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Abstract

On-line algorithms are usually analyzed using competitive analysis, in which the performance
of on-line algorithm on a sequence is normalized by the performance of the optimal off-line
algorithm on that sequence. In this paper we introduce adaptive/cooperative analysis as an
alternative general framework for the analysis of on-line algorithms. This model gives promising
results when applied to two well known on-line problems, paging and list update. The idea is
to normalize the performance of an on-line algorithm by a measure other than the performance
of the off-line optimal algorithm OPT. We show that in many instances the perform of OPT
on a sequence is a coarse approximation of the difficulty or complexity of a given input. Using
a finer, more natural measure we can separate paging and list update algorithms which were
otherwise undistinguishable under the classical model. This createas a performance hierarchy of
algorithms which better reflects the intuitive relative strengths between them. Lastly, we show
that, surprisingly, certain randomized algorithms which are superior to MTF in the classical
model are not so in the adaptive case. This confirms that the ability of the on-line adaptive
algorithm to ignore pathological worst cases can lead to algorithms that are more efficient in
practice.
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1 Introduction

There has been extensive research on the analysis of on-line algorithms. The competitive ratio, first
introduced formally by Sleator and Tarjan [ST85], has served as a practical measure for the study
and classification of on-line algorithms. An algorithm (assuming a cost-minimization problem)
is said to be a-competitive if the cost of serving any specific request sequence never exceeds «
times the optimal cost (up to some additive constant) of an optimal off-line algorithm which knows
the entire sequence. The competitive ratio has been applied to a variety of on-line problems and
settings: is relatively simple measure to apply yet powerful enough to quantify, to a large extent,
the performance of many an on-line algorithm.

Paging and List update are two important and well-studied on-line problems. They were among
the first problems to be analyzed using the competitive ratio. A paging algorithm mediates between
a slower and a faster memory. Assuming a cache of size k, it decides which k& memory pages to keep
in the cache without the benefit of knowing in advance the sequence of upcoming page requests.
After receiving the i*" page request the on-line algorithm must decide which page to evict, in the
event the request results in a fault and the cache is full. The objective is to design efficient on-line
algorithms in the sense that on a given request sequence the total cost, namely the total number
of faults, is kept low. Three well known paging algorithms are Least-Recently-Used (LRU), First-
In-First-Out (FIFO), and Flush- When-Full (FWF). On a fault, if the cache is full, LRU evicts the
page that is least recently requested, FIFO evicts the page that is first brought to the cache, and
FWEF empties the cache. All these paging algorithms have competitive ratio k, which is the best
among all deterministic on-line paging algorithms [BEY98].

In the list update or the list accessing problem, we have an unsorted list of m items. The input
is a sequence of n requests that should be served in an on-line manner. Let A be an arbitrary
on-line list update algorithm. To serve a request to an item x, A should linearly search the list
until it finds x. If z is 4*" item in the list, A incurs cost i to access z. Immediately after accessing
x, A can move x to any position closer to the front of the list at no extra cost. This is called a
free exchange. Also A can exchange any two consecutive items at a cost of 1. These are called paid
exchanges. The idea is to use free and paid exchanges to minimize the overall cost of serving a
sequence. This is called the standard cost model. Three well known deterministic on-line algorithms
are Move-To-Front (MTF), Transpose, and Frequency-Count (FC). MTF moves the requested item
to the front of the list and Transpose exchanges the requested item with the item that immediately
precedes it. FC maintains a frequency count for each item, updates this count after each access, and
makes necessary moves so that the list always contains items in non-increasing order of frequency
count. In their seminal paper on competitive analysis, Sleator and Tarjan showed that MTF is
2-competitive, while Transpose and FC do not have constant competitive ratios [ST85].

Shortcomings of competitive analysis It has been observed by numerous researchers [BDB94,
BIRS95b, KP00, You94, BF03, PS06] that in certain settings the competitive ratio produces results
that are too pessimistic or otherwise found wanting. For example, in the case of paging experimental
studies show that LRU has a performance ratio at most four times the optimal off-line [You94,
SAR88], as opposed to the competitive ratio k. Furthermore, it has been empirically well established
that LRU (and/or variants thereof) are, in practice, preferable paging strategies to all other known
paging algorithms [SGGO02]. This is in contrast to competitive analysis in which the competitive
ratio of LRU is the same as FWF and worse than some randomized algorithms. Competitive analysis
of list update algorithms has similar drawbacks. While algorithms can generally be more easily
distinguished that in the paging case, the experimental study of list update algorithms by Bachrach
and El-Yaniv suggests that the relative performance hierarchy as computed by the competitive ratio



does not correspond to the observed relative performance of the algorithms in practice [BEY97]. As
well, the validity of standard cost model has been debated. Let (a1, a2, ..., ay) be the list currently
maintained by an algorithm 4. Martinez and Roura argued that in a realistic setting a complete
rearrangement of all items of the list before a; would require time proportional to ¢, while A incurs
a cost proportional to 2 in the standard cost model to do this [MR00]. Munro argued that, for
example, in the case of an access to the last item in a list the true cost of reversing the entire list in
an array or a linear link list is O(m), while it costs about m?/2 in the standard cost model. They
introduced a new model, which we term the modified cost model, in which the cost of accessing the
it" item of the list plus the cost of reorganizing the first i items is linear in 4. In this setting, every
on-line algorithm has amortized cost of §(m) per access for some arbitrary long sequences, while
there are some off-line algorithms with amortized cost of #(logm) on every sequence. Therefore no
on-line list update algorithm has constant competitive ratio in the modified cost model.

A careful study of the competitive ratio reveals the nature of the shortcomings. Chiefly among
them are its focus on worst case behaviour and indirect comparison of online algorithms via an off-
line optimal algorithm. In the former case, this might lead, as observed above, to the competitive
ratio declaring two wildly differing algorithms “equal” if they happen to err in the same way in the
worst possible input, even though in most other inputs one is superior to the other (e.g. LRU versus
FWF). In the latter case, the indirect comparison to an off-line optimal can introduce spurious
artifacts due to the comparison of two objects of different types, namely an online and an off-
line algorithm.! Such anomalies have lead to the introduction of many alternatives to competitive
analysis of on-line algorithms (see [DLOO05] for a comprehensive survey). In this paper we introduce
adaptive analysis to on-line algorithms and overcome many of these problems.

Adaptive analysis Standard algorithm analysis expresses performance in terms of the input
size. Adaptive analysis takes into account the difficulty of input instances as well. This means that
an algorithm has good performance according to adaptive analysis if it performs well on “easy”
instances and not too poorly on “difficult” ones. We define adaptive performance of an algorithm
by normalizing its traditional performance by the difficulty of input. The two main challenges
of adaptive analysis are to find a realistic difficulty measure for input instances and to propose
algorithms that perform well under such a measure. Observe that the competitive ratio can be
seen as a special case of adaptive analysis, namely the case where the measure of difficulty is the
performance of the off-line OPT. Adaptive analysis brings to on-line algorithms the ability to use
a finer measure of difficulty. For each problem, we can choose the measure that best reflects the
difficulty of the input. It is unlikely that the off-line OPT is such a measure for all cases.

Cooperative Analysis The idea behind cooperative analysis is to give more weight to “well-
behaved” input sequences. Informally, an on-line algorithm has good cooperative ratio if it performs
well on good sequences and not too poorly on bad sequences. For example, input sequences for
the paging problem have locality of reference in practice, therefore one possibility is to relate
goodness of sequences to their amount of locality. Assuming there is a “badness” value for each
input sequence, then an algorithm for a cost-minimization problem is said to have cooperative ratio
« if the cost of serving any specific request sequence never exceeds « times the badness of that
sequence. Note that if we consider the difficulty of the input as a particular form of badness, then
adaptive analysis is a particular type of cooperative analysis. Another feature of the cooperative

1To illustrate, consider a consumer wishing to purchase a mountain bike. There are two choices which the user
evaluates indirectly by comparing them to an “optimal” racing bike. While in general good racing bikes and mountain
bikes have common characteristics, such a comparison would award no points for shock absorbers. Similarly, lightness,
which is essential in a racing bike is secondary to sturdiness in the case of the mountain bike, and so on and so forth.



ratio is that in certain online problems, the competitive ratio measure might force the algorithm
to make a move that is suboptimal in most cases except for a pathological worst case scenario. If
the application is such that these pathological cases are agreed to be of lesser importance, then the
online strategy can perform somewhat more poorly in these and make the choice that is best for the
common case. Observe that the input is no longer assumed to be adversarially constructed. This
better reflects the case of paging, in which programmers, compilers and optimized virtual machines
(such as JVMs) go to great lengths to maintain and increase locality of reference in the code. The
same observation has been made in scenarios such as online robot exploration and network packet
switching, in which a robot vacuuming a room or a router serving a packet sequence need only
concentrate in well behaved cases. A vacuuming robot need not efficiently vacuum a maze, neither
does the router have to keep up with denial-of-service floods. Indeed in the latter case the router
might actively choose to drop packets from a DoS stream [DLOO06].

Our results We propose cooperative analysis as a new framework for the analysis of on-line
algorithms and apply it to paging and list update problems. For paging, we suggest two cooperative
measures, the phase-cooperative ratio and the locality-cooperative ratio. We show that phase-
cooperative ratio gives results similar to the competitive ratio, while locality-cooperative ratio
leads to better separation. We obtain tight bounds on the locality-cooperative ratio of several
well known paging algorithms and show that LRU is the unique optimum among them. Then we
propose a cooperative measure for the list update problem that is based on the locality of reference.
We obtain bounds on the performance of well known on-line algorithms and prove the superiority
of MTF. Our results apply to both the standard and modified cost models. We also apply our
measures to randomized paging and list update algorithms and show that, surprisingly, certain
randomized algorithms which are superior to MTF in the classical model are not so in the adaptive
case.

2 Cooperative Analysis of Paging Algorithms

In this section we consider several badness measures for the cooperative ratio of a specific problem.
The fault rate of a paging algorithm on a sequence is the number of faults that it incurs on that
sequence divided by the length of the sequence. Therefore we can think of the fault rate as a
cooperative ratio that considers length of a sequence as its badness. However, observe that we can
have sequences of different badness among sequences of the same length and therefore the fault
rate is not an ideal measure. Next we describe two more elaborate measures of badness.

2.1 Phase-cooperative ratio

An input sequence can be decomposed into phases. Each phase starts right after the last request
of the previous phase and contains a maximal subset of requests that has at most k distinct pages.
Let D(o) denote the number of phases in the decomposition of a sequence o.

Definition 1 We say that an on-line paging algorithm A has phase-cooperative ratio « if there is
a constant [ so that for every sequence o: A(o) < ax D(o)+ (3. We define phase-cooperative ratio
of A, PCR(A), as the smallest number a so that A has phase-cooperative ratio c.

First we define the standard paging algorithms. On a fault, Last-In-First-Out (LIFO) evicts
the page that is most recently brought to the cache, and Least-Frequently-Used (LFU) evicts the
page that has been requested the least since entering the cache. LFU and LIFO do not have a



constant competitive ratio [BEY98]. A paging algorithm is called conservative if it incurs at most
k faults on any sequence that contains at most k distinct pages. A marking algorithm A works in
phases: all the pages in the cache are unmarked at the beginning of each phase. We mark any page
just after the first request to it. When an eviction is necessary, A should evict an unmarked page.
LRU and FIFO are conservative algorithms, while LRU and FWF are marking algorithms.

Theorem 1 FEvery deterministic on-line paging algorithm has PCR at least k. All marking and
conservative algorithms achieve the optimal PCR of k. LFU and LIFO do not have constant PCR.

Proof: Let A be an arbitrary deterministic paging algorithm. Consider an adversary that main-
tains k + 1 pages and at each time requests the page that is not in A’s cache. A incurs a fault on
each request of the corresponding sequence. Since the length of each phase is at least k, we get the
desired lower bound. Let o be a sequence and consider an arbitrary phase ¢ in its decomposition.
Let A be a marking algorithm and B be a conservative algorithm. ¢ is also a phase of A, therefore
A incurs at most k faults in ¢. B also incurs at most k faults in ¢, because ¢ contains k distinct
pages. Thus, A and B have PCR at most k.

For LIFO, consider the sequence o = p1ps ... pppr+1{prPr+1}" for an arbitrary integer n. LIFO
incurs a fault on all requests of o, while we have D (o) = 2. Therefore LIFO does not have constant
PCR. For LFU, consider the sequence o = pip5 ...p}_{prpr+1}" for an arbitrary integer n. We
have D(0) = 2 and LFU incurs a fault on all last 2n requests. Since we can select an arbitrarily
large n, LFU does not have a constant phase-cooperative ratio. O

2.2 Locality-cooperative ratio

It has been long well established that input sequences for paging show locality of reference in
practice. This means that when a page is requested it is more likely to be requested in the near
future. One apparent reason for the shortcomings of competitive analysis of paging algorithms is
that it does not incorporate locality of references assumptions. Several models have been suggested
for paging with locality of reference (e.g. [BIRS95a, IKP96, Tor98, AFG05, PS06, ADLOO07]). In
our case we need to relate badness of input sequences to their amount of locality. Unfortunately,
none of the above models give a quantitative measure of locality.

Using ideas from the characteristic vector introduced by Panagiotou and Souza [PS06], we
define a quantitative measure for non-locality of paging instances. Consider an input sequence o.
We call a request “non-local” if it is the first request to a page or at least k distinct pages have
been requested since the previous request to this page in 0. The non-locality of o, E(—U) , is defined
as the number of non-local requests in it. If a sequence has high locality of reference, there are not
many distinct pages between two consecutive requests to a page. Therefore there are not many
non-local requests and the sequence has small non-locality.

Definition 2 We say that an on-line paging algorithm A has locality-cooperative ratio o if there

is a constant B so that for every sequence o: A(o) < a x £(o) + 5. We define locality-cooperative
ratio of A, LCR(A), as the smallest number « so that A has locality-cooperative ratio .

First we show that LRU is an optimal algorithm according to locality-cooperative ratio.

Theorem 2 LCR(LRU)=1.



Proof: LRU always maintains in its cache the last k£ distinct pages that are requested. Therefore

a request is a fault for LRU if and only if it is a non-local request. Thus we have LRU (o) = ¢(0),
which implies LCR(LRU)=1. O

Lemma 1 For any on-line paging algorithm A, LCR(A) > 1.

Proof: Consider a sequence o of length n obtained by requesting an item that is not A’s cache
at each time. We have A(c) = n. On the other hand, each sequence of length n has non-locality

at most n. Therefore A(o)/l(c) > n/n = 1. O

The following lemma shows that marking algorithms are a reasonable choice in general, even if not
always optimal.

Lemma 2 Let A be a conservative or marking algorithm. We have LCR(A) < k.

Proof: Let o be an arbitrary sequence and let ¢ be an arbitrary phase of the decomposition of o.
We know that A incurs at most k faults on ¢. We claim that the first request of ¢ is always non-
local. If this is the first phase, then this is the first request to a page and is non-local by definition.
Otherwise, it should be different from k distinct pages that are requested in the previous phase.
Therefore it is not requested in the previous phase and at least k distinct pages are requested since
the last request to this page. Thus we have at most k faults and at least one non-local request in
each phase and this proves the desired upper bound. O

Other well known algorithms are not optimal under the locality-cooperative ratio.
Lemma 3 LCR(FIFO) =k.

Proof: LCR(FIFO) < k follows from Lemma 2. For LCR(FIFO) > k consider an arbitrary long
sequence o that consists of k+ 1 pages. o starts with o9 = p1p2...pkP1P2 - . - Pk—1Pk+1P1D2 - - - Pk—1-
After this initial subsequence, o consists of several blocks. Each block starts right after the previous
block and contains 2k — 1 requests to k distinct pages. Let p be the page that is not in the cache at
the beginning of a block B, ¢ be the page that is requested just before B, and P be the set of K —1
pages that are requested in the previous block and are different from ¢q. B starts by an arbitrary
permutation m of P, then has a request to page p, and finally ends by another copy of 7. It is easy
to verify that FIFO incurs a fault on the last k requests of each block while only the middle request
of every block is non-local. Therefore LCR(FIFO) > k. O

We can obtain a similar lower bound for FWF by considering the sequence obtained by sufficient
repetition of pattern pips...pkPrk+1PkPE—1 - - - P2-

Lemma 4 LCR(FWF) = k.
Lemma 5 LFU and LIFO do not have constant LCR.

Proof: Consider the sequence o = pip5 ...p¢_{prpr+1}" for some arbitrary integer n. LFU
incurs a fault on the last 2n requests of . Only the first request to a page is non-local in ¢ and
we have M = k+ 1. Since n can be selected arbitrary larger than k, LFU does not have constant
LCR. For LIFO, consider the sequence p1ps . . . pkpr+1{prpr+1}" for some arbitrary integer n. LIFO

incurs a fault on all requests of o, while we have ¢(c) = k+1. n can be arbitrary large and therefore



LIFO does not have constant LCR. O

LRU-2 is another paging algorithm proposed by O’Neil et al. for database disk buffering [OOW93].
On a fault, LRU-2 evicts the page whose second to the last request is least recent. If there are pages
in the cache that have been requested only once so far, LRU-2 evicts the least recently used among
them. O’Neil et al. provided experimental results supporting that LRU-2 performs better than LRU
in database systems. Recently, Boyar et al. theoretically analyzed LRU-2 using the competitive
ratio and the relative worst order ratio [BEL06]. The relative worst order ratio [BF03, BFL05]
allows for the direct comparison of on-line algorithms. Informally, for a given request sequence
the measure considers the worst-case ordering (permutation) of the sequence, for each of the two
algorithms, and compares their behaviour on these orderings. Boyar et al. proved that LRU-2 has
competitive ratio 2k, which is worse than FWF. Using the relative worst order ratio, they showed
that LRU-2 and LRU are asymptotically comparable in LRU-2’s favor.

In contrast, in a forthcoming paper in SODA’07, Angelopoulos et al. proved that LRU is the
unique optimal paging algorithm under the locality of reference assumptions [ADLOO7]. Therefore
when we have locality of reference, their results suggest that LRU performs better than LRU-2.

In what follows, we show that LRU-2 has locality-cooperative ratio k. Therefore although LRU-
2 is worse than LRU, it is not worse than FWF. This refinement of the competitive ratio using the
cooperative ratio is consistent with the results of [ADLOO07] which incorporates locality of reference,
but inconsistent with the results of [BEL06] which do not consider locality of reference.

Theorem 3 LCR(LRU-2) = k.

Proof:  [Lower bound] Let o be the sequence obtained by n repetitions of the block b =
P1D2 - - - Dk—1DkPkPk—1 - - - P1Pk+1DPk+1 for some arbitrary integer m. The first block of o contains
k 4+ 1 non-local requests. In each subsequent block, only two requests are non-local, namely the
first request to pj and the first request to pi1. Consider a page p; for 1 <7 < k—1 and a block b,
for 2 < j < n. There are at most k — 1 distinct pages between the first request to p; in b; and the
previous request to p; (which is in the previous block), since py, is not requested in this period. Thus
the first request to p; in b; is not non-local. Also pj41 is not requested between the two requests to
p; in bj. Therefore the second request to p; in b; is not non-local either. The first request to py and
the first request to py41 in b; are non-local. Thus we have ((0) =k+1+2(n —1). LRU-2 incurs
k + 1 faults in the first block and evicts p; on the first access to px11. At the beginning of each
subsequent block, p; is missing from the cache. Then for 1 < i < k — 1, LRU-2 incurs a fault on p;
and evicts p;41. On the first request to pg, LRU-2 incurs a fault and evicts pr_1. It has a hit on
the second request to pi. Then it faults on pg_1 and evicts pg_o, faults on pgp_o and evicts pg_s,. . .,
faults on py and evicts pp, faults on p; and evicts pg41, faults on pryq and evicts p;. Finally it has
a hit on the last request to pgy1. Thus it incurs 2k faults in each block other than the first one and
we have LRU-2(0) = k + 1 4 2k(n — 1). Therefore

LRU-2(c)  k+1+2k(n—1)
(o)  k+1+2(n-1)

As n grows, this ratio becomes arbitrary close to k and we have LCR(LRU-2) > k.

[Upper bound] Let o be an arbitrary sequence of page requests. Partition o into a set of consecutive
blocks so that each block consists of a maximal sequence that contains exactly one non-local request.
Note that each block starts with a non-local request and all other requests of the block are local.
We prove that LRU-2 incurs at most k£ faults in each block. Let Bi, Bs,..., B;, be the blocks of



0. B contains requests to one page and LRU-2 incurs one fault on it. Consider an arbitrary block
B; for i > 1, let p be the first request of B;, and let pi, po, ..., pr_1 be the & — 1 most recently
used pages before the block B; in this order. We have p ¢ P = {pi1,p2,...,pp_1}, because p is a
non-local request. We claim that each request of B; is either to p or to a page of P. Assume for the
sake of contradiction that B; contains a request to a page ¢ ¢ {p}U P and consider the first request
to ¢ in B;. All pages p,p1,p2,...,pr—1 are requested since the previous request to ¢. Therefore at
least k distinct pages are requested since the last request to ¢ and ¢ is non-local. This contradicts
the definition of a block. Therefore B; contains at most k distinct pages.

We claim that LRU-2 incurs at most one fault on every page ¢ in phase B;. Assume that this
is not true and LRU-2 incurs two faults on a page ¢q in B;. Therefore ¢ is evicted after the first
request to it in B;. Assume that this eviction happened on a fault on a page r and consider the
pages that are in LRU-2’s cache just before that request. Since r € {p} U P is not in the cache and
{p} U P| = k, there is a page s ¢ {p} U P in the cache. The last request to s is before the last
request to p,—1 before the block B;, while the second last request to g is after this request. There-
fore LRU-2 does not evict ¢ on this fault, which is a contradiction. Thus, LRU-2 contains at most
k distinct pages in each block and incurs at most one fault on each page. Hence, LRU-2(0) < km,

and LRU-2(o0) /4(0) < km /m = k. O

We can extend the definition of locality-cooperative ratio to randomized paging algorithms by
considering their expected cost. A randomized paging algorithm A has locality-cooperative ratio
a if there is a constant (3 so that the expected cost of A on each sequence o, denoted by E(A(0)),
is at most « X m + (6. While no deterministic on-line paging algorithm can have competitive
ratio better than k, there are randomized algorithms with better competitive ratio. The algorithm
MARK, introduced by Fiat et al. [FKL*91], is 2H-competitive, where Hj is the k' harmonic
number. MARK also reles on phases as defined above. On a fault, MARK evicts a page chosen
uniformly at random from among the unmarked pages. Let o be a sequence and 1, @o, ..., @, be
its phases. A page requested in phase ; is called clean if it was not requested in phase ¢;—1 and
stale otherwise. Let ¢; be the number of clean pages requested in phase ;. Fiat et al. proved that

the expected number of faults MARK incurs on phase ¢; is ¢;(Hy — He, + 1).
Theorem 4 LCR(MARK) = Hjy,.

Proof: [Lower bound] Consider the sequence o = {p1ps...ppPrk+1PkPk—1 - - - p2}" for some integer
n. o has 2n phases, each odd phase has the form pips...pr and each even phase has the form
Pk+1Dk - - -P2. Also each phase has only one clean page, namely its first request. Therefore we
have ¢; = 1 for 1 < ¢ < 2n and the expected number of faults MARK incurs on each phase is
1 x (Hy — Hy + 1) = H. Thus E(MARK (0)) = 2nHy. Only the first request of each phase is

non-local and we have ¢(c) = 2n. Hence E(MARK (o)) /¢(c) = 2nH}, / 2n = Hj,.

[Upper bound] Consider an arbitrary sequence o and let @1, p2,...,¢, be its phases. Sup-
pose that the it phase has ¢; clean pages. Therefore the expected cost of MARK on o is
S ci(Hy—He, +1) < >3 ¢iHg. The first request to a clean page in a phase is non-local
because it is not among the k distinct pages that are requested in the previous phase. Therefore

we have £(o) > > | ¢;. We have
E(MARK(0)) _ > iy cille _ Hp) i, ci
L(o) D i1 Ci D i1 Ci

Since this holds for every sequence o, we have LCR(M ARK) < H. O




3 Cooperative Analysis of List Acess Algorithms

In this section we apply cooperative analysis to the list update problem. Our results hold for both
standard and modified cost models. For the sake of simplicity, in this paper we only consider the
static list update problem. This means that we only have accesses and do not have any insert or
delete operations. In particular, we have a set S = {a1,aq,...,an} of m items which are initially
organized as a list Lo = (a1,a2,...,a,). Results of this paper can be easily extended to the
dynamic version of the problem.

We first propose a notion of badness for the list update problem. Several authors have pointed
out that input sequences of list update algorithms in practice show locality of reference [HHS85,
Sch98, BEY98] and indeed on-line list update algorithms try to take advantage of this prop-
erty [HH85, RWS94|. Therefore we can consider locality as a possible definition of goodness.
For a sequence o of length n, we define d,[i] for 1 <1i < n as either 0 if this is the first request to
item o[i], or otherwise, the number of distinct items that are requested since the last request to o[
(including o[i]). Now we define £(c), the non-locality of a sequences o, as £(c) = ", ;<. do[i]. We
also slightly modify the cost model: We do not charge algorithms for their first access to an item.
This causes only a constant change in the total cost. Now we are ready to define locality-cooperative
ratio.

Definition 3 We say that an on-line list update algorithm A has locality-cooperative ratio « if there

is a constant (8 so that for every sequence o, A(c) < a x £(c) + . We define locality-cooperative
ratio of A, LCR(A), as the smallest number « so that A has locality-cooperative ratio c.

Next we study the performance of on-line list update algorithms under this new measure. Observe
that if an on-line algorithm does not use paid exchanges (in the standard cost model), then it
incurs the same cost on each sequence in both models. Almost all well known on-line list update
algorithms, and in particular all algorithms we consider in this paper, do not use paid exchanges.
Therefore all our results apply to both models. Note that the performance of off-line algorithms
changes dramatically in the modified model and that is why no on-line algorithm has constant com-
petitive ratio in this model. However, we do not compare on-line algorithms to off-line algorithms
in our measure.

Theorem 5 For any on-line list update algorithm A, 1 < LCR(A) < m.

Proof: [Upper bound] Consider an arbitrary sequence o of length n. Since the maximum cost
that A incurs on a request is m, we have A(c) < n xm. We have d,[i] > 1 for at least n —m values

of 7 (at most m values can be 0). Thus ¢(c) > n — m. Therefore Al@) < nxm e right hand side

o) — n—m :
of this inequality can become arbitrary close to m by selecting a large enough n. Therefore we have
LCR(A) <m.

[Lower bound] Consider a sequence o of length n obtained by requesting the item that is in the
last position of list maintained by A at each time. We have A(c) > (n —m) x m. Also we have

dy]i] < m for 1 < i < n, because we have at most m distinct items. Therefore ¢(o) < n x m, and
A(o) (n—m)xm

— > . Since n can be arbitrarily larger than m, we get LCR(A) > 1. a

(o) = nxm

The following lemma shows that MTF is an optimal algorithm according to locality-cooperative
ratio.



Lemma 6 LCR(MTF) = 1.

Proof: The cost of MTF on the i request of o is d,[i]. Therefore MTF(0) =1, d[i] = £(0)
and LCR(MTF) = 1. o O

The following lemmas show that other well known list update algorithms do not have the optimal
locality-cooperative ratio.

Lemma 7 LCR(Transpose) > m/2.

Proof: Let £y = (a1, as,...,ay) be the initial list. Consider a sequence o of length n obtained
by several repetitions of pattern amam—1. We have Transpose(o) = (n — 2) x m. Also we have

dyli] =0 for 1 <i < 2and d,[i] =2 for 2 < i < n. Therefore {(c) = 32 = (n—2) x 2, and

Transpose(c) _ (n—2)xm

£(o) (n—2)x2

= m/2. Since o can be arbitrarily long, we get LC R(Transpose) > m/2. O

Lemma 8 LCR(FC) > ™t ~m/2.

Proof: Let Ly = (a1, a9,...,a,) be the initial list and n be an arbitrary integer. Consider the

following sequence: o = afajaj ...aj,. On serving o, FC does not change the order of items in its

list and incurs cost Zézl(n— 1) xi= % We have l(0) =(n—1)x1+(n—1)x1+4+---+

(n—1)x 1= (n—1) x m. Therefore L) — n=Dmmtl)/2 _ mtl Hepee LCR(FC) > . O
£(o) 2 2

n—1)m

Albers introduced the algorithm Timestamp (TS) and showed that it has competitive ratio 2 in
the standard cost model [Alb98]. After accessing an item a, TS inserts a in front of the first item
b that is before a in the list and was requested at most once since the last request for a. If there is
no such item b, or if this is the first access to a, TS does not reorganize the list.

Lemma 9 LCR(TS) > 73—7]:1 ~ 2.

Proof: Let £y = (ai1,ag,...,ay) be the initial list and n be an arbitrary integer. Consider the

sequence o obtained by the repetition of the block a2,a2, ;...a} n times. Let B be an arbitrary

block of o. Each item a is accessed twice in B. TS does not move a after its first access in B,
because each item has been accessed twice since the last access to a. After the second access, TS
moves the item to the front of the list. Therefore each access is to the last item of the list and TS
incurs a cost of m on each access. Considering the zero cost of first access to an item, we have
TS(o) =mxm+ (n—1)x2m x m =m?+ 2(n — 1)m?. Next we compute ¢(¢). The first and

second access to a in block B contributes m and 1 to ¢(o), respectively. Considering the special

case of the first block, we have ¢(0) = m+ (n—1) x m(m+1). Therefore T%)’) = mﬁit%?;i%il),
2m

which becomes arbitrarily close to =% as n grows. O
m+1

Observe that the adaptive measure by virtue of its finer partition of the input space resulted in
the separation of several of these strategies which are not separable under the classical model.
This introduces a hierarchy of algorithms better reflecting the relative strengths of the strategies
considered above. We can also extend the definition of the locality-cooperative ratio to randomized
list update algorithms by considering their expected cost. A randomized list update algorithm A
has locality-cooperative ratio « if there is a constant § so that the expected cost of A on each

sequence o, denoted by E(A(0)), is at most a x £(o) + (.



In the next theorem we show that, surprisingly and quite remarkably, certain randomized algo-
rithms which are superior to MTF in the standard model are not so in the adaptive case. Observe
that in the competitive ratio model a deterministic algorithm must serve a pathological, rare worst
case even if at the expense of a more common but not critical case, while a randomized algorithm
can hedge between the two cases, hence in the classical model the randomized algorithm is supe-
rior to the deterministic one. In contrast, in the adaptive model the rare worst case has a larger
badness measure if it is pathological, leading to a larger denominator. Hence such a cases can
safely be ignored, with a resulting overall increase in the measured quality of the algorithm. The
algorithm Bit, introduced by Reingold and Westbrook [RW90], is a simple randomized algorithm
that achieves competitive ratio 1.75 in the standard cost model, thus beating any deterministic
algorithm. Bit considers a bit b(a) for each item a and initializes these bits uniformly and inde-
pendently at random. Upon an access to a, it first complement b(a), then if b(a) = 0 it moves a to
the front, otherwise it does nothing.

Theorem 6 LCR(Bit) > 3%+ ~ 3/2.

Proof: Let Ly = (a1,a9,...,a,) be the initial list and n be an arbitrary integer. Consider the

sequence o = 1a,,,a,,,_q...Q . et 0; and 0;41 be TWO consecu ive accesses to a. er TWoO con-
2a2, ,...a2}" Let d o1 bet t to a. After t

secutive accesses to each item, it will be moved to the front of the list with probability 1. Therefore
a is in the last position of the list maintained by Bit at the time of request ¢; and Bit incurs cost
m on this request. After this request, Bit moves a to the front of the list if and only if b(a) is

initialized to 1. Since b(a) is initialized uniformly and independently at random, this will happen

with probability 1/2. Therefore the expected cost of Bit on ;7 is %(m + 1) and the expected

cost of Bit on o is m(™H) + (n — 1) x m(m + 2). We have (o) = m + (n — 1) x m(m + 1).

Therefore 242 — m(*g ) Hn— ) xm{m+ 257)

3m+1
(o) m+(n—1)xm(m+1) =

2m+2 as 7, grows.

, which becomes arbitrary close to

4 Conclusions

We propose cooperative analysis as a new framework for the analysis of on-line algorithms and apply
it to paging and list update problems. This model gives promising results when applied to two
well known on-line problems, paging and list update. The plurality of results shows that the new
model is effective in that we can readily analyze well known strategies. Using a finer, more natural
measure we separated paging and list update algorithms which were otherwise undistinguishable
under the classical model. We showed that, surprisingly, certain randomized algorithms which are
superior to MTF in the classical model are not so in the adaptive case. This confirms that the
ability of the on-line adaptive algorithm to ignore pathological worst cases can lead to algorithms
that are more efficient in practice. We obtained a hierarchy of strategies.
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