
Enumerating all Solutions for Constraint Satisfaction
Problems

Henning Schnoor, Ilka Schnoor

Institut für Theoretische Informatik, Leibniz Universität Hannover, Appelstr. 4, 30167 Hannover,
Germany. {henning, ilka}.schnoor@thi.uni-hannover.de

Abstract. We contribute to the study of efficient enumeration algorithms for all solutions
of constraint satisfaction problems. The only algorithm known so far, presented by Creignou
and Hébrard [CH97] and generalized by Cohen [Coh04], reduces the enumeration problem for
a constraint language Γ to the decision problem for a slightly enlarged constraint language
Γ+, i.e., it yields an efficient enumeration algorithm for the case where CSP(Γ+) is tractable.
We develop a new class of algorithms, yielding efficient enumeration algorithms for a broad
class of constraint languages. For the three-element domain, we achieve a first step towards
a dichotomy theorem for the enumeration problem.

Keywords. computational complexity, constraints, enumeration

1 Introduction

Constraint satisfaction problems (CSPs) have attracted considerable attention in complexity the-
ory. Especially the non-uniform version of the problem, CSP(Γ ) has been studied. Here, we fix a
constraint language Γ , which is a set of finitary relations over an arbitrary domain. The problem
CSP(Γ ) is the satisfiability problem for propositional formulas, where the form of the clauses ap-
pearing is restricted by Γ, so-called Γ -formulas. If the domain is Boolean, then these problems
generalize many common restrictions of the satisfiability problem (2SAT, 3SAT, Horn-SAT, etc).
In the non-Boolean case, CSP(Γ ) can generalize problems as colorability in graphs, scheduling
problems, database queries, and others. In fact, most combinatorial problems where the goal is to
find some assignment to variables which needs to satisfy a collection of “local” conditions can be
seen as a CSP. Due to this property, CSPs can be seen as the “combinatorial core of complexity
theory” [CKS01], and are of interest for theoretical reasons as well.

The complexity of CSP(Γ ) was first studied by Thomas Schaefer. In his seminal paper [Sch78],
he showed that in the Boolean case, this problem is always solvable either in polynomial time, or is
NP-complete, and he gave easy criteria for Γ which allow for a polynomial time decision procedure.
The study of constraint satisfaction problems becomes much more challenging when considering
non-Boolean domains. For example, Bulatov proved that an analog of Schaefer’s dichotomy holds
for the case where the domain is of cardinality three [Bul06], but the proof is much more involved.
It is conjectured that dichotomy results hold for arbitrary finite domains. In fact, CSP is in a
certain context the largest class of problems for which such results are possible [FV98].

Besides satisfiability of formulas, other computational goals have been studied, as for example
optimal satisfiability [RV00], counting of the number of satisfying solutions for constraint formulas
[CH96], and equivalence and isomorphism [BHRV02] for a fixed constraint language Γ. In many of
these cases, dichotomy theorems have been proven for Boolean domains. A lot of research has been
done for the case where the domain is a non-Boolean finite set, see e.g. [JCG97], [Dal05], [DK06],
and [Bul06].

A problem which is very relevant in practice is the enumeration problem for constraint formulas,
which we study in this paper. Here the task is to enumerate, for a given Γ -formula, the set of
its solutions. Roughly speaking, an “efficient” algorithm requires only polynomial time for each
solution it generates. Such an algorithm can only exist if the satisfiability problem for Γ -formulas
can be solved in polynomial time. For the Boolean domain, the question in which cases efficient
enumeration algorithms exist has been studied by Creignou and Hébrard in [CH97]. In [Coh04], it
was shown that their algorithm can be applied to arbitrary finite domains. The algorithm reduces

Dagstuhl Seminar Proceedings 06401
Complexity of Constraints
http://drops.dagstuhl.de/opus/volltexte/2006/804



2 Henning Schnoor, Ilka Schnoor

the enumeration problem to the decision problem as follows: for the constraint language Γ, let Γ+

be the constraint language containing the relations from Γ and relations representing literals over
the domain D, i.e., it lets us express clauses like x = α for variables x and values α from D. If the
satisfiability problem for Γ+ can be solved in polynomial time, then a search-reduces-to-decision
algorithm can be used to generate all solutions to a Γ -formula. This is the only enumeration
algorithm for constraint formulas known so far, and in [CH97], it was shown that it is indeed the
only one for the Boolean domain. It has been conceivable that this is also true for arbitrary domains,
i.e., that Γ -formulas can be efficiently enumerated if and only if the constraint satisfaction problem
for Γ+ can be solved in polynomial time. In exhibiting a new class of enumeration algorithms, we
prove that this is not the case, unless P = NP. The contribution of this paper is as follows:

1. We consider refinements of the notion of efficient enumeration, demanding that the solutions
can be generated not only efficiently, but also in highly customizable order. We show that this
condition is in fact equivalent to the above-mentioned requirement that CSP(Γ+) can be solved
in polynomial time.

2. We develop efficient enumeration algorithms for broad classes of constraint languages Γ such
that CSP(Γ+) cannot be solved in polynomial time (unless P = NP). All of these cannot be
enumerated by the known search-reduces-to-decision algorithm.

3. For the three-element case, we obtain a first step towards a full classification. We show that in
the case where the constraint language satisfies an algebraic condition, our algorithms cover
all cases that exist. Hence, we obtain a dichotomy theorem for enumeration in this case.

4. We show that the usual algebraic tools used in the constraint satisfaction context cannot be
applied to enumeration problems for non-Boolean domains.

The structure of the paper is as follows: In Section 2, we state the necessary definitions and
known results about constraints and enumeration which are relevant to our work. In Section 3,
we present the above-mentioned refinement of enumeration algorithms to deal with orderings, and
show that such an algorithm exists if and only if CSP(Γ+) is tractable. Then we present our new
enumeration algorithms, and show that there is a broad class of constraint languages for which these
give an efficient enumeration procedure. Section 4 contains our hardness results, in particular the
above-mentioned dichotomy theorem for a subclass of constraint languages over the three-element
domain. In Section 5, we show that the usual algebraic tools cannot be applied for the enumeration
problem. The technically most involved result of the paper are Lemma 3.15, which gives an easily
verifiable criterion that a constraint language Γ needs to fullfill for our algorithms to be applicable,
and Theorem 5.1, the above-mentioned negative result concerning algebraic techniques.

2 Preliminaries

2.1 Constraint Satisfaction Problems

There are many different ways to define constraint satisfaction problems (CSP). For this paper, we
find the definition as logical formulas the most convenient, even for the non-Boolean case. For a
domain D and a number n, an n-ary relation over D is a subset of Dn. In this paper, all domains
are finite. A constraint language Γ over D is a finite set of relations over D. We say that a relation
or a constraint language is Boolean, if the domain has cardinality 2. A Γ -formula is a conjunction
of the form

ϕ = R1(x1
1, . . . , x

1
n1

) ∧ · · · ∧Rk(xk1 , . . . , xknk
),

where the Ri are relations from Γ of arity ni (we use the same symbol for the relation and its
predicate). The set of occurring variables is denoted with VAR (ϕ). An assignment I : VAR (ϕ) → D
satisfies ϕ, or is a solution of ϕ, if for every 1 ≤ i ≤ k, (I(xi1), . . . , I(x

i
ki

)) ∈ Ri (we write I |= ϕ).
The formula ϕ is satisfiable if there exists a solution of ϕ. The set of solutions of ϕ is denoted with
SOL (ϕ). The problem CSP(Γ ) is to decide whether a given Γ -formula is satisfiable. A constraint
language Γ is tractable if CSP(Γ ) can be solved in polynomial time. The study of the complexity
of the problem CSP(Γ ) has received much attention. For Boolean constraint languages Γ , Schaefer
showed that CSP(Γ ) is solvable in P or is NP-complete [Sch78]. This dichotomy also holds for the
three-element case [Bul02].



Enumerating all Solutions for Constraint Satisfaction Problems 3

We introduce some notation. For v ∈ Dn, we write v[i] for the i-th component of v, where
i ∈ {1, . . . , n}. Instead of (I(x1), . . . , I(xn)), we write I(x1, . . . , xn). For one-element constraint
languages Γ = {R}, we identify Γ and R, i.e., we say that R is tractable, speak about R-formulas,
define R+ := {R}+ , etc. For a formula ϕ and strings t1 and t2, ϕ[t1/t2] is obtained from ϕ
by simultaneously replacing every occurrence of t1 with t2. For example, if ϕ = R(x1, x2, x3),
then ϕ[x2/0] = R(x1, 0, x3), and ϕ[R/S] = S(x1, x2, x3). For a set D and a, b ∈ D, the function
fa→b : D → D is defined as f(a) = b, and f(α) = α for all α ∈ D \ {a}. For f : D → D,
n ∈ N, we define: for v ∈ Dn, let f(v) := (f(v[1]), . . . , f(v[n])). For a relation R ⊆ Dn, let
f(R) := {f(v) | v ∈ R}. For a formula ϕ(x1, . . . , xn) =

∧l
i=1Ri(x

i
1, . . . , x

i
ki

) let f(ϕ)(x1, . . . , xn) =∧l
i=1 f(Ri)(xi1, . . . , x

i
ki

), and finally for an assignment I : VAR (ϕ) → D, let f(I) be the assignment
defined as f(I)(x) := f(I(x)). For a set C ⊆ D, and a function f : Dn → D, we say that f is
conservative on C if α1, . . . , αn ∈ C implies f(α1, . . . , αn) ∈ C.

Definition 2.1. Let f : Dk → D, and let R be an n-ary relation over D. We say R is closed under
f , or f is a polymorphism of R, if for all v1, . . . ,vk ∈ R, it holds that(

f
(
v1[1], . . . ,vk[1]

)
, f

(
v1[2], . . . ,vk[2]

)
, . . . , f

(
v1[n], . . . ,vk[n]

))
∈ R,

i.e., the tuple obtained from applying f coordinate-wise to v1, . . . ,vk is in R.

We denote the set of polymorphisms of R with Pol(R). For a constraint language Γ , Pol(Γ ) is
the set of functions which are polymorphisms of all relations in Γ. For the constraint satisfaction
problem, it is known that the set PolΓ determines the complexity of CSPΓ up to logspace reductions
[ABI+05]. In the enumeration context, this can be shown not to be the case. A counter-example
is omitted for space reasons.

Polymorphisms are related to a closure operator on the sets of relations over D, which gives an
interesting Galois correspondence:

Definition 2.2. Let Γ be a constraint language over D. The co-clone generated by Γ , denoted by
〈Γ 〉, contains every relation R over D which can be expressed as a formula of the form ∃x1 . . .∃xkϕ,
where x1, . . . , xk ∈ VAR (ϕ), and ϕ is a Γ ∪ {=}-formula.

We say R can be expressed with Γ if R ∈ 〈Γ 〉.

Proposition 2.3 ([JCG97]). Let Γ1 and Γ2 be constraint languages. Then Γ1 ⊆ 〈Γ2〉 if and only
if Pol(Γ2) ⊆ Pol(Γ1).

This means that the set of polymorphisms defines the expressive power of a constraint language.
It is easy to see that for any constraint language, its set of polymorphism contains the identity,
and is closed under composition, permutation, and identification of variables. Sets of functions
closed under these operators are called clones. For the Boolean case, the set of clones and their
inclusion structure have been identified by Emil Post [Pos41]. For domains of larger cardinality,
this structure is unknown. This is one of the reasons why the study of CSP-related problems for
the Boolean case is often considerably easier than for other domains. We define a Boolean relation
or constraint language to be Schaefer, if it has a polymorphismwhich is not a constant and is not
essentially unary, i.e., a polymorphism which depends on at least two of its variables.

2.2 Enumeration

For even the simplest type of formulas, we have, in general, an exponential number of solutions.
Therefore for an enumeration algorithm to be considered efficient, we do not require it to give all
solutions in polynomial time, but to generate the solutions with polynomial delay [JPY88]: for a
formula ϕ, the algorithm has to enumerate all solutions of ϕ in such a way that the time between
each pair of assignments, between the start of the algorithm and the first solution, and between
the last solution and the termination of the algorithm is polynomial in the input size. We also
require each solution to be printed exactly once. Note that such an algorithm is, in particular,
output-polynomial, that means the running time is polynomial in the size of the output. We say
that a constraint language Γ has an efficient enumeration algorithm, if there is a polynomial delay



4 Henning Schnoor, Ilka Schnoor

algorithm which, when given a Γ -formula ϕ as input, enumerates the set SOL (ϕ) with polynomial
delay.

A slightly weaker condition is the following: if we allow the algorithm to print each assignment
I up to c times, for a constant number c, then we say the algorithm is semi-efficient. The notion of
semi-efficient algorithms is not of interest on its own, but arises in this work for technical reasons.
For the Boolean case, semi-efficient algorithms exist if and only if efficient algorithms exist. It
is easy to see that for any class of formulas, if there is a semi-efficient enumeration algorithm,
then this class of formulas has a polynomial-time satisfiability problem - checking satisfiability
can be done by starting the enumeration algorithm and waiting for either the first solution or the
termination. Similarly, the question if there is a non-constant solution, or if there are at least p(|ϕ|)
many different solutions, for a polynomial p, can be answered in polynomial time using such an
algorithm.

Let us consider one of the simplest types of enumeration algorithms conceivable, suggested in
[Val79]. For a formula ϕ with VAR (ϕ) = {x1, . . . , xn}, and for each α ∈ D, we check if ϕ ∧ (x1 =
α) is satisfiable. If yes, we recursively enumerate the solutions of ϕ[x1/α] augmented with the
assignment x1 = α. If the satisfiability tests in this approach can be performed in polynomial time,
then this is a polynomial-delay enumeration algorithm for the solutions of ϕ. Obviously, if P = NP,
then all satisfiability tests of this nature can be done in polynomial time, and we always have an
efficient enumeration algorithm. Therefore, for this paper we assume P 6= NP. The algorithm
outlined above yields the following theorem. For a constraint language Γ over a domain D, let
Γ+ := Γ ∪ {{(α)} | α ∈ D}. This can also be seen as the single relation R×{(α1)}× · · · × {(αn)},
where D = (α1, . . . , αn).

Theorem 2.4 ([Coh04]). If CSP(Γ+) ∈ P, then Γ has an efficient enumeration algorithm.

There is a large class of constraint languages Γ which are tractable, but for which the tests of
the form above are NP-complete. However, in the Boolean case it turns out that if some constraint
language Γ has any (semi-) efficient enumeration algorithm, then the algorithm outlined above
works [CH97]. The proof for this result makes use of a special version of the satisfiability problem,
which we will define next.

Definition 2.5. Let Γ be a constraint language over some domain D. Then CSP∗(Γ ) is the prob-
lem to determine if a given Γ -formula ϕ has a solution I which is not constant, i.e. there are
variables x1, x2 ∈ VAR (ϕ) such that I(x1) 6= I(x2).

The main technical result in [CH97] allowing to prove that a non-Schaefer constraint language
cannot be enumerated efficiently in the Boolean case is the following:

Theorem 2.6 ([CH97]). Let Γ be a constraint language over the Boolean domain which is not
Schaefer. Then CSP∗(Γ ) is NP-complete.

To summarize the above, for a constraint language Γ to have a polynomial-delay algorithm it
is required that CSP(Γ ) ∈ P. Furthermore, if CSP(Γ+) ∈ P, such an algorithm is guaranteed to
exist.In this case we even can, to a large extend, choose the order in which we want the algorithm
to print out its solutions (see Theorem 3.25). Therefore, in the remainder of this paper, we are
only interested in constraint languages Γ such that CSP(Γ ) ∈ P, and CSP(Γ+) /∈ P. We show that
there is a rich class of these languages which still have a polynomial-delay enumeration algorithm.

Definition 2.7. Let Γ be a constraint language over a domain D = {0, . . . , k − 1}, and let f
be a unary polymorphism of Γ , such that f ◦ f = f , and f has minimal range. Then Γ id

f :=
f(Γ ) ∪ {{f(0)} , . . . , {f(k − 1)}}.

Intuitively, Γ id
f is obtained from Γ by applying f to Γ , and then adding all of the constant

relations {(α)} for elements α which still appear in any element of f(Γ ). It only depends on the
constraint languages Γ id

f if there is a polynomial time algorithm for CSP(Γ ):

Proposition 2.8 ([BKJ00]). For a constraint language Γ and a unary polymorphism f ∈ Pol(Γ )
with minimal range, such that f ◦ f = f , it holds that CSP(Γ ) ∈ P if and only if CSP(Γ id

f ) ∈ P.

It can easily be seen that Γ always has a polymorphism f which has minimal range, and which
fulfills f ◦ f = f : let the range of f be minimal. Then f is a permutation on its range, and thus
fk! acts identically on f(D), where k := |f(D)|. Now the function fk! meets the conditions.



Enumerating all Solutions for Constraint Satisfaction Problems 5

2.3 Consequences

We obtain a simple corollary from Proposition 2.8: Since any Γ with an efficient enumeration
algorithm is tractable, we are only interested in languages Γ such that for any unary polymorphism
f ∈ Pol(Γ ) with minimal range, and f ◦ f = f , Γ id

f is tractable. Now assume that all unary
polymorphisms f of Γ are injective, i.e., the minimal range is the cardinality of the domain. Then
the identity function id is one of these polymorphisms, and thus Γ id

id = Γ+ is tractable. But if Γ+ is
tractable, we know that Γ has an efficient enumeration algorithm due to Theorem 2.4. Therefore, we
are only interested in constraint languages Γ which have a non-injective unary polymorphism. For
the three-element case, this implies that in the cases we consider, we have a constant polymorphism
or a polymorphism of the form fa→b.

Proposition 2.9. Let Γ be a constraint language such that CSP(Γ ) ∈ P, and CSP(Γ+) /∈ P. Then
Γ has a non-injective unary polymorphism f which, restricted to its range, is the identity.

3 Enumeration Algorithms

3.1 Tools

It is often convenient to look at only one relation instead of a constraint language. The following
lemma shows that we can make this restriction. It implies that if we can decide, for any one-element
constraint language, if it has a polynomial-delay enumeration algorithm, then we can decide this
question for arbitrary finite constraint languages. For the remainder of this paper, we restrict our
study to single relations.

Lemma 3.1. Let Γ = {R1, . . . , Rn} be a finite constraint language. Then Γ has a polynomial-
delay enumeration algorithm (semi-efficient enumeration algorithm, resp.) if and only if for every
subset S = {i1, . . . , ik} ⊆ {1, . . . , n}, the relation RS := Ri1× Ri2×· · ·×Rik has such an algorithm.

Proof. If Γ has an enumeration algorithm of any of this type, then this also holds for the relations
RS , since we can easily express clauses using RS as conjunctions of Ri relations. For the other

direction, let ϕ =
l∧
i=1

Rti(x
i
1, . . . , x

i
nti

) be a Γ -formula (where nti = ar(Rti)). Let S := {t1, . . . , tl},

i.e., S contains the indices of the relations appearing in the formula ϕ. Without loss of generality,
let S = {1, . . . , k} for some k ≤ n, and let t1 = 1, . . . , tk = k. For i ∈ {1, . . . , l}, let Ci be the
following clause:

Ck =

 ∧
t∈S\{ti}

Rt(xt1, . . . , x
t
nt

)

 ∧Rti(xi1, . . . , xinti
),

which is a conjunction or Ci and other clauses which also appear in ϕ. Then each Ci is a clause
containing exactly one application of each relation Rt for t ∈ S. Therefore, each clause Ci can be
expressed as one application of the relation RS . Now consider the formula

ψ :=
l∧
i=1

Ci.

Then each clause of ψ appears in the original formula ϕ, and each clause from ϕ appears in ψ,
i.e., the formulas are equivalent. Therefore we can apply the enumeration algorithm to the formula
ψ to enumerate the solutions of ϕ. �

Definition 3.2. Let ϕ be a formula over some constraint language Γ . We consider the clauses of
the formula as an undirected graph, where two clauses are connected if they share a variable. We
say that ϕ is connected, if this graph is connected.

Proposition 3.3. Let Γ be a constraint language, such that there is an efficient enumeration
algorithm for connected Γ -formulas. Then Γ has an efficient enumeration algorithm.



6 Henning Schnoor, Ilka Schnoor

Proof. Let ϕ be a formula which is not connected. Then ϕ can be written as ϕ1 ∧ · · · ∧ ϕk, where
ϕi is connected for i ∈ {1, . . . , k}. This representation can be computed in polynomial time, by
identifying the connected components of the formula graph. By our prerequisites, the solutions of
ϕi can be enumerated with polynomial delay. Therefore we can, without loss of generality, assume
that all of the ϕk are satisfiable: if one of these is unsatisfiable, then ϕ is unsatisfiable as well, and
we can test this in polynomial time. Since for i 6= j, ϕi and ϕj do not share variables, it is obvious
that

SOL (ϕ) = {I1 ∪ · · · ∪ Ik, such that Ij |= ϕj} ,
where the union of functions with disjoint domains is defined as usual. Therefore the solutions

of ϕ can easily be obtained from the solutions of the ϕj , for which we have efficient algorithms
available. �

The Galois correspondence explained above does not apply to the enumeration problems we
study, as we will see in Sect. 5. However, it is easy to see that a restricted closure operator helps
here: this is a weaker version of the usual co-clone closure operator, where we do not allow the
introduction of existentially quantified variables. Many aspects of the standard algebraic approach
used in the context of constraint satisfaction problems turn out to be useful for our purposes as
well.

Definition 3.4. Let Γ be a constraint language. Then 〈Γ 〉@ contains all relations R which can be
defined with Γ ∪ {=}-formulas.

It is easy to see, given the definition of 〈Γ 〉, that the following proposition holds:

Proposition 3.5. Let Γ be a constraint language.

1. Let Γ ′ be a finite subset of 〈Γ 〉@. If Γ has an efficient enumeration algorithm, then Γ ′ has an
efficient enumeration algorithm as well.

2. Let Γ ′ be a finite subset of 〈Γ 〉. Then CSP(Γ ′) ≤log
m CSP(Γ ).

Proof. The proof is very easy:

1. Simply convert Γ ′-formulas to Γ -formulas. Any occurring equalities can be dealt with using
variable identification. This gives a polynomial time transformation.

2. This follows from Proposition 3.5. The logspace reduction is a corollary from Reingold’s dis-
covery that search in undirected graphs can be performed in LOGSPACE [Rei05]. A proof can
be found in [ABI+05].

�

For the enumeration problem, another closure operator is helpful. This closure operator lies
between the previously defined operators: for a relation R, it holds that 〈R〉@ ⊆ 〈R〉cons ⊆ 〈R〉.
While the previously defined operator 〈.〉@ corresponds to efficient enumerability, the operator
〈.〉cons deals with the case of semi-efficient enumeration algorithms.

Definition 3.6. Let R and S be relations over some domain D. Assume that R ∈ 〈S〉, i.e. there
is some constant c such that R can be written as

R(x1, . . . , xn) ⇐⇒ ∃y1 . . .∃ycS(a1
1, . . . , a

1
m) ∧ · · · ∧ S(ap1, . . . , a

p
m),

where aij ∈ {y1, . . . , yc, x1, . . . , xn}. We write CR(x1, . . . , xn) for the formula on the right side
of this equivalence. We say R ∈ 〈S〉cons, if the yi can be “re-used” in the following way: for every

R-formula ϕ =
l∧
i=1

R(xi1, . . . , x
i
n), it holds that

ϕ ⇐⇒ ∃y1 . . .∃yc
l∧
i=1

CR(xi1, . . . , x
i
n).

This operator does not necessarily preserve efficient enumerability, but it does preserve semi-
efficient enumerability. Therefore, this is very useful when considerung reductions to the Boolean
case, since here, these enumeration notions coincide (Proposition 3.26).



Enumerating all Solutions for Constraint Satisfaction Problems 7

Proposition 3.7. Let R be a relation over some domain. Then R has a semi-efficient enumeration
algorithm if and only if every relation from 〈R〉cons has one.

Proof. This is obvious given the definition. Let R′ ∈ 〈R〉cons. Then we can transform every R′-
formula ϕ′ to an R-formula ϕ adding only constant-many new existentially quantified variables.
Now enumerating the solutions of ϕ, where we do not print the assignments for the new existentially
quantified variables, gives each solution of ϕ′ at most c · |D|k often, where D is the domain of the
relation, k is the number of existentially quantified variables in ϕ, and c is the constant from
the semi-efficient algorithm for R. Therefore, R′ has a semi-efficient enumeration algorithm. The
converse is trivial, since R ∈ 〈R〉cons. �

3.2 An Example

We give an example for a relation R which has a polynomial-delay enumeration algorithm, and
where R+ is not tractable—i.e., we show that there are more efficiently enumerable relations than
the ones covered by Theorem 2.4. We then show how the ideas highlighted in this example can be
generalized.

Example 3.8. LetR := {(2, 0, 0, 2), (2, 0, 2, 0), (2, 2, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0)}.
R is efficiently enumerable, and R+ is not tractable.

Proof Sketch. CSP(R+) is NP-complete: it is widely known that CSP(1-in-3) is NP-complete (this
follows from [Sch78]), where 1-in-3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. CSP(1-in-3) reduces to CSP(R+)
by forcing one additional variable to 2.

To see that R has an efficient enumeration algorithm, consider the following approach: it can be
verified that f2→1 ∈ Pol(R), and that f2→1(R) is closed under the Boolean AND operator. Thus,
f2→1(R) is Schaefer, and has an efficient enumeration algorithm due to [CH97]. It can be seen that
f2→1(R) = R ∩ {0, 1}4. Therefore enumerating, for a given R-formula ϕ, the solutions of f2→1(ϕ),
is the same as enumerating all solutions of ϕ which assign each of the variables x ∈ VAR (ϕ) one
of the values 0 and 1.

If we can enumerate, with polynomial delay, for each solution I as above, all “compatible”
solutions J for which f2→1(J) = I, then we can enumerate all solutions of ϕ. This is because since
f2→1 ∈ Pol(R), for an arbitrary solution J of ϕ, f2→1(J) is a solution of ϕ as well. Therefore the
solution J appears in this enumeration scheme.

It remains to prove that for each solution I |= ϕ, I : VAR (ϕ) → {0, 1}, we can enumerate
the set of all J fulfilling the above conditions efficiently. This is, in essence, a Boolean problem:
given such an assignment I, we want to exchange some of the occurring 1s with 2s, such that the
assignment J obtained this way satisfies ϕ. Variables x such that I(x) = 0 are left unmodified.
Therefore, this is a Boolean problem involving the values 1 and 2. It is natural that there is a
Boolean constraint language, which we will later introduce as ΓE1→E2

R , that can be used to express
the “possibilities of changing 1s into 2s”. Intuitively, ΓE1→E2

R is obtained as follows: for each
v ∈ {0, 1}4, consider the relation Rv, containing all tuples v′ ∈ R such that f2→1(v′) = v. This
relation describes the combinations of 2s and 1s that are “allowed”. Since we are not interested
in the occurring 0s here—they are fixed and we do not change these assignments—we only look
at those components of the relation in which 1s and 2s appear. We will introduce the constraint
language ΓE1→E2

R arising here formally, and prove that R has an efficient enumeration algorithm
in Corollary 3.16. �

3.3 Partial enumerability

A central idea in our algorithms are partial assignments. These assign, to each variable, a set of
possible values, where the appearing subsets form a partition of the domain. We introduce some
notation on partitions and equivalence relations.

Let D be a domain, and E a partition of D. Trivially, partitions and equivalence relations
correspond to each other. We often identify E with its corresponding equivalence relation, denoted



8 Henning Schnoor, Ilka Schnoor

by ∼E . The discrete partition of D, Ddisc, corresponding to the equality predicate on D, is defined
as Ddisc = {{α} | α ∈ D}. Its opposite, the indiscrete partition of D, Dindisc, corresponds to the
equivalence relation on D where all elements are equivalent, i.e., Dindisc = {D}. We often identify
a partition E and the set of unary relations representing the classes in E.

Definition 3.9. – Let E be a partition of the domain D. Then fE is the function assigning each
α ∈ D its equivalence class., i.e. the unique function fE : D → E such that α ∈ f(α) for all
α ∈ D. We say that fE is the canonical homomorphism from D to E.

– For a relation R, R/E is defined as fE(R).
– For partitions E1 and E2 of a domain D we say E2 is a refinement of E1 (E2 ≤ E1) if α ∼E2 β

implies α ∼E1 β.

Let Γ be a constraint language over D, E1 a partition of D, and ϕ a Γ -formula. We say
I : VAR (ϕ) → E1 is a partial E1-assignment. If E2 is a refinement of E1 and J is a partial E2-
assignment, then we say J is compatible with I if for all x ∈ VAR (ϕ), J(x) ⊆ I(x). We also
apply this notion to tuples, i.e. if v1 ∈ En1 , v2 ∈ En2 , then we say v2 is compatible with v1 if for
all i ∈ {1, . . . , n}, v2[i] ⊆ v1[i]. We identify partial Ddisc-assignments J for ϕ and assignments
J : VAR (ϕ) → D, i.e. for such an assignment we say J is compatible with I if J(x) ∈ I(x)
for all x ∈ VAR (ϕ). A partial assignment I is a partial E1-solution of ϕ if there exists some
J : VAR (ϕ) → D,J |= ϕ such that J is compatible with I. We denote the set of partial E1-
solutions of ϕ with SOLE1 (ϕ).

Definition 3.10. Let E1 and E2 be partitions of D, such that E2 is a refinement of E1, and R a
relation over D.

– R is efficiently E1-enumerable, if there is a polynomial delay algorithm which, given an R-
formula ϕ, enumerates SOLE1 (ϕ).

– R is efficiently E1 → E2-enumerable, if there exists a polynomial-delay algorithm which, given
an R-formula ϕ and an assignment I : VAR (ϕ) → E1, enumerates all partial solutions J ∈
SOLE2 (ϕ) which are compatible with I.

– R is efficiently E1 → D-enumerable, if R is efficiently E1 → Ddisc-enumerable.

The following theorem is one of our main results, and shows how our approach can be used to
obtain enumeration algorithms. In Sect. 3.4, we will show that the prerequisites for this theorem
are met by a large class of relations.

Theorem 3.11. Let D be a domain, E1 and E2 partitions of D such that E2 is a refinement of
E1, and let R be a relation over D.

1. If R is efficiently E1-enumerable and efficiently E1 → E2-enumerable, then R is efficiently
E2-enumerable.

2. If CSP({R} ∪ E1) ∈ P and R is E1 → D-enumerable, then R has an efficient enumeration
algorithm.

Proof. 1. Let ϕ be an R-formula. We enumerate SOLE1 (ϕ). For each partial solution I printed
by this algorithm, because R is E1 → E2-enumerable, we can enumerate all partial solutions
J : VAR (ϕ) → E2 such that J is compatible with I.
It is obvious that this algorithm has polynomial delay, since both of the nested algorithms
work with polynomial delay, and for each of the solutions I ∈ SOLE1 (ϕ), there is a compatible
E2-solution to ϕ which is printed out. No solution is printed twice, since if I1, I2 ∈ SOLE1 (ϕ),
I1 6= I2, then no E2-solution J can be compatible with both I1 and I2. Every solution printed
out is indeed a partial E2-solution of ϕ, since the algorithm securing the E2-enumerability
condition only prints partial solutions of the formula. Each E2-solution J of ϕ is printed,
since we can, in a canonical manner, obtain a partial solution I ∈ SOLE1 (ϕ) such that J is
compatible with I. Therefore, the enumeration algorithm works correctly.

2. This follows immediately from part 1 and Theorem 3.25.
�

This theorem generalizes Theorem 2.4: R+ is tractable if and only if {R} ∪Ddisc is. Further,
every relation is trivially efficiently Ddisc → D enumerable.



Enumerating all Solutions for Constraint Satisfaction Problems 9

3.4 Nested problems

In this section we present results about new types of enumeration algorithms. The goal here is
to find conditions for partial enumerability, i.e. to present conditions which guarantee that some
relation is efficiently E-enumerable or efficiently E1 → E2-enumerable: We show here that there is
a rich class of relations meeting the conditions required in Theorem 3.11. The conditions we give
can be verified by looking at a constraint language over a smaller domain, thus giving an inductive
approach. The result for partial E-enumerability is quite easy, but needs special prerequisites,
which we define now.

Definition 3.12. Let R be a relation over D, and E a partition of D. We say that E′ is a repre-
sentation system of E compatible with R, if E′ contains exactly one element of each equivalence
class in E, and fE

′ ◦ fE : D → E′ ∈ Pol(R), where fE
′
: E → E′ is the function assigning each

equivalence class its corresponding value in E′.

Note that fE
′ ◦ fE is the canonical function assigning each α ∈ D its representative in E′. If

this function is a polymorphism, then for each partial E-solution I of an R-formula ϕ, fE
′
(I) is a

solution of ϕ. This is used in the proof for the following Lemma:

Lemma 3.13. Let R be a relation over D, and let E be a partition of D such that there is a
representation system of E compatible with R. Then R is efficiently E-enumerable if and only if
R/E is efficiently enumerable.

Proof. The function assigning each R-formula ϕ its corresponding R/E-formula by exchanging each
clause R(x1, . . . , xn) with the clause R/E(x1, . . . , xn) clearly is a bijection between R- and R/E-
formulas which is computable in polynomial time, as is its inverse. Therefore, to prove the lemma,
it suffices to show that for some R-formula ϕ, the partial E-assignment I is a partial E-solution
of ϕ if and only if it is a solution of ϕ [R/R/E]. Let E′ be the representation system.

Fist, let I ∈ SOLE (ϕ). Then there exists a solution J : VAR (ϕ) → D such that J |= ϕ and J
is compatible with I. We show that I |= ϕ [R/R/E]. Let R/E(x1, . . . , xn) be a clause in ϕ [R/R/E].
Then, since J |= ϕ, we know that J(x1, . . . , xn) ∈ R. Thus, by definition of R/E, we know that
fE(J(x1, . . . , xn)) ∈ R/E. Since J is compatible with I, we know that fE(J) = I. This implies that
I |= ϕ [R/R/E].

Now, let I |= ϕ [R/R/E], and let J : VAR (ϕ) → E′ be defined as J = fE
′
(I). Then J is

compatible with I by definition of fE
′
. We show that J |= ϕ, implying that I ∈ SOLE (ϕ). For

this, let R(x1, . . . , xn) be a clause in ϕ. Since I |= ϕ [R/R/E], we know that there is some v ∈ R,
such that fE(v) = I(x1, . . . , xn). Thus, since fE

′ ◦ fE is a polymorphism of R, we know that
f(v) ∈ R. By choice of J , this implies that fE

′
(v) = J(x1, . . . , xn) ∈ R, concluding the proof. �

This concept can be illustrated at the relation R given in Example 3.8. Recall that R has
the polymorphism f2→1. This gives a canonical partition of the domain D = {0, 1, 2} of R: let
E := {{0} , {1, 2}}. Since f2→1 is a polymorphism of R, E′ := {0, 1} is a representation system of
E compatible with R: fE

′ ◦ fE is just the function f2→1.
We showed above that f2→1(R) is Schaefer. With the above, this is the same relation as R/E.

Therefore, R/E has an efficient enumeration algorithm due to Proposition 3.26, and since E′ is
a representation system of E compatible with R, we know that R is efficiently E-enumerable by
Lemma 3.13. This can also be seen directly: if we consider the relation f2→1(R) = R∩{0, 1}4, then
this enables us, for a given R-formula ϕ, to enumerate all solutions I : VAR (ϕ) → {0, 1} (cp. the
proof sketch of Example 3.8). Now for any solution J |= ϕ, the “Boolean solution” f2→1(J) is also
a solution of ϕ, and it can easily be seen that f2→1(J) ∼E J .

The corresponding criterion for E1 → E2-enumerability is more technical, but holds without
prerequisites: to decide whether a relation R is efficiently E1 → E2 enumerable, it suffices to
consider a constraint language ΓE1→E2

R , which we define now. This is the language Γ mentioned
in the proof sketch for Example 3.8, allowing us, for each “Boolean solution” I, to enumerate all
solutions J such that f2→1(J) = I. The definition is more general: we do not necessarily want to
enumerate, to a given partial solution I, all “fitting” solutions J , but we also allow these solutions
J to be partial solutions, with respect to a refinement E2 of E1. Remember that in Example 3.8,
we were not interested in those parts of the relation which are set to 0, we only wanted to get



10 Henning Schnoor, Ilka Schnoor

all possible combinations of 1 and 2. The natural generalization is that we are not interested in
classes from E1 which are not partitioned further in E2. For partial E1-solutions I and partial
E2-solutions J compatible with I, and variables x such that I(x) = Di ∈ E1, if Di ∈ E2, then
J(x) = Di has to hold as well. Therefore, these aspects of the relation R are not interesting when
determining possible E2 solutions compatible with a given E1 solution. Hence, the corresponding
components of the relation R are disregarded in the following definition:

Definition 3.14. 1. Let R be an n-ary relation, and let I ⊆ {1, . . . , n}, such that I = {i1, . . . , ik}.
Let RI(xi1 , . . . , xik) be the relation obtained from R(x1, . . . , xn) by existentially quantifying all
of the variables xj such that j /∈ I, i.e.

RI(xi1 , . . . , xik) ⇔ ∃j1 . . .∃jn−kR(x1, . . . , xn),

where {1, . . . , n} \ I = {j1, . . . , jn−k}.
2. Let R be an n-ary relation over a domain D. Let E1 and E2 be partitions of D such that E2

is a refinement of E1. For v ∈ En1 , we define

vE1→E2 := {t ∈ En2 | t compatible with v, there is a u ∈ R compatible with t} ,

Iv = {i ∈ {1, . . . , n} | v[i] /∈ E2} , RE1→E2
v := vE1→E2

Iv
,

and finally, let ΓE1→E2
R :=

{
RE1→E2

v | v ∈ En1
}
.

The relation vE1→E2
Iv

describes sets of solutions compatible with a given partial solution: for
a constraint application R(x1, . . . , xn) and a tuple v ∈ En1 , the set vE1→E2 contains the partial
solutions J : {x1, . . . , xn} → E2 compatible with v. As explained above, in those cases where
the equivalence classes from E2 also appear in E1, the corresponding values are disregarded by
existentially quantifying over the corresponding parts of the relation vE1→E2 . Observe that ΓE1→E2

R

is a constraint language over the domain {D2 ∈ E2 | D2 /∈ E1}, i.e. the domain containing those
equivalence classes from E2 which are finer than the equivalence classes in E1.

An important case is when E2 = Ddisc. Then the relation RE1→E2
v describes the possible “real”

solutions which are compatible with a given partial E1 assignment. Here, equivalence classes which
only contain one element play a crucial role. SinceDdisc cannot refine these, elements in such classes
“disappear”. A very important special case is when E2 = Ddisc, and all but one of the equivalence
classes in E1 are singletons. In particular, if D1 = {a, b} ∈ E1 for some a 6= b ∈ D, and |Di| = 1 for
all other Di ∈ E1, we say R is {a, b}-Schaefer if ΓE1→Ddisc

R is Schaefer. Note that this language is
over the Boolean domain {a, b}, and thus this terminology can be applied. From Proposition 3.26,
it is immediate that if R is {a, b}-Schaefer, then ΓE→Ddisc

R has an efficient enumeration algorithm
(where E is the partition containing the set {a, b} and the remaining elements fromD as singletons).

We take another look at the relation R from Example 3.8, and construct the constraint language
ΓE→D
R . Remember that D = {0, 1, 2}, and we chose the partition E = {{0} , {1, 2}}. We denote

the equivalence class {0} with 0, and the class {1, 2} with 1. Let v1 := (1, 0, 0, 1), v2 := (1, 0, 1, 0),
v3 := (1, 1, 0, 0), v4 := (1, 0, 0, 0). Every tuple in R is E-equivalent to one of these four tuples.
Therefore, for any v /∈ {v1,v2,v3,v4}, the relation vE→D is empty. By definition, the following
equations hold:

v1
E→D = {(2, 0, 0, 2), (1, 0, 0, 1)} RE→D

v1
= {(2, 2), (1, 1)}

v2
E→D = {(2, 0, 2, 0), (1, 0, 1, 0)} RE→D

v1
= {(2, 2), (1, 1)}

v3
E→D = {(2, 2, 0, 0), (1, 1, 0, 0)} RE→D

v1
= {(2, 2), (1, 1)}

v4
E→D = {(1, 0, 0, 0)} RE→D

v1
= {(1)}

Therefore the constraint language ΓE→D
R only contains the relations {(2, 2), (1, 1)} and {(1)}.

If we view these as relations over the Boolean domain by e.g. identifying the occurring 2s with
the Boolean 0, then this language language is closed under the Boolean AND operator. Therefore,
ΓE→D
R is Schaefer, thus this language has an efficient enumeration algorithm. This implies that
R is E → D-enumerable: for a relation R it holds that ΓE1→E2

R is enumerable if and only if R is
E1 → E2 enumerable, as shown by the following Lemma 3.15. The characterization it gives can be
used, with Theorem 3.11, to prove the existence of efficient enumeration algorithms inductively.
The proof uses the ideas explained in the proof sketch for Example 3.8, and in the discussion of
the language ΓE1→E2

R above.



Enumerating all Solutions for Constraint Satisfaction Problems 11

Lemma 3.15. Let R be an n-ary relation over a domain D, and let E1, E2 be partitions of D such
that E2 is a refinement of E1. then The following holds:

1. The following conditions are equivalent:
(i) ΓE1→E2

R is efficiently enumerable
(ii) R is efficiently E1 → E2-enumerable.

2. If {R} ∪ E1 is tractable, then ΓE1→E2
R is tractable

Proof. We start with proving a strong connection between pairs R-formulas and partial E1-
assignments on the one hand, and ΓE1→E2

R -formulas on the other. Let

ϕ = R(x1) ∧ · · · ∧R(xm)

be an R-formula, where xi are vectors of variables, and let I1 be a partial E1-assignment for ϕ.
Let ψ be the ΓE1→E2

R -formula defined by

ψ = RE1→E2
I1(x1) (x1{i|I1(x1[i])/∈E2}) ∧ · · · ∧R

E1→E2
I1(xm) (xm{i|I1(xm[i])/∈E2}),

where I1(xj) = (I1(xj[1]), . . . , I1(xj[n])) and xj{i|I1(xj[i])/∈E2} is the tuple containing the components
from xj that are not equivalence classes from E2.

The intuition is that for a clause R(xj) in the original formula ϕ, the clause
RE1→E2
I1(xj)

(xj{i|I1(xj[i])/∈E2}) describes the possible values that a partial E2-solution I2 which is com-
patible with I1 can assign to the variables, and still satisfy the original clause. In the new clause,
only those variables from VAR (ϕ) appear whose values are “more determined” by the partial
E2-solutions we are interested in, than by the partial E1-assignment that we are given. These are
exactly those components of the vector xj for which I1(xj) contains an equivalence class from E1

that is properly refined by E2.
We show the following: every partial E2-solution of ϕ which is compatible with I1 can be

restricted to a solution of ψ, and every solution of ψ can be extended to exactly one partial
E2-solution of ϕ compatible with I1.

Let I2 : VAR (ϕ) → E2 a partial E2-assignment for ϕ. If I2 ∈ SOLE2 (ϕ) and if I2 is compatible
with I1, then there is some I3 ∈ SOL (ϕ) such that I3(x) ∈ I2(x) ⊆ I1(x) for every x ∈ VAR (ϕ).
That means I3(xi) is compatible with I2(xi) and that is compatible with I1(xi) for every i ∈
{1, . . . ,m}. Hence, I2(xi) ∈ I1(xi)E1→E2 . It follows that I2(xi){j|I1(xi[j])/∈E2} ∈ RE1→E2

I1(xi)
for all

i ∈ {1, . . . ,m}, which means I2 restricted to VAR (ψ) is from SOL (ψ).
For the other direction let I2 : VAR (ψ) → E2 be a solution of ψ. We define I ′2 : VAR (ϕ) → E2

by I ′2(x) = I2(x) for x ∈ VAR (ψ) and I ′2(x) = I1(x) otherwise (note that I1(x) ∈ E2 in these cases).
Since I ′2(xi){j|I1(xi[j])/∈E2} = I2(xi{j|I1(xi[j])/∈E2}) ∈ RE1→E2

I1(xi)
, it holds that I ′2(xi) ∈ I1(xi)E1→E2 .

Therefore I ′2 is compatible with I2 and it exist a solution of ϕ that is compatible with I ′2, which
means that I ′2 ∈ SOLE2 (ϕ). Since for every partial E2 assignment I2 compatible with I1 holds
that I1 and I2 restricted on VAR (ϕ) \VAR (ψ) are equal, this is the only possibility to extend I2
to a partial E2-assignment of ϕ.

Now we prove the lemma:

1. Let ΓE1→E2
R be efficiently enumerable, and let ϕ be an R-formula and I1 a partial E1 assign-

ment for ϕ. Then the solutions of the ΓE1→E2
R -formula ψ constructed from ϕ and I1 as above

can be enumerated efficiently. So the following describes an algorithm with polynomial delay:
enumerate all solutions of ψ and as soon as as such a solution I2 is generated print out I ′2. Due
to the above this enumerates all partial E2-solutions of ϕ compatible with I1 exactly once, that
means R be efficiently E1 → E2-enumerable.
Now let R be efficiently E1 → E2-enumerable. Let

ψ = RE1→E2
v1

(x1) ∧ · · · ∧RE1→E2
vm

(xm),

where vi ∈ En1 and xi is a vector of variables with the same length as vi{j|vi[j]/∈E2} be a
ΓE1→E2
R -formula.

Since RE1→E2
vi

is a projection of vi
E1→E2 which is build from E2-vectors that are compatible

with the E1-vector vi, it holds that every solution must map xi[j] to a subset of vi{k|vi[k]/∈E2}[j]
We present an enumerating algorithm for ψ with polynomial delay.



12 Henning Schnoor, Ilka Schnoor

(a) For every xi1 [j1] = xi2 [j2] check if vi1{k|vi1
[k]/∈E2}[j1] = vi2{k|vi2

[k]/∈E2}[j2]. If this does
not hold, then these sets are disjoint, and therefore ψ is unsatisfiable, STOP.

(b) Let yi ∈ En2 such that yi{k|vi[k]/∈E2} = xi and the other positions are filled with new
distinctive variables. Let ϕ = R(y1) ∧ · · · ∧ R(ym) and I : VAR (ϕ) → E1 defined by
I(yi[j]) = vi[j] be a partial E1-assignment for ϕ. Note that in step (a) we assured that I
is well defined and that ψ can be obtained from ϕ and I by the construction above.

(c) Enumerate all partial E2-solutions compatible with I of ϕ, restrict them to VAR (ψ), and
print them out.

Due to what we showed above, this algorithm is correct.
2. Let {R} ∪ E1 be tractable and ψ be a ΓE1→E2

R -formula. The forementioned algorithm where
step (c) is exchanged with the following decides ψ.
(c) Determine whether the {R} ∪ E1-formula

ϕ ∧
i=m,j=n∧
i=1,j=1

(yi[j] ∈ vi[j])

is satisfiable and print out the result.
�

Corollary 3.16. Let R be a relation over the domain D such that a, b ∈ D, fa→b ∈ Pol(R),
fa→b(R) has an efficient enumeration algorithm, and R is {a, b}-Schaefer. Then R has an efficient
enumeration algorithm.

For the Boolean case, the question whether a constraint language Γ has a polynomial-delay
enumeration algorithm is answered by Proposition 3.26. Therefore, Corollary 3.16 gives an inductive
criteria for the existence of efficient algorithms.

Proof. Let D1 := {a, b}, and let D = D1 + · · · + Dk where |Di| = 1 for 2 ≤ i ≤ k. Since
fa→b ∈ Pol(R), it follows that I : VAR (ϕ) → {{D1} , . . . , {Dk}} is a partial solution of ϕ if and
only if I ′ |= ϕ, where I ′(x) ∈ I(x), and I ′(x) = b if I(x) = {a, b}. Since fa→b(R) has an efficient
enumeration algorithm, we can enumerate all solutions I : VAR (ϕ) → D \ {a}. By the above, this
means that we can enumerate all partial solutions I : VAR (ϕ) → {D1, . . . , Dk}. Since R is {a, b}-
Schaefer, by Lemma 3.15, R is {D1, . . . , Dk} → D-enumerable. From Theorem 3.11, it follows that
R has a polynomial delay enumeration algorithm. �

3.5 Partial Enumeratability: The Brute Force approach

We previously demonstrated one way of how the E → D-enumerability property can be used to
get an enumeration algorithm: in the case of Theorem 3.11, we have two “nested” problems, both
of which are enumerable. Another method to use this property is when we have exponentially
many solutions of one type available, buying us enough time to use a brute force search on the
other component of the problem. Theorem 3.18 states this formally, but first we give an example
fullfilling this condition.

Example 3.17. Let R := {1, 2}4∪{(0, 0, 0, 2), (0, 0, 2, 0), (0, 2, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0)}.
R is efficiently enumerable and R+ is not tractable.

Proof Sketch. It is obvious that CSP(R+) is NP-complete, since CSP(1-in-3) reduces to CSP(Γ+),
by forcing a new variable to 0. Therefore, Theorem 2.4 cannot be used to prove that this
relation has an efficient enumeration algorithm. It can be verified that there is no non-trivial
partition E of the domain D = {0, 1, 2} such that R is efficiently E-enumerable and efficiently
E → D-enumerable (for the latter, remember that testing this simply means testing if the
language ΓE→D

R is Schaefer), and thus, Theorem 3.11 does not apply either. The existence of an
efficient enumeration algorithm for R follows from the next theorem. The following Lemma 3.20
gives evidence that the rather artificial situation in the example above, that we have the full
relation {1, 2}4 as a subset of the relation, is necessary for this approach. �



Enumerating all Solutions for Constraint Satisfaction Problems 13

Theorem 3.18. Let E be a partition of the domain D, and let D1 ∈ E, where |D1| ≥ |E|. Let
R ⊆ Dn such that Dn

1 ⊆ R and R is efficiently E → D-enumerable. Then R has an efficient
enumeration algorithm.

Proof. Let D = {0, . . . , l − 1}, let D1 :=
{
α1, . . . , α|D1|

}
, and let E = {D1, . . . , Dk}. Let ϕ

be an R-formula. For a function f : VAR (ϕ) → {1, . . . , k}, define If (x) := Df(x), and de-
fine Jf (x) := αf(x). By definition, the set of all partial E-assignments is equal to the set{
If | f : VAR (ϕ) → {1, . . . , k}

}
, and for each f : VAR (ϕ) → {1, . . . , k}, the assignment Jf is a

solution of ϕ. Furthermore, for f1 6= f2, it holds that Jf1 6= Jf2 , and If1 6= If2 .

for all f : VAR (ϕ) → {1, . . . , k} do
Unless f ≡ 1, enumerate all solutions compatible with If

Print Jf

end for
Enumerate all assignments J : VAR (ϕ) → D1 which contain some value not in {α1, . . . , αk}.

Fig. 1. Enumeration algorithm for the proof of Theorem 3.18

We claim that the algorithm presented in Fig. 1 is an efficient enumeration algorithm for R.
It is obvious that this algorithm works with polynomial delay, since R is E → D-enumerable.
Every solution J for ϕ which not only assigns values from D1 is printed, because there is a partial
solution If such that J is compatible with If (and f is not the constant 1). Every solution which
only assigns values from D1 is printed as well: the solutions involving only the values α1, . . . , αk
are printed in the FOR loop of the algorithm, the others are printed in the last statement (it is
obvious that these can be enumerated with polynomial delay).

No solution J is printed twice: if J assigns values different from those in D1, then this cannot
happen, since for f1 6= f2, the set of solutions compatible with If1 and If2 are disjoint. It is also
obvious that every solution assigning only values from D1 is only printed once. �

For the three-element domain, the interesting case here is the following:

Corollary 3.19. Let R be an n-ary relation over {a, b, c}, such that {a, b}n ⊆ R and R is {a, b}-
Schaefer. Then there exists a polynomial delay algorithm for R

The following lemma leads to the conjecture that the condition in Theorem 3.18 requiring the
full relation Dn

1 to be a subset of R cannot be weakened: the approach in Theorem 3.18 is that
because we have an exponentially large “guaranteed” set of solutions, we have enough time for a
complete search on the partial assignments. We now show that for a Boolean relation, as soon as
it is not the full relation, we cannot expect to have enough solutions to buy us the required time.
We expect a similar proposition to hold for the non-Boolean case, and therefore believe that as
soon as the condition Dn

1 ⊆ R does not hold, the approach from Theorem 3.18 cannot be used.

Lemma 3.20. Let R $ {0, 1}n be an n-ary Boolean relation, then for any m ∈ N there exists a
CSP({R})-formula ϕ with |ϕ| ≥ m such that ϕ has at most 2 solutions.

Proof. Since R $ {0, 1}n there is a v = (v1, . . . , vn) ∈ {0, 1}n such that v /∈ R. Without loss of
generality let v1, . . . , vk = 0 and vk+1, . . . , vn = 1 with 1 ≤ k ≤ n. Let

ϕ(x0, . . . , xm) = R(x1) ∧ · · · ∧R(xm) ∧R(y1) ∧ · · · ∧R(ym),

where

xi[j] ≡

{
xi−1 if vj = 0
xi if vj = 1

and yi[j] ≡

{
xi if vj = 0
xi−1 if vj = 1

.

We prove that all solutions of ϕ are constant. Assume I : {x0, . . . , xm} → {0, 1} is a non
constant solution of ϕ. Then there exists an i ∈ {1, . . . ,m} such that I(xi−1) 6= I(xi). That means
either I(xi) = v or I(yi) = v, but that is a contradiction because v /∈ R. Note that this covers also
the case where k = 1 or k = n. So every solution of ϕ is constant and since |ϕ| ≥ m the lemma is
proven. �



14 Henning Schnoor, Ilka Schnoor

Partial Enumeratability: Arbitrary nesting In the previous sections, we showed that there
are different possible algorithms which can be applied to solve a given enumeration problem, and
that these algorithms can be nested to solve enumeration problems over larger domains. We now
show a Lemma which gives evidence that arbitrary combinations of these nestings can be done.

Definition 3.21. Let R1 ⊆ Dn
1 and R2 ⊆ Dn

2 be relations. We say R1 is isomorphic to R2,
R1

∼= R2, if there is a bijection f : D1 → D2 such that for all (α1, . . . , αn) ∈ Dn
1 ,

(α1, . . . , αn) ∈ R1 ⇔ (f(α1), . . . , f(αn)) ∈ R2,

i.e. if f(R1) = R2.

Lemma 3.22. Let R1 ⊆ Dn
1 , R2 ⊆ Dm

2 , and let there be some α ∈ D1, and some v ∈ R1,v =
(α1, . . . , αn), such that | {i ∈ {1, . . . , n} | αi = α} | = m, and such that R2 6= ∅. Then there exists
a relation R ⊆ (D1 ∪D2)

n, and a partition E of D1 ∪D2, such that the following holds:

– R/E ∼= R1,
– There is some S ∈ ΓRE such that S ∼= R2.

Further, the following connections hold:

– R is efficiently E → D-enumerable if and only if R2 is efficiently enumerable.
– If R2 has a constant polymorphism, then R is efficiently E-enumerable if and only if R1 is

efficiently enumerable.

Proof. Let D1 = {α1, . . . , αk}, and let D2 = {β1, . . . , βl}. Assume that D1 ∩ D2 = ∅. Without
loss of generality, assume that if R2 has a constant polymorphism, then R2 contains the tuple
(βl, . . . , βl). Further, assume that the α from the prerequisites is αm. We now construct a new
domain D′

2 = (D2 \ {β1}) ∪ {αm}, and exchange, in every component of every tuple of R2, the
element βl with the element αm. Since we are only interested in the relations up to isomorphism,
we call this domain D2 again. In short, we can assume, without loss of generality, the following:

– D1 = {α1, . . . , αk}, D2 = {β1, . . . , βl}, where D1 ∩D2 = {αk} = {βl}.
– If R2 has a constant polymorphism, then (βl, . . . , βl) ∈ R2

– There is some v ∈ R1, such that v = (αk, . . . , αk︸ ︷︷ ︸
m

, γm+1, . . . , γn) and γm+1, . . . , γn ∈ D1 \{αk}.

We construct a partition E on D1 ∪ D2, as follows: E := {{α1} , . . . , {αk−1} , D2}, i.e. all
elements in D2 are equivalent, and all elements from D1 \D2 form one-element equivalence classes.

Let fE be the canonical homomorphism assigning each element in D1∪D2 its equivalence class
in E. We now define relations as follows:

R′
1 := fE(R1) \

{
fEv

}
,

R′
2 := {(δ1, . . . , δm, γm+1, . . . , γn) | (δ1, . . . , δm) ∈ R2} ,

R := fE
−1(R′

1) ∪R′
2,

where fE−1(R′
1) =

{
u ∈ Dn

1 | fE(u) ∈ R′
1

}
.

Observe that fE−1(R′
1) =

{
w ∈ (D1 ∪D2)n |

(
fE(w) ∈ fE(R1)

)
∧

(
fE(w) 6= fE(v)

)}
, and

that for any w ∈ R′
2, it holds that fE(w) = v. Therefore, it follows for the relation R:

R =
{
w ∈ (D1 ∪D2)n |

(
fE(w) 6= fE(v)

)
∧

(
fE(w) ∈ fE(R1)

)}
∪

{
w ∈ (D1 ∪D2)n |

(
fE(w) = fE(v)

)
∧ ((w[1], . . . ,w[m]) ∈ R2)

}
Let f be the restriction of fE to D1. Since in every equivalence from E, exactly one element

from D1 appears, f : D1 → E is a bijection. We show that f(R1) = R/E, proving that R1
∼= R/E.

To prove this, we show that for δ1, . . . , δn ∈ D1, it holds that

(δ1, . . . , δn) ∈ R1 ⇐⇒ fE(δ1, . . . , δn) ∈ fE(R).

First, let (δ1, . . . , δn) ∈ R1. If (δ1, . . . , δn) 6= v, then fE(δ1, . . . , δn) ∈ R′
1, therefore,

(δ1, . . . , δn) ∈ fE
−1(R′

1) ⊆ R. Therefore, assume that (δ1, . . . , δn) = v. In particular, this im-
plies fE(δ1, . . . , δn) = fE(v). Since R2 6= ∅, we know that R′

2 6= ∅. Let u ∈ R′
2. From the above



Enumerating all Solutions for Constraint Satisfaction Problems 15

it follows that fE(u) = fE(v) = fE(δ1, . . . , δn). Since R′
2 ⊆ R, it follows that u ∈ R, and since

fE(δ1, . . . , δn) = fE(u), we know that fE(δ1, . . . , δn) ∈ fE(R).
For the converse, let fE(δ1, . . . , δn) ∈ fE(R). If (δ1, . . . , δn) = v, then, by choice of v,

(δ1, . . . , δn) ∈ R1. Now, assume that (δ1, . . . , δn) 6= v. Since fE restricted to D1 is injec-
tive, and δ1, . . . , δn ∈ D1, it follows that fE(δ1, . . . , δn) 6= fE(v). Since for all w ∈ R′

2,
fE(w) = fE(v), we know that fE(δ1, . . . , δn) 6= fE(R′

2). Therefore, by definition of R, it fol-
lows that fE(δ1, . . . , δn) ∈ fE(fE−1)(R′

1) = R′
1 ⊆ fE(R1). Since fE restricted to D1 is injective,

it follows that (δ1, . . . , δn) ∈ R1.
We now study the constraint language ΓER , i.e. we look at the relations REu for each u ∈ En.

We make a case distinction:

Case 1: u = fE(v). Observe that D2 is the only equivalence class in E containing more than one
element. Therefore, by definition, it holds that
REfE(v) =

{
u ∈ R | fE(u) = fE(v)

}
{i|v[i]∈D2}

= {u ∈ R | (u[1], . . . ,u[m]) ∈ R2}{1,...,m}
= R2.

Case 2: u 6= fE(v), and there is no w ∈ R compatible with u. Then, by definition, REfE(v) = ∅.
Case 3: u 6= fE(v), and there is some w ∈ R compatible with u. Since w is compatible with u, we

know that fE(w) = u. Since u 6= fE(v), we know that fE(w) 6= fE(v). Thus, since fE(s) =
fE(v) for all s ∈ R′

2, we know that w /∈ R′
2. Therefore, by definition of R, w ∈ fE−1(R′

1).
We claim that REu is the full relation over D2 for some arity. By definition, this is the case
if for all s ∈ (D1 ∪ D2)n, if fE(s) = fE(w), then s ∈ R. This is certainly the case, since
w ∈ fE−1(R′

1), and therefore, fE−1(w) ⊆ R.

We conclude that the constraint language ΓER only contains the relation R2, the empty relations
and full relations over D2. Any formula over this language in which a ∅-clause appears is immedi-
ately unsatisfiable. In any other formula over this language, every clause involving a full relation
of some arity can be removed without changing the set of solutions of the formula. Therefore, ΓER
has an efficient enumeration algorithm if and only if there is an efficient enumeration algorithm for
R2.

Now for the last equivalence, let R2 have a constant polymorphism. As argued above, we can
assume that (αk, . . . , αk) ∈ R2. We claim that D1 is a representation system for E which is
compatible with R. Following Lemma 3.13, this implies that R is efficiently E-enumerable if and
only if R/E is efficiently enumerable. Since, by our construction, R1

∼= R/E, this proves the lemma.
By definition, if fD1 : D → D1 defined as

fD1(α) =

{
α, α ∈ D1

αk, α ∈ D2

is a polymorphism of R, then D1 is a representation system for E compatible with R. Therefore,
let u ∈ R. We show that fD1(u) ∈ R = fE

−1(R′
1) ∪ R′

2. If u ∈ fE
−1(R′

1), then fE(u) ∈
R′

1. Obviously, it holds that fE(u) = fE(fD1(u)) ∈ R′
1, since fD1 assigns each value α of the

domain a value fD1(α) which is E-equivalent to α. Therefore, fD1(u) ∈ fE
−1(R′

1). If u ∈ R′
2,

then, by definition of R′
2 and fD1 , we know that fD1(u) = (αk, . . . , αk, γm+1, . . . , γn) ∈ R′

2, since
(αk, . . . , αk) ∈ R2. Therefore, fD1 is a polymorphism of R, and the lemma is proven. �

From this Lemma, it follows that we can have arbitrary “nestings” of algorithms to solve a
given enumeration problem. We can, by inductively applying the construction used in the proof
for Lemma 3.22, construct a relation R on a domain D with partitions E1, . . . , El, such that for
each partial enumeration step Ei → Ei+1, an arbitrary type of enumeration algorithm applies.

In other words, this Lemma proves that the methods to enumerate the distinct steps in a chain
of partial enumeration algorithms are, with some technical requirements, completely independent
of each other: arbitrary combinations exist.

3.6 Partitioned Relations

We now show tractability conditions for special kinds of relations. These are of interest to us, since
relations appearing in constraint languages ΓE1→E2

R are of this form.



16 Henning Schnoor, Ilka Schnoor

Definition 3.23. Let R ⊆ Dn, and let E = {D1, . . . , Dk} be a partition of D. We say that R is
E-partitioned if R ⊆ Di1 × · · · ×Din for i1, . . . , in ∈ {1, . . . , k}.

Note that if R1, . . . , Rn are E-partitioned relations, then R1×· · ·×Rn is E-partitioned as well.
Therefore, to study enumeration algorithms for constraint languages containing only E-partitioned
relations, Lemma 3.1 shows that we can again restrict ourselves to one-element constraint relations
in these cases. The following Lemma can be used to show that some constraint language over a
large domain has an efficient enumeration algorithm, using knowledge about a constraint language
over a smaller domain.

Lemma 3.24. Let R ⊆ Dn, E a partition of D such that R is E-partitioned. Let E =
{D1, . . . , Dk}, and let |Di| ≤ m for all i. Let Di =

{
αi0, . . . , α

i
di

}
.

Define a function f : D → {0, . . . ,m− 1} as f(αij) = j. If f(R) has an efficient enumeration
algorithm, then R has an efficient enumeration algorithm.

Proof. Let R ⊆ Di1 × · · · ×Din , and let ϕ be an R-formula,

ϕ = R(x1
1, . . . , x

1
n) ∧ · · · ∧R(xl1, . . . , x

l
n).

First, we check if there is some variable x ∈ VAR (ϕ) such that there are i1, j1, i2, j2 with xi1j1 =
xi2j2 = x, and Dj1 6= Dj2 . If this is the case, then ϕ is not satisfiable, because Dj1 and Dj2 are
disjoint, and x is forced to be assigned a value from Dj1 ∩ Dj2 . This condition can be tested in
polynomial time. Therefore, without loss of generality, assume that this does not happen, and that
there is a function d : VAR (ϕ) → E assigning each variable from VAR (ϕ) its domain in such a way
that for every solution I |= ϕ, I(x) ∈ d(x). Note that this function can be computed in polynomial
time. This is achieved by simply checking at which position of an R-application the variable x
appears, and then looking up which equivalence class from E correspponds to the column of R.

We claim that there is a one-to-one correspondence between solutions I |= ϕ and J |= f(ϕ).
To be more precise: an assignment J : VAR (ϕ) → {0, . . . ,m− 1} is a solution of f(ϕ) if and only
there is a unique I : VAR (ϕ) → D such that I |= ϕ, and f(I) = J . Since for each J |= f(ϕ), the
unique solution I |= ϕ such that f(I) = J can be computed in polynomial time, this shows that
when we can enumerate the solutions of f(ϕ), then we can also enumerate the solutions of ϕ.

First, let I |= ϕ for some assignment I : VAR (ϕ) → D. We claim that f(I) |= f(ϕ). Let
R(xi1, . . . , x

i
n) be a clause in ϕ. Since I |= ϕ, I(xi1, . . . , x

i
n) ∈ R. Therefore, f(I(xi1, . . . , x

i
n)) ∈ f(R).

Now, let J |= f(ϕ) for J : VAR (ϕ) → {0, . . . ,m− 1}. We define an assignment I : VAR (ϕ) → D
such that f(I) = J : for a variable x such that d(x) = Di ∈ E, and J(x) = j ∈ {0, . . . ,m− 1},
define I(x) = αij . Then f(I) = J . Let R(xi1, . . . , x

i
n) be a clause in ϕ. Since f(I) |= f(ϕ), it follows

that (a1, . . . , an) := f(I(xi1, . . . , x
i
n)) ∈ R. Since f , restricted to Di, is injective, it follows that

I(xi1, . . . , x
i
m) = (αd(x

i
1)

a1 , . . . , α
d(xi

n)
an ) ∈ R.

Now assume that for a given J |= ϕ, there are two different assignments I1 and I2 such that
f(I1) = f(I2) = J , and I1, I2 |= ϕ. Let I1(xij) 6= I2(xij). Since f(I1) = f(I2), it follows that
f(I1(xij)) = f(I2(xij)). Since I1, I2 |= ϕ, it follows that I1(xij), I2(x

i
j) ∈ d(xij). Since the function f

restricted to d(xij) is injective, it follows that f(I1(xij)) 6= f(I2(xij)). This is a contradiction. �

Note that the converse of the above Lemma probably does not hold, i.e. negative results do not
translate to bigger domains. Assume that R ⊆ D1 ×D2, where D1 ∩D2 = ∅, |D1| = |D2|. Then
R(x, x) is not satisfiable, but f(R)(x, x) may be satisfiable. So there is no canonical correspondence
which allows us to get the solutions to an f(R)-formula from the solutions to the corresponding
R-formula.

3.7 Partial solutions and lexicographical orderings

We generalize the notion of lexicographical orderings in two ways. A lexicographical ordering on
the solutions of some formula ϕ uses the same order of the domain D for each variable. But in
a more general setting, we might want to demand that for the variable x1, the value a ∈ D is
smaller than b, but for x2, we might want b < a. Further, we generalize lexicographical orderings
to partial solutions in the obvious way. Let <var be a linear order on VAR (ϕ), and for every



Enumerating all Solutions for Constraint Satisfaction Problems 17

x ∈ VAR (ϕ), let <x be a linear order on a partition E on D. We define a linear order <ϕ on the
partial E-assignments of ϕ as follows:

I1 <ϕ I2 if there is some x ∈ VAR (ϕ) such that for all y ∈ VAR (ϕ) with y <var x, it holds
that I1(y) = I2(y), and I1(x) <x I2(x). Such an order is called a variable E-lexicographical order
on SOLE (ϕ).

A variable E-lexicographical enumeration algorithm for Γ is an algorithm which, when given a
Γ -formula ϕ and a variable lexicographical order <ϕ as defined above as input, prints each partial
E-solution of ϕ exactly once and in the order defined by <ϕ. We say that a constraint language
Γ over the domain D has an efficient variable lexicographical enumeration algorithm if there is
an efficient variable lexicographical Ddisc enumeration algorithm for Γ , i.e. if we can efficiently
enumerate the “real” (not partial) solutions of Γ -formulas in a variable lexicographical order. (We
identify partial solutions where each equivalence class has only one element and “real” solutions
here.)

This definition is the formalization of the requirement that we can tell the algorithm in which
order we want the (partial) solutions to be printed. Note that in this context, the notion of semi-
efficient enumeration algorithms does not make sense: if we allow such an algorithm to print every
solution a constant number of times, then the algorithm would have to print all of these copies
directly after each other, due to the lexicographical ordering condition. In this case, polynomial
delay is still maintained if such an algorithm would be modified to print each solution only once
(and in order to achieve this, it would only have to store the most recently printed solution).

Theorem 3.25. Let E be a partition on D, and let Γ be a constraint language over D. There
exists a variable E-lexicographical enumeration algorithm for Γ if and only if Γ ∪ E is tractable.

Proof. Let E = {D1, . . . , Dk}, and first assume that Γ ∪E is tractable. Let ϕ be a Γ -formula, and
let <ϕ be a variable lexicographical order. The procedure Generate (Fig. 2) generates, on input ϕ
and a {D1, . . . , Dk}-formula ψ such that VAR (ψ) ⊆ VAR (ϕ), all partial solutions of ϕ ∧ ψ in the
order defined by <ϕ with polynomial delay. To enumerate all partial solutions of ϕ, start Generate
with ϕ and the empty formula ψ. This algorithm is a generalization of the algorithms in the proof
of Theorem 9 in [Coh04] and in section 3 of [CH97].

Input: Formula ϕ and conjunction ψ of constraints of the form Di(xj), where VAR (ψ) ⊆ VAR (ϕ)
if ϕ ∧ ψ /∈ SAT then

exit
end if
if VAR (ϕ) = VAR (ψ) then

Print the partial assignment defined by ψ
exit

end if
Let x be the <var-smallest variable in VAR (ϕ) \VAR (ψ)
Let Di1 <x Di2 <x · · · <x Dik

for j = 1 to j = k do
Generate(ϕ,ψ ∧Dij (x))

end for

Fig. 2. The procedure Generate

The algorithm works in polynomial time, since the satisfiability test used in the algorithm can
be performed in polynomial time by our prerequisites.

Now assume that Γ has a variable E-lexicographical enumeration algorithm, and let ϕ ∧ ψ be
a Γ ∪ E-formula. Without loss of generality, assume that the (not necessarily distinct) variables
xi1, . . . , x

i
l are constrained to the subset Di, i.e. there are clauses Di(xi1), . . . , Di(xil) for all i, and

no other applications of Di. Let X :=
{
x1

1, . . . , x
1
l , x

2
1, . . . , x

k
l

}
be the set of variables which ap-

pear in one of the Di constraint applications, and let Y := VAR (ϕ) \ X. Now, define <var to
be a linear order on the variables such that for all x ∈ X, y ∈ Y , it holds that x <var y. For
each xij ∈ X, define the order <x in such a way that Di is the smallest element of {D1, . . . , Dk}
with respect to <x. Let ϕ′ be the Γ -formula obtained from ϕ by deleting all Di-clauses. Now,



18 Henning Schnoor, Ilka Schnoor

enumerate the solutions of ϕ′ according to the order as defined above. By construction of the
order, the formula ϕ is satisfiable if and only if if the first partial solution returned by the algo-
rithm satisfies the clauses Di(xi1), . . . , Di(xik). This gives a polynomial-time decision procedure for
CSP(Γ ∪ {D1, . . . , Dk}). �

This theorem generalizes the “extreme” cases: Γ+ tractable is equivalent to Γ ∪Ddisc tractable.
For this case, the theorem implies that the solutions of some Γ -formula can be printed in variable
lexicographical order if and only if Γ+ is tractable. On the other hand, Γ ∪ {D} tractable is
equivalent to Γ tractable. Therefore, the notion of tractability combined with partitions of the
domain is a natural generalization of previous cases.

For the Boolean case, all of our various enumeration cases are equivalent: For the non-Boolean
case, a similar proposition does not hold, unless P = NP, as illustrated by Example 3.8.

Proposition 3.26. Let R be a relation over the Boolean domain. Then the following propositions
are equivalent:

1. R has a semi-efficient enumeration algorithm,
2. R has an efficient enumeration algorithm,
3. R has an efficient variable lexicographical order enumeration algorithm,
4. R+ is tractable,
5. R is Schaefer, or P = NP.

Proof. The implications 4 → 3, 3 → 2 and 2 → 1 are clear, and all hold for the general case
as well. The only one of these which does not follow directly from the definition is 4 → 3, this
follows from Theorem 3.25. For the Boolean case and the implication 1 → 4, observe that if Γ is
Schaefer, then Γ+ is tractable. Otherwise, it cannot have a semi-efficient enumeration algorithm,
because CSP∗(Γ ) is NP-complete, and a semi-efficient enumeration algorithm immediately gives a
polynomial-time decision procedure for this problem. The equivalence of 2 and 5 is the main result
from [CH97]. �

4 Negative Cases

In this section we present negative results, i.e. conditions ensuring that relations do not have
efficient enumeration algorithms (if P 6= NP holds). We present a number of technical results.
With current techniques, we were not yet able to show broad conditions for non-enumerability of
relations. Note that due to Proposition 2.9, in the case where |D| = 3, we always have either a
constant polymorphism, or a polymorphism of the form fa→b. The lemma deals with the latter
case, with additional prerequisites.

We now show our first non-enumerability result:

Lemma 4.1. Let D be a 3-element domain, and R ⊆ Dn, let a, b ∈ D, such that fa→b ∈ Pol(R),
fa→b(R) is not Schaefer, and one of the following cases occurs:

1. (c, . . . , c) ∈ R and there is some v ∈ {a, b}n with v /∈ R, v[a/c, b/b] ∈ R, and v[a/b, b/c] ∈ R.
2. (b, . . . , b) /∈ R
3. (a, . . . , a) /∈ R and (c, . . . , c) ∈ R
4. R can express the ” 6= a” condition (Conjecture1)
5. (a, . . . , a), (c, . . . , c) /∈ R, and there is a v ∈ {a, b}n \R with fa→c(v) ∈ R

Then R does not have a semi-efficient enumeration algorithm, unless P = NP.

Proof. Since fa→b(R) is not Schaefer, the problem CSP∗(fa→b(R)) is NP-complete, where
CSP∗(fa→b(R)) is the problem to decide, given a fa→b(R)-formula, if it has a non-constant so-
lution [CH97]. Let ϕ be a fa→b(R)-formula, and let VAR (ϕ) = {x1, . . . , xm}. We construct an
R-formula

ψ := ϕ[fa→b(R)/R] ∧ χ,

where χ is an R-formula and χ has the following properties:
1 The proof for this is unclear.



Enumerating all Solutions for Constraint Satisfaction Problems 19

1. | {I : VAR (χ) → {a, b}, I |= χ} | is polynomial in |ϕ|
2. For all I : VAR (ϕ) → {b, c}, I |= ϕ implies I |= χ.

The first condition ensures that when enumerating the solutions of ϕ ∧ χ, we do not have to
wait too long until we get a solution which does not only contain as and bs. A solution which
contains at least one c maps to a non-constant solution of ϕ. The second condition ensures that
the formula χ does not interfere with the solutions of ϕ, which we are interested in. Hence, the
existence of an efficient enumeration algorithm for R implies that CSP∗(fa→b(R)) is decidable in
polynomial time.

We now show that in each of the cases stated in the lemma, we can construct a formula χ which
has this properties.

Case 1 Let
χ(x2, . . . , xm) = R(x2) ∧ · · · ∧R(xm) ∧R(y2) ∧ · · · ∧R(ym),

where

xi[j] ≡

{
xi−1 if v[j] = a

xi if v[j] = b
and yi[j] ≡

{
xi if v[j] = a

xi−1 if v[j] = b
.

We prove that all solutions I : {x1, . . . , xm} → {a, b} of χ are constant. Assume I :
{x0, . . . , xm} → {a, b} is a non constant solution of ϕ. Then there exists an i ∈ {1, . . . ,m}
such that I(xi−1) 6= I(xi). That means either I(xi) = v or I(yi) = v, but that is a contra-
diction because v /∈ R. Note that this covers also the case where k = 1 or k = n. So the first
property is satisfied.
For the second property we assume without loss of generality that (b, . . . , b) ∈ R, otherwise
we can use the next case. Let I : VAR (ϕ) → {b, c} be a solution of ϕ. Then I(xi), I(yi) ∈
{v[a/c, b/b],v[a/b, b/c], (b, . . . , b), (c, . . . , c)} which is a subset of R due to our prerequisites.
That means I ` R.

Case 2 Since fa→b is a polymorphism of R, there is no tuple v ∈ R ∩ {a, b}n. Therefore we can
choose χ = ∅.

Case 3 Choose χ = R(x1, . . . , x1) ∧R(x2, . . . , x2) ∧ · · · ∧R(xm, . . . , xm). The formula χ does not
have any solution in which an a occurs (note that we can assume (b, . . . , b) ∈ R, and therefore
these clauses are equivalent to restricting all variables to take either the value b or c).

Case 5 In this case, we can force some additional variable t to take the value b by the con-
straint application R(t, . . . , t) (without loss of generality, we can assume (b, . . . , b) ∈ R, be-
cause of case 2). Now assume that v = (a, . . . , a︸ ︷︷ ︸

k

, b, . . . , b︸ ︷︷ ︸
l

), and add the constraint application

R(xi, . . . , xi︸ ︷︷ ︸
k

, t, . . . , t︸ ︷︷ ︸
l

) for each variable xi. This forces the variables to take values different from

a (note that v cannot be the constant (a, . . . , a) tuple, since (c, . . . , c) /∈ R).
�

Like most of our negative results, the following Lemma is a very special case. However, this is
important since it allows us to show, in Theorem 5.1, that the Galois connection does not hold for
the enumeration problem.

Lemma 4.2. Let R be a relation over the domain D = {a, b, c}, let R not be {a, b}-Schaefer, and
let {(c)} ∈ 〈R〉, {(a), (b)} ∈ 〈R, {(c)}〉@, and assume P 6= NP. Then R does not have a semi-efficient
enumeration algorithm.

Proof. let E := {{a, b} , {c}}. Since R is not {a, b}-Schaefer, the constraint language ΓE→D
R is not

Schaefer (note that ΓE→D
R is a constraint language over the Boolean domain {a, b}). Therefore,

following [CH97], the problem CSP∗(ΓE→D
R ) is NP-complete, where CSP∗(ΓE→D

R ) is the problem,
to determine for a ΓE→D

R -formula ψ, if ψ has a non-constant solution. Now assume that R′ has a
semi-enumeration algorithm, and let ψ be a ΓE→D

R -formula,

ψ =
l∧
i=1

REvti
(xi1, . . . , x

i
ar(RE

vti
)),



20 Henning Schnoor, Ilka Schnoor

where vti ∈ En for all 1 ≤ i ≤ l. We construct a formula ϕ of R-clauses which is “equivalent”
to ψ in some sense. This construction is very similar to the one in the proof for Lemma 3.15. Since
ψ is a formula in which only relations over the Boolean domain {a, b} appear, we first force all
appearing variables in ψ to take values from this domain: let

ϕ1 := ∃y1, . . . , yk
∧

x∈VAR(ψ)

(x ∈ {a, b}) ∧ (xc = c).

A formula equivalent to ϕ1 can be expressed as R-formula, since {c} ∈ 〈R〉, and {(a), (b)} ∈
〈R, {(c)}〉@. Note that the number k of new existentially quantified variables does not depend on
the length of ϕ: these are needed to express the clause xc = c, since {(c)} is not necessarily in
〈R〉@. This construction can result in additional existential variables. To further express the clauses
x ∈ {a, b} does not require any existential variables, since {(a), (b)} ∈ 〈R, {(c)}〉@.

Now, let C = REv (x1, . . . , xm) be a clause in ψ, where x1, . . . , xm ∈ VAR (ψ) and v ∈ En.
Without loss of generality, let v = ({c} , . . . , {c}︸ ︷︷ ︸

p

, {a, b} , . . . , {a, b}︸ ︷︷ ︸
m

). Let C ′ :=

R(xc, . . . , xc︸ ︷︷ ︸
p

, x1, . . . , xm). Then the solutions to C ′ ∧ ψ1 are exactly the solutions to C with the

additional assignment xc = c. Now, let ϕ be the conjunction of ϕ1 and C ′ for all clauses C ′ in ψ.
Then the solutions I for ψ, I : VAR (ψ) → {a, b} are exactly those assignments to VAR (ψ) which
can be extended to assignments I ′ to VAR (ϕ) = VAR (ψ)∪{xc, y1, . . . , yk} such that I ′ |= ϕ. Note
that the formula ϕ can be computed from ψ in polynomial time.

Assume that R does have a semi-efficient enumeration algorithm. Start this algorithm for ϕ.
Since ψ can have at most 2 constant solutions, and for every solution of ψ, there is only a constant
number of solutions to ϕ, and every solution of ϕ is printed only a constant number of times,
we only have to wait for a constant number of outputs of this enumeration algorithm. Since the
algorithm has polynomial delay, this is a polynomial-time decision procedure for CSP∗(ΓE→D

R ),
which cannot exist due to the prerequisites and Proposition 3.26. �

4.1 Implementation

In this section we show a canonical way to implement unary relations, and derive results using the
〈.〉cons closure operator, which we can apply to the enumeration problem.

Definition 4.3. Let R be a relation over the domain D = {α1, . . . , αk}. For v ∈ R, we define

Cv := R(av1 , . . . , a
v
n),

where avi = xv[i], for distinct variables xα1 , . . . , xαk
. Further, we define

ϕR =
∧
v∈R

Cv.

The idea behind this definition is to try to force the variable xα to take the value α ∈ D for
all satisfying assignments of ϕR. We prove that if we cannot force these values with ϕR, then we
cannot do this with applications of R at all.

Lemma 4.4. 1. There is a one-to-one correspondence between solutions I : {xα1 , . . . , xαk
} →

{α1, . . . , αk} and unary polymorphisms of R. To be precise, f : D → D is a polymorphism of
R if and only if If is a solution of ϕR, where If (xα) = f(α).

2. Let R be a relation over D, and let α ∈ D. The following are equivalent:
(a) {(α)} ∈ 〈R〉,
(b) For all I |= ϕR, it holds that I(xα) = α.

3. Let D = {a, b, c} be the three-element domain, let E = {{a, b} , {c}}, and let fa→b be a poly-
morphism of R, and let all unary polymorphisms of R be conservative on the classes in E.
Then E ⊆ 〈R〉cons.



Enumerating all Solutions for Constraint Satisfaction Problems 21

Proof. 1. Let f be a polymorphism of R. By construction of ϕR, it is obvious that Iid, where
id is the identity, is a solution of ϕ. Since f ∈ Pol(R), we know that f(Iid) is a solution of
ϕ as well (because only R-clauses appear in ϕR). Now for α ∈ D, it holds that f(Iid)(xα) =
f(Iid(xα)) = f(α), i.e. f(Iid) = If |= ϕR.
For the converse, assume that If is a solution of ϕR, and let v ∈ R. We show that
f(v) ∈ R. Since If |= ϕR, it holds that If |= Cv, i.e. If ((av1 , . . . , a

v
n)) ∈ R. We show that

If ((av1 , . . . , a
v
n)) = f(v). It holds that Iid(av1 , . . . , a

v
n) = v, by definition of Cv. Obviously,

f(Iid)(av1 , . . . , a
v
n) = f(v) ∈ R.

2. The direction 2b → 2a follows per definition. On the other hand, assume {(α)} ∈ 〈R〉. By
Proposition 2.3, this implies Pol(R) ⊆ Pol({(α)}). Now it can easily be verified that the
polymorphisms of {(α)} are exactly those functions f : D → D for which f(α, . . . , α) = α
holds. Therefore, this holds for every polymorphism f of R. Now, let I be a solution of ϕR.
Following part 1, the function f defined by f(α) = I(xα) is a polymorphism of R. Therefore,
f(α) = α, and thus I(xα) = α.

3. We make a case distinction.

Case 1: fb→a /∈ Pol(R). We prove that I : {xa, xb, xc} → {a, b, c} is a solution of ϕR if and
only if I(xa) ∈ {a, b} , I(xb) = b, and I(xc) = c.
First, let I |= ϕR. Following part 1, we know, since all unary polymorphisms of R are
conservative on {a, b} and on {c}, that I(xc) = c, and I(xa), I(xb) ∈ {a, b}. Assume that
I(xb) 6= b, i.e., I(xb) = a. If I(xa) = a, then, due to part 1, we know that fb→a is a
polymorphism of R, which is a contradiction to our assumption. For the other case, if
I(xa) = b, then we know that f ′ is a polymorphism of R, where f ′(a) = b, f ′(b) = a, and
f(c) = c. Since fa→b ∈ Pol(R), we conclude that f ′ ◦fa→b = fb→a ∈ Pol(R), which is again
a contradiction.
Now, let I(xa) ∈ {a, b} , I(xb) = b, and I(xc) = c. It is obvious that if I(xa) = a, then
I |= ϕR: this follows from part 1, since the identity is always a polymorphism. Therefore,
assume that I(xa) = b. Then, by definition of the assignment, it corresponds to the function
fa→b, which is a polymorphism of R, and due to part 1, I is a solution of ϕ.
Now, let ψ =

∧l
i=1(xi = c) ∧ (yi ∈ {a, b}) be an E-formula (without loss of generality,

assume that there are equally many variables which we force to be c and which we force to
be in {a, b}. If not, we repeat some clauses in the construction below). Then, by the above,

∃xb
l∧
i=1

ϕR[xa/yi, xc/xi] ⇔ ψ,

since for the existentially quantified variable xb, the value b is the only one which can be
chosen. Therefore, we conclude E ⊆ 〈R〉cons.

Case 2: fb→a ∈ Pol(R). We construct the formula ψ(x, xc) := ϕR [xa/x, xb/x]. We show that
I : {x, xc} → {a, b, c} is a solution of ψ if and only if I(x) ∈ {a, b} and I(xc) = c.
First, let I |= ψ. Since ψ = ϕR [xa/x, xb/x], it follows from part 1, that f defined as
f(a) = f(b) = I(x), f(c) = c is a polymorphism of R. Since all unary polymorphisms are
conservative on {a, b} and on {c}, it follows that I(x) ∈ {a, b}, I(xc) = c.
Now, let I(x) ∈ {a, b} and I(xc) = c. Since fa→b ∈ Pol(R), it follows from part 1, that I1
defined by I1(xc) = c, I1(xb) = I1(x) = b is a solution of ϕR. Therefore, I1 restricted to
x, xc is a solution of ψ. The second possible solution fulfilling the requirements is I2, defined
as I2(x) = a, I2(xc) = c. We extend this to a solution of ϕR by setting I2(xa) = I2(xb) = a.
This is a solution of ϕR, because fb→a is a polymorphism of R.
As above, let ψ =

∧l
i=1(xi = c) ∧ (yi ∈ {a, b}) be an E-formula. Then, by the above,

l∧
i=1

ψ[x/yi, xc/xi] ⇔ ψ.

Therefore, we conclude E ⊆ 〈R〉cons.
�



22 Henning Schnoor, Ilka Schnoor

4.2 Complete classification of the conservative case

With our results, we obtain a complete classification of the case where all polymorphisms are
conservative on some partition E = {{a, b} , {c}}, in the three-element case. Note that this result
is not an algebraic characterization in the usual sense, since ΓE→D

R being Schaefer does not only
depend on the set of polymorphisms of R.

Lemma 4.5. Let R be a relation over some domain D, and let E be a partition of D. If
E ⊆ 〈R〉cons, and R has an efficient enumeration algorithm, then R is semi-efficiently E → D-
enumerable.

Proof. Let ϕ be an R-formula, and let I : VAR (ϕ) → E be a partial E-assignment. Since E ⊆
〈R〉cons we can, using only constant-many new existentially quantified variables, force every variable
x ∈ VAR (ϕ) to take values from I(x) by adding the clause (I(x))(x) (remember that I(x) is one
of the classes in E). Enumerating the solutions of this modified formula gives us all solutions of ϕ
which are compatible with I, where each can appear c times for a constant c, depending on the
constant number of existential quantifiers needed to express E. �

Corollary 4.6. Let R be a relation on the three-element domain D, and let there be some partition
E = {{a, b} , {c}} of D, such that all polymorphisms of R are conservative on the classes in E.

– If fa→b /∈ Pol(R) and fb→a /∈ Pol(R), then R has an efficient enumeration algorithm if and
only if R is tractable.

– Otherwise, R has an efficient enumeration algorithm if and only if ΓE→D
R is Schaefer, and R/E

is Schaefer (or P = NP).

Proof. First, note that since all polymorphisms of R are conservative on the classes in E, R cannot
have a constant polymorphism. Now, assume that fa→b and fb→a are not polymorphisms of R.
Then it follows that the only unary polymorphism of R which restricted to its range is the identity,
is the identity itself. If R is tractable, it follows from Proposition 2.9 that R+ is tractable, and
therefore R has an efficient enumeration algorithm due to Theorem 2.4. If R is not tractable, then
R obviously cannot have an efficient enumeration algorithm.

Now, assume that, without loss of generality, fa→b ∈ Pol(R). If R is not tractable, then R does
not have an efficient enumeration algorithm. If R is tractable, then fa→b(R) is tractable as well,
since some R-formula ϕ is satisfiable if and only if fa→b(ϕ) is. Since R does not have a constant
polymorphism, it follows that fa→b(R) is Schaefer. Since fa→b ∈ Pol(R), the set E′ = {b, c}
is a representation system of E compatible with R. Therefore, R/E is efficiently enumerable if
and only if R is efficiently E-enumerable, due to Lemma 3.13. From Lemma 4.4, we know that
E ⊆ 〈R〉cons, and thus, Lemma 4.5 implies that R is semi-efficiently E → D-enumerable. This
implies, due to Lemma 3.15, that ΓE→D

R is semi-efficiently enumerable. Since this is a Boolean
constraint language, Proposition 3.26 implies that ΓE→D

R is efficiently enumerable, and therefore,
again due to Lemma 3.15, R is efficiently E → D-enumerable.

On the other hand, if R is efficiently E-enumerable and efficiently E → D-enumerable, then R
has an efficient enumeration algorithm due to Theorem 3.11. �

5 The Galois connection

We show that the Galois connection does not work for the enumeration problem. This result
shows that the three-element case behaves very differently from the Boolean case, since for the
two-element domain, it follows from Proposition 3.26 that for a Boolean relation, the property of
having an efficient enumeration algorithm only depends on the polymorphisms of the relation.

Theorem 5.1. There exist relations R and R′ such that R′ ∈ 〈R〉, R has an efficient enumeration
algorithm, and R′ does not have a semi-efficient enumeration algorithm, unless P = NP.

The idea of the proof is that the union of relations which are Schaefer usually is not Schaefer.
With existential quantifiers, we achieve that there are tuples v1,v2 in R which are not E-equivalent
for some partition E, but their corresponding tuples in R′ are. The relation R in the construction
we give is {a, b}-Schaefer. Therefore, the relations v1

E→D and v2
E→D are Schaefer, but their union

is not. Since the corresponding tuples in R′ are E-equivalent, this union appears in the constraint
language ΓE→D

R′ .



Enumerating all Solutions for Constraint Satisfaction Problems 23

Proof. Let

R :=


(
{a} × {a} × {b} ×

(
{a, b}3 \ {(b, b, b)}

)
∪ {(b, b, b, b, b, b)}

)
× {b}

∪
(
{a} × {b} × {a} ×

(
{a, b}3 \ {(b, b, b)}

)
∪ {(b, b, b, b, b, b)}

)
× {c}

∪
(
{b, c}7 \ {(c, c, c, c, c, c, b), (c, c, c, c, c, c, c)}

)
× {c}

∪ {(a, a, a, a, a, a, a, c)}.
We first show that R does have an efficient enumeration algorithm, using Corollary 3.16. First

note that fa→b is a polymorphism of R: let v = (α1, . . . , α8) ∈ R, and, without loss of generality,
assume that at least one of the components of v is a (otherwise, fa→b(v) = v ∈ R). In this
case, by construction of R, the only components of v which can be c are α7 and α8. Since R ⊂
{a, b, c}7×{c}, α8 = c must hold. If α7 = b, then fa→b(v) = (b, b, b, b, b, b, b, c) ∈ R. If α7 = c, then
fa→b(v) = (b, b, b, b, b, b, c, c) ∈ R. Therefore, fa→b ∈ Pol(R).

We now show that R is {a, b}-Schaefer. For this, let v = (α1, . . . , α8) ∈ R ∩ {b, c}8. As above,
we know that α8 = c. If there is some i ∈ {1, . . . , 6} such that αi = c, then, by construction of R,
we know that

Ra→b
v = {(b, . . . , b)} =: R1.

Now assume (α1, . . . , α6) = (b, . . . , b). If α7 = c, then v = (b, b, b, b, b, b, c, c), and

Ra→b
v = {a} × {b} × {a} ×

(
{a, b}3 \ {(b, b, b)}

)
∪ {(b, b, b, b, b, b)} =: R2.

Finally, if α7 = b or α7 = a, then v = (b, b, b, b, b, b, b, c), and

Ra→b
v = {a} × {a} × {b} ×

(
{a, b}3 \ {(b, b, b)}

)
∪ {(b, b, b, b, b, b)} × {b} =: R3.

We use the Boolean terminology to describe the relations R1, R2 and R3. If we interpret b as 1,
and a as 0, then it is easily seen that these relations are closed under the Boolean AND operator.
It follows that R is {a, b}-Schaefer.

By definition of R it holds that

fa→b(R) = R ∩ {b, c}8 =
(
{b, c}7 \ {(c, c, c, c, c, c, b), (c, c, c, c, c, c, c)}

)
× {c} .

Again applying the Boolean vocabulary, when we interpret b as 1, and c as 0, then this relation
is closed under the Boolean OR operator. Therefore, fa→b(R) is Schaefer. Now, by Corollary 3.16,
it follows that R has an efficient enumeration algorithm.

Now, let R′ be defined by the formula

R′(x1, . . . , x7) : ⇐⇒ ∃yR(x1, . . . , x6, y, x7).

We claim that R′ does not have an efficient enumeration algorithm. We show that if R′ has a
semi-efficient enumeration algorithm, then P = NP. For this, we first show that R′ is not {a, b}-
Schaefer.

By construction, it holds that

R′ =


(
{a} × {a} × {b} ×

(
{a, b}3 \ {(b, b, b)}

)
∪ {(b, b, b, b, b, b)}

)
∪

(
{a} × {b} × {a} ×

(
{a, b}3 \ {(b, b, b)}

)
∪ {(b, b, b, b, b, b)}

)
∪

(
{b, c}6 \ {(c, c, c, c, c, c)}

)
× {c}

∪ {(a, a, a, a, a, a, c)}.

Let v = (b, b, b, b, b, b, c) ∈ R′. Then it is obvious that

R′a→b
v =

(
{a} × {a} × {b} ×

(
{a, b}3 \ {(b, b, b)}

)
∪ {(b, b, b, b, b, b)}

)
∪

(
{a} × {b} × {a} ×

(
{a, b}3 \ {(b, b, b)}

)
∪ {(b, b, b, b, b, b)}

)
∪{(b, b, b, b, b, b)} ∪ {(a, a, a, a, a, a)} .

We show that R′a→b
v is not Schaefer. Again, we identify the values with Boolean constants,

we interpret b as 1 and a as 0. To show that R′a→b
v is not Schaefer, it suffices to show that it



24 Henning Schnoor, Ilka Schnoor

is not closed under the Boolean operators AND and OR, the ternary XOR, and the function
maj(x, y, z) = xy ∨ xz ∨ yz. To verify this, observe that the following equations hold:

0
0
1
1
0
0

 ∨


0
0
1
0
1
1

 =


0
0
1
1
1
1

 /∈ R,


0
0
1
1
0
0

 ∧


0
1
0
1
0
0

 =


0
0
0
1
0
0

 /∈ R,


0
0
0
0
0
0

⊕


0
0
1
1
0
0

⊕


0
1
0
0
1
0

 =


0
1
1
1
1
0

 /∈ R,

maj




0
0
1
1
1
0

 ,


0
0
1
1
0
1

 ,


0
0
1
0
1
1



 =


0
0
1
1
1
1

 /∈ R.

This shows that R′a→b
v is not Schaefer. In particular, R′ is not {a, b}-Schaefer. Due to

Lemma 4.2, R′ does not have a semi-efficient enumeration algorithm, since we can express xc = c
as ∃yR′(y, y, y, y, y, y, xc), and x ∈ {a, b} as (xc = c) ∧ (x, x, x, x, x, x, xc). �

6 Conclusion and future research

We have exhibited new enumeration algorithms for constraint languages.
The goal of our research is to completely answer the question “which relations allow for an

efficient enumeration algorithm?”, assuming we know for which relations the constraint satisfaction
problem is solvable in polynomial time. The next logical step is to get broader criteria showing that
some relation cannot be enumerated with polynomial delay. In light of Theorem 5.1, it is evident
that new algebraic techniques are needed. In [SS06], we give first ideas of the algebraic concepts
which hopefully can be applied to the enumeration problem.

There is a close correspondence between enumeration algorithms and the possible orderings
they can produce, as shown by Theorem 3.25. Also, enumerating solutions with nested procedures
for partial E-enumerability and E1 → E2-enumerability defines an order on the solutions. We
believe that the key to discover further enumeration algorithms might be to consider other possible
orderings.

Another interesting question is to additionally demand that an efficient enumeration algorithm
only needs polynomial space. For implementations in practice, this is a crucial requirement. All of
the algorithms we presented here work with this restriction. We believe that for these algorithms,
negative results can be achieved more easily, since the PSPACE bound ensures that the algorithm
cannot simply calculate a big set of solutions in advance, printing them when needed.

Acknowledgment

We thank Nadia Creignou and Heribert Vollmer for very helpful discussions.

References

ABI+05. E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The complexity of satisfia-
bility problems: Refining Schaefer’s theorem. In Proceedings of the 30th International Symposium
on Mathematical Foundations of Computer Science, pages 71–82, 2005.

BHRV02. E. Böhler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence and isomorphism for
Boolean constraint satisfaction. In Computer Science Logic, volume 2471 of Lecture Notes in
Computer Science, pages 412–426, Berlin Heidelberg, 2002. Springer Verlag.

BKJ00. A. Bulatov, A. Krokhin, and P. Jeavons. Constraint satisfaction problems and finite algebras.
In 27th International Colloquium on Automata, Languages and Programming, pages 272–282,
2000.

Bul02. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Proceedings 43rd
Symposium on Foundations of Computer Science, pages 649–658. IEEE Computer Society Press,
2002.



Enumerating all Solutions for Constraint Satisfaction Problems 25

Bul06. Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
set. Journal of the ACM, 53(1):66–120, 2006.

CH96. N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems. In-
formation and Computation, 125:1–12, 1996.

CH97. N. Creignou and J.-J. Hébrard. On generating all solutions of generalized satisfiability problems.
Informatique Théorique et Applications/Theoretical Informatics and Applications, 31(6):499–
511, 1997.

CKS01. N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint
Satisfaction Problems. Monographs on Discrete Applied Mathematics. SIAM, 2001.

Coh04. D. Cohen. Tractable decision for a constraint language implies tractable search. Constraints,
9(3):219–229, 2004.

Dal05. Victor Dalmau. Generalized majority-minority operations are tractable. In Prakash Panan-
gaden, editor, Proceedings of the Twentieth Annual IEEE Symp. on Logic in Computer Science,
LICS 2005, pages 438–447. IEEE Computer Society Press, June 2005.

DK06. V. Dalmau and A. Krokhin. Majority constraints have bounded pathwidth duality. Technical
Report NI06017-LAA, Isaac Newton Institute for Mathematical Sciences, 2006.

FV98. T. Feder and M. Y. Vardi. The computational structure of monotone monadis SNP and con-
straint satisfaction: a study through Datalog and group theory. SIAM Journal on Computing,
28(1):57–104, 1998.

JCG97. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the ACM,
44(4):527–548, 1997.

JPY88. D. Johnson, C. Papadimitriou, and M. Yannakakis. On generating all maximal independent
sets. Inf. Process. Lett., 27(3):119–123, 1988.

Pos41. E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical
Studies, 5:1–122, 1941.

Rei05. Omer Reingold. Undirected st-connectivity in log-space. In STOC ’05: Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, pages 376–385, New York, NY, USA,
2005. ACM Press.

RV00. S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and constraint satisfac-
tion problems. In Proceedings of the 25th International Symposium on Mathematical Founda-
tions of Computer Science, volume 1893 of Lecture Notes in Computer Science, pages 640–649.
Springer Verlag, 2000.

Sch78. T. J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th Symposium on
Theory of Computing, pages 216–226. ACM Press, 1978.

SS06. H. Schnoor and I. Schnoor. New algebraic tools for constraint satisfaction, 2006. These Pro-
ceedings.

Val79. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal of
Computing, 8(3):411–421, 1979.


	Enumerating all Solutions for Constraint Satisfaction Problems 
	Henning Schnoor, Ilka Schnoor

