ments are equivalent:

1. A has bounded incidence width modulo homomorphic equivalence.
2. core(A) has bounded incidence width.
3. core(inc(A)) has bounded tree width.
4. inc(A) has bounded tree width modulo homomorphic equivalence.

Proof. Follows immediately from Lemmas 2 and 10. ut

8

Proof (of Theorem 8). The idea of the proof is to give reductions between the
problems sCSP(A,−) and CSP(inc(A),−). For the forward direction, suppose
that A has bounded incidence width modulo homomorphic equivalence. Then
by Lemma 11, inc(A) has bounded tree width modulo homomorphic equiva-
lence. Thus by Theorem 3, CSP(inc(A),−) is in polynomial time. We show
that sCSP(A,−) is in polynomial time by giving a polynomial-time reduction to
CSP(inc(A),−).

We reduce an instance (A,B) of sCSP(A,−), where B is represented suc-
cinctly, to an instance (inc(A),B′) of CSP(inc(A),−) for a relational structure
B′ to be defined next. Before we define B′, note that we cannot simply let
B′ = inc(B), because inc(B), having roughly the same size as B represented
explicitly, can be exponentially larger than the succinct GDNF-representation
of B and hence cannot be constructed in polynomial time. Let us turn to the
definition of B′. Let σ = {R1, . . . , R`}, where Ri is ri-ary, be the signature of A
and B. Suppose that, for 1 ≤ i ≤ `, the GDNF representation of RB

i is

mi⋃
j=1

(Pij1 × . . .× Pijri
),

where Pijk ⊆ B.

– The signature of B′ is inc(σ).
– The universe of B′ is

B′ = B ∪ {pij | 1 ≤ i ≤ `, 1 ≤ j ≤ mi},

where the pij are new elements not contained in B.
– For 1 ≤ i ≤ m, the binary relations RB′

i1 , . . . , RB′

iri
are defined by

RB′

ik = {(pij , b) | 1 ≤ j ≤ mi, b ∈ Pijk}

for 1 ≤ k ≤ ri.

Note that B′ can be constructed from the succinct representation of B in poly-
nomial time. Thus it suffices to prove that there is a homomorphism from A to
B if and only if there is a homomorphism from inc(A) to B′.

Let h be a homomorphism from A to B. Let h′ be an extension of h where,
for every element (Ri, a1, . . . , ari

) in the universe of inc(A), h′(Ri, a1, . . . , ari
)

is defined to be an element pij for some j ∈ [mi] with (h(ai), . . . , h(ari
)) ∈

Pij1 × . . .× Pijri . Such a j exists, because

(h(ai), . . . , h(ari
)) ∈ RB

i =
mi⋃
j=1

(Pij1 × . . .× Pijri
).

It is straightforward to verify that h′ is a homomorphism from inc(A) to B′.
Furthermore, it is straightforward to verify that if h′ is a homomorphism from

9

inc(A) to B′, then the restriction of h′ to A is a homomorphism from A to B.
This completes the proof of the forward direction of Theorem 8.

For the backward direction, suppose thatA does not have bounded incidence-
width modulo homomorphic equivalence. We wish to show that sCSP(A,−)
is not in polynomial time. By Lemma 11, inc(A) does not have bounded tree
width modulo homomorphic equivalence. Noting that the recursive enumerabil-
ity of A implies the recursive enumerability of inc(A) and that inc(A) is binary,
CSP(inc(A),−) is not in polynomial time by Theorem 4. Thus it suffices to give
a polynomial-time reduction from CSP(inc(A),−) to sCSP(A,−). Given an in-
stance (inc(A),B′) of CSP(inc(A),−), we create an equivalent instance (A,B)
of sCSP(A,−). Let σ be the signature of A. Then inc(A) and B′ have signature
inc(σ). Without loss of generality we may assume that A has no isolated vertices,
that is, every a ∈ A is contained in some tuple in some relation of A. We can
make this assumption because isolated vertices can be mapped anywhere by a
homomorphism and thus are not relevant when it comes to the existence of a
homomorphism.

Let B be the set of all b ∈ B′ such that there exists an R ∈ σ, say, of arity
k, an i ∈ [k], and a b′ ∈ B′ such that (b′, b) ∈ RB

i . For every relation symbol
R ∈ σ of arity k, let TR =

⋂
i∈[k]{b′ ∈ B′ : (b′, b) ∈ RB

i for some b ∈ B′}.
If B′ were of the form inc(B′′) for some σ-structure B′′, then the universe of
B′′ would be B, and the elements of TR would represent the tuples in RB′′

,
that is, we would have TR = {(R, b1, . . . , bk) | (b1, . . . , bk) ∈ RB′′}. But B′

is not necessarily inc(B′′) for any B′′. However, every homomorphism h from
inc(A) to B′ must map all elements of A to elements of B and all elements of
the form (R, a1, . . . , ak) to elements of TR. The former holds because A has no
isolated vertices, and the latter because for all a′ = (R, a1, . . . , ak) it holds that
a′ ∈

⋂
i∈[k]{a′′ : (a′′, a) ∈ R

inc(A)
i for some a}.

For every k-ary R ∈ σ, b ∈ TR, and i ∈ [k] we let PRbi = {b′ ∈ B | (b, b′) ∈
RB′

i }. We define B to be the structure with universe B and, for k-ary R ∈ σ,

RB =
⋃

b∈TR

(PRb1 × . . .× PRbk). (?)

It is easy to see that if h is a homomorphism from inc(A) to B′, then the
restriction of h to A is a homomorphism from A to B and that, conversely,
every homomorphism from A to B can be extended to a homomorphism from
inc(A) to B′. Furthermore, the succinct representation of B, where the relations
are represented by the GDNF-expressions on the right hand side of (?), can be
computed from B′ in polynomial time. ut

4. Constraint language restrictions

This section presents a pair of tractability results based on constraint language
restrictions. The first is based on near-unanimity polymorphisms which were
studied in the CSP (with explicitly represented tuples) in [18]. A near-unanimity

10

operation is an operation f : Dk → D of arity k ≥ 3 satisfying the identities

x = f(y, x, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y).

An operation f : Bk → B is a polymorphism of a relational structure B if it is
a homomorphism from Bk to B. Let us recall that, for a relational structure B,
the relational structure Bk is the structure with universe Bk and where RBk

is
defined as

{((b11, . . . , b1k), . . . , (bm1, . . . , bmk)) : (b11, . . . , bm1), . . . , (b1k, . . . , bmk) ∈ RB}

for all relation symbols R of arity m.

Theorem 12. Let Bk be the set of all succinctly specified relational structures
having a near-unanimity polymorphism of arity k. For each k ≥ 3, the problem
sCSP(−,Bk) is in polynomial time.

A proof sketch can be found in Appendix A.3.
When B is a relational structure over signature σ, we define P(B) to be

the relational structure having universe ℘(B) \ {∅} and where for each R ∈ σ
of arity k, the relation RP(B) is defined as {(pr1S, . . . , prkS) : S ⊆ RB, S 6= ∅}.
Here, ℘(B) denotes the power set of B, and for a set S of k-tuples, and i ∈ [k],
priS denotes the set {bi : (b1, . . . , bk) ∈ S}. We say that B is invariant under a
set function if there exists a homomorphism from P(B) to B. In the context of
constraint satisfaction problems, set functions have been studied in [9].

Theorem 13. Let B be the set of all succinctly specified relational structures
invariant under a set function. The problem sCSP(−,B) is in polynomial time.

A proof can be found in Appendix A.4.

5. Conclusions

We have initiated a study of the complexity of succinctly represented constraint
satisfaction problems. We believe that it is worthwhile to look at succinct repre-
sentations, because important examples of constraint satisfaction problems are
usually specified succinctly. Our results are not deep, but in particular the com-
plete characterization of tractable structural restrictions is is quite nice (and
surprisingly simple and clean cut). Note that no corresponding classification
result is known for explicitly represented CSPs.

In this paper, we have only looked at one specific succinct representation, the
generalized DNF representations. There are other natural candidates; in partic-
ular, the representation of the constraint relations by ordered binary decision
diagrams and their natural generalizations from the Boolean to other domains
seem worth being studied.

11

References

1. I. Adler, G. Gottlob, and M. Grohe. Hypertree-width and related hypergraph
invariants. In S. Felsner, editor, Proceedings of the 3rd European Conference on
Combinatorics, Graph Theory, and Applications, volume AE of DMTCS Proceed-
ings Series, pages 5–10, 2005.

2. Andrei Bulatov. A dichotomy theorem for constraints on a three-element set. In
Proceedings of 43rd IEEE Symposium on Foundations of Computer Science, pages
649–658, 2002.

3. Andrei Bulatov. Tractable conservative constraint satisfaction problems. In Pro-
ceedings of 18th IEEE Symposium on Logic in Computer Science (LICS ’03), pages
321–330, 2003. Extended version appears as Oxford University technical report
PRG-RR–03-01.

4. Hubie Chen and Victor Dalmau. (Smart) look-ahead arc consistency and the
pursuit of CSP tractability. In Principles and Practice of Constraint Programming
- CP 2004, Lecture Notes in Computer Science. Springer-Verlag, 2004.

5. Hubie Chen and Victor Dalmau. Beyond hypertree width: Decomposition methods
without decompositions. In CP 2005, 2005.

6. D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractability
for constraint satisfaction and spread cut decomposition. IJCAI 2005, 2005.

7. Victor Dalmau. Mal’tsev constraints made simple. ECCC technical report, 2004.
8. Victor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint satisfaction,

bounded treewidth, and finite-variable logics. In Constraint Programming ’02,
LNCS, 2002.

9. Victor Dalmau and Justin Pearson. Closure functions and width 1 problems. In
CP 1999, pages 159–173, 1999.

10. Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial
Intelligence, pages 353–366, 1989.

11. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone
monadic snp and constraint satisfaction: A study through datalog and group the-
ory. SIAM J. Comput., 28(1):57–104, 1998.

12. J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. Jour-
nal of the ACM, 49(6):716–752, 2002.

13. Eugene Freuder. Complexity of k-tree structured constraint satisfaction problems.
In AAAI-90, 1990.

14. G. Gottlob, L. Leone, and F. Scarcello. Hypertree decomposition and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

15. Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural
csp decomposition methods. Artif. Intell., 124(2):243–282, 2000.

16. Martin Grohe. The complexity of homomorphism and constraint satisfaction prob-
lems seen from the other side. In FOCS 2003, pages 552–561, 2003.

17. Martin Grohe and Daniel Marx. Constraint solving via fractional edge covers. In
Proceedings of the of the 17th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2006), 2006.

18. Peter Jeavons, David Cohen, and Martin Cooper. Constraints, consistency, and
closure. Articial Intelligence, 101(1-2):251–265, 1998.

19. Stefan Szeider. On fixed-parameter tractable parameterizations of sat. Theory and
Applications of Satisfiability (Selected and Revised Papers of SAT 2003), Lecture
Notes in Computer Science 2919, pages 188–202, 2004.

12

A. Appendix

A.1. Proof of Lemma 9.

Proof. We begin with the first claim. It is straightforward to show that the
extension h′ is a homomorphism, so we prove its uniqueness. Let g be any ho-
momorphism from inc(A) to inc(B) extending h. Let (R, a1, . . . , ak) be a tuple
from the universe of inc(A). For every i, we have ((R, a1, . . . , ak), ai) ∈ R

inc(A)
i ;

since the projection of R
inc(B)
i onto the first coordinate only contains tuples of

the form (R, b′1, . . . , b
′
k) where (b′1, . . . , b

′
k) ∈ RB, we have g(R, a1, . . . , ak) =

(R, b1, . . . , bk) where (b1, . . . , bk) ∈ RB. Since g is a homomorphism extending
h, we have (g(R, a1, . . . , ak), g(ai)) = ((R, b1, . . . , bk), h(ai)). By the definition of
inc(B), we have h(ai) = bi. This argument holds for all i, so we conclude that
g(R, a1, . . . , ak) = (R, h(a1), . . . , h(ak)).

Now we prove the second claim. Let h′ : inc(A) → inc(B) be a homomor-
phism. Let (a1, . . . , ak) ∈ RA. We want to show that (h′(a1), . . . , h′(ak)) ∈ RB.
As in the proof of the first claim, we have h′(R, a1, . . . , ak) = (R, b1, . . . , bk)
for some tuple (b1, . . . , bk) ∈ RB. For all i ∈ [k], we have ((R, a1, . . . , ak), ai) ∈
R

inc(A)
i ; mapping this tuple under h′, we obtain ((R, b1, . . . , bk), h′(ai)) ∈ R

inc(B)
i .

By definition of inc(B), we have that h′(ai) = bi, so (h′(a1), . . . , h′(ak)) =
(b1, . . . , bk) ∈ RB. ut

A.2. Proof of Lemma 10.

Proof. The structures A and core(A) are homomorphically equivalent; by use
of Lemma 9, it follows that the structures inc(A) and inc(core(A)) are homo-
morphically equivalent. To establish the desired isomorphism, it suffices to show
that the structure inc(core(A)) is a core.

Let C be a core of A. Let h′ : inc(C) → inc(C) be a homomorphism. We
claim that h′ is surjective, which suffices. Let h be the restriction of h′ to the
universe C of C. We have that h is surjective onto C since C is a core. Also,
since C is a core, for every C-tuple (c1, . . . , ck) ∈ RC we have that there exists
another C-tuple (b1, . . . , bk) ∈ RC such that (h(b1), . . . , h(bk)) = (c1, . . . , ck).
It follows by Lemma 9 that for every element in the universe of inc(C) of the
form (R, c1, . . . , ck), there exists an element (R, b1, . . . , bk) also in the universe of
inc(C) such that h′(R, b1, . . . , bk) = (R, c1, . . . , ck), implying that h′ is surjective
as desired. ut

A.3. Proof of Theorem 12.

Proof (idea). We give a reduction from sCSP(−,B) to CSP(−,B); the latter
is tractable by the “strong k-consistency” algorithm, see [18] for a description
of this algorithm and proof. Note that this algorithm, for any fixed k, runs
in polynomial time. For ease of notation, we describe the reduction using the
definition of CSP given in the introduction.

Let (V,D,C) be an instance of sCSP(−,B); we create an instance (V ′, D′, C ′)
of CSP(−,B) as follows. Set V ′ = V and D′ = D. For each constraint Rx1 . . . xn ∈

13

C, we create constraints in C ′ as follows. Let
⋃m

i=1(Pi1×· · ·×Pin) denote the rep-
resentation of R. If n ≤ k−1, then we simply place R′x1 . . . xn in C ′, where R′ is
the explicit representation of R, that is, the set of all tuples

⋃m
i=1(Pi1×· · ·×Pin).

If n ≥ k, then for each sequence j1, . . . , jl ∈ [n] where j1 < · · · < jl and l = k−1,
we create an arity l constraint Rj1,...,jl

xj1 . . . xjl
where Rj1,...,jl

is the explicit
representation of the tuples

⋃m
i=1(Pij1 × · · · × Pijl

).
Clearly, any solution to (V,D,C) is also a solution to (V ′, D′, C ′). However,

since the relations of (V,D,C) have a near-unanimity polymorphism of arity k,
the relations are (k − 1)-decomposable by [18], implying that any solution to
(V ′, D′, C ′) is also a solution to (V,D,C). Moreover, polynomially many con-
straints are placed in C ′, and each of these have arity bounded above by k−1, so
it is straightforward to verify that (V ′, D′, C ′) can be computed from (V,D,C)
in polynomial time. ut

A.4. Proof of Theorem 13.

Proof. We show how to implement the arc consistency procedure on succinctly
represented instance. This is a well known procedure for explicitly represented
CSPs that are invariant under a set function; see the papers [9, 4] for more
information on arc consistency and tractability.

Let (A,B) be an instance of sCSP(−,B), and let σ be the signature of the
structures. Without loss of generality we may assume that every relation RA

contains exactly one tuple. To achieve this, suppose that RA = {ā1, . . . , ām} for
some m ≥ 2. Let R1, . . . , Rm be new relation symbols of the same arity as R.
Let σ′ = (σ \{R})∪{R1, . . . , Rm}, and let A′ be the σ′-structure obtained from
A by letting RA′

i = {āi} for 1 ≤ i ≤ m and SA′
= SA for all S ∈ σ \ {R}. Let

B′ be the σ′-structure obtained from B by letting RB′

i = RB for 1 ≤ i ≤ m

and SB′
= SB for all S ∈ σ \ {R}. Then obviously a mapping h : A → B is a

homomorphism from A to B if and only if it is a homomorphism from A′ to B′,
and (A′,B′) can be computed from (A,B) in polynomial time. Repeating this
for all S ∈ σ with |SA| ≥ 2, we get an instance with the desired property. So in
the following, we assume that |RA| = 1 for all R ∈ σ.

For every a ∈ A, let O(a) be the of all occurrences of a, that is, all pairs
(R, j) such that a occurs on the jth position of the tuple in RA. The algorithm
repeatedly carries out the following procedure: It first computes the intersection

I(a,B) =
⋂

(R,j)∈O(a)

prj(R
B),

where prj(RB) denotes the projection of RB on the jth position. Clearly, every
homomorphism from A to B must map a to an element of I(a,B). If I(a,B) = ∅,
then there is no homomorphism from A to B; we say that the algorithm has
detected an inconsistency. Otherwise, for each occurrence (R, j) ∈ O(a), the
algorithm removes from RB all tuples (b1, . . . , bk) such that bj 6∈ I(a,B). Let B′

be the resulting structure. Then there is a homomorphism from A to B if and
only if there is a homomorphism from A to B′, because tuples (b1, . . . , bk) ∈ RB

14

with bj 6∈ I(a,B) can never appear in the image of a homomorphism anyway.
Observe that a succinct representation of B′ can be computed from a succinct
representation of B in polynomial time as follows: If the GDNF-representation
of RB is

m⋃
i=1

(Pi1 × · · · × Pik),

then a GDNF-representation of RB′
is

m⋃
i=1

(P ′
i1 × · · · × P ′

ik),

where

P ′
ij =

{
Pij ∩ I(a,B) if (R, j) ∈ O(a),
Pij otherwise.

Now this whole procedure is repeated on (A,B′) for some a′ ∈ A, and then on
the resulting instance (A,B′′), et cetera, until either an inconsistency is detected
or consistency is established, that is, we have reached a structure B∗ such that
for all a ∈ A and (R, j) ∈ O(a) we have

prj(R
B∗

) = I(a,B∗). (1)

(In this situation, any further applications of the procedure would yield the same
B∗.) It is clear that the number of iterations needed to establish consistency is
polynomial in the size of the instance, because in each iteration an element of
a set in the GDNF of the structure B is removed, and there are polynomially
many such elements.

Suppose now that no inconsistency is detected and that consistency is estab-
lished and let (A,B∗) be the resulting instance. Note that (A,B∗) is equivalent
to the original instance and that (1) holds for all a ∈ A and (R, j) ∈ O(a). We
claim that the mapping h defined

h(a) = I(a,B∗)

is a homomorphism from A to P(B). Since B∗ is a substructure of B and there-
fore I(a,B∗) ⊆ B∗ ⊆ B, and I(a,B∗) 6= ∅ for all a ∈ A, h is indeed a mapping
from A to ℘(B) \ ∅. To prove that it is a homomorphism, let (a1, . . . , ak) ∈ RA

for some k-ary R ∈ σ. Then (R, j) ∈ O(aj) for all j ∈ [k]. Thus, by (1), we
have prj(RB∗

) = I(aj ,B∗). As B∗ ⊆ B, we have RB∗ ⊆ RB and thus, by the
definition of P(B),(

h(a1), . . . , h(ak)
)

=
(
pr1(R

B∗
), . . . , prk(RB∗

)
)
∈ RP(B).

This proves that h is a homomorphism. Composing the homomorphism h with
a homomorphism from P(B) to B, we have a homomorphism from A to B. ut

15

