Computing Shortest Paths amidst Growing Discs in the Plane

Jur van den Berg*

Abstract

In this paper an algorithm is presented to find a short-
est path between two points in the plane amidst grow-
ing discs. That is, as the “point” moves through the
plane, the discs grow at an a priori known rate. We
present an O(n®logn) algorithm and a fast imple-
mentation. The problem is motivated from robotics,
where motion planning in dynamic environments is a
great challenge. Our algorithm can be used to gen-
erate paths in such environments guaranteeing that
they will be collision-free in the future.

1 Introduction

An important challenge in robotics is motion plan-
ning in dynamic environments. That is, planning a
path for a robot from a start location to a goal loca-
tion that avoids collisions with the dynamic obstacles.
In many cases the motions of the dynamic obstacles
are not known beforehand, so their future trajecto-
ries are estimated by extrapolating current velocities
(acquired by sensors) in order to plan a path [4].

A major problem is that the world is continuously
changing: If some obstacles change their velocities
(say at time t), a new trajectory should be planned.
However, there actually is no time for this, no mat-
ter how fast it can be done, because at the time the
calculation is finished the world has already changed,
and hence the computation is outdated. To overcome
this problem, often a fixed amount of time, say 7, is
reserved for planning. The planner then takes the ex-
pected situation of the world at time ¢ + 7 as initial
world state, and the plan is executed when the time
t + 7 has come. This scheme carries two problems:

e The predicted situation of the world at time ¢+ 7
may differ from the actual situation when some
obstacles change their velocities during planning.
This may result in invalid paths.

e The path the robot will follow between time ¢
and time t 4+ 7 is not guaranteed to be collision
free, because this path was computed based on
the old velocities of the obstacles.

In this paper we describe a technique to overcome
these problems. We present an algorithm that com-
putes a path from a start location to a goal location

*Department of Information and Computing Sciences, Uni-
versiteit Utrecht, berg@cs.uu.nl, markov@cs.uu.nl

Dagstuhl Seminar Proceedings 06421
Robot Navigation
http://drops.dagstuhl.de/opus/volltexte/2007 /873

Mark Overmars*

Figure 1: An environment with two dynamic obstacles
and a shortest path. The dark and light discs depict
the obstacles at t = 0 and ¢ = 1 respectively. A small
dot indicates the position along the path at t = 1.

that is guaranteed to be collision-free, no matter how
often the obstacles change their velocities in the fu-
ture. Replanning might still be necessary from time
to time, to generate trajectories with more appealing
global characteristics, but the two problems identified
above do not occur in this case. The first problem is
solved by incorporating all the possible situations of
the world at time ¢ 4+ 7 in the world model. As the
paths the algorithm computes are guaranteed to be
collision-free no matter what the dynamic obstacles
do, the second problem dissolves.

We assume that all obstacles and the robot are
modeled as discs in the plane, and that the robot and
the obstacles have a maximum velocity. The maxi-
mum velocity of the obstacles should not exceed the
maximum velocity of the robot. The problem is solved
in the configuration space, that is, the radius of the
robot is added to the radii of the obstacles, so that
we can treat the robot as a point.

Given the initial positions of each of the obstacles,
we model the regions in which the obstacles might
be as discs in the plane that grow over time. In this
space, we compute a shortest path (a minimum time
path) from a start configuration to a goal configura-
tion that is collision-free with respect to the grow-
ing discs. Computing shortest paths is a well studied
topic in computational geometry (see [5] for a survey).
However, the problem posed in this paper presents
some interesting challenges of its own. We present an
algorithm that runs in O(n?logn) time, where n is
the number of obstacles. Further, we created a fast



implementation that generates shortest paths at in-
teractive rates.

2 Problem definition

The problem is formally defined as follows. Given are
n dynamic obstacles Oy, ..., O, which are discs in the
plane. The centers of the discs at time ¢t = 0 are given
by the coordinates p1,...,pn € R?, and the radii of
the discs by r1,...,7, € RT. All of the obstacles
have the same maximal velocity, given by v € RT.
The robot is a point (if it is a disc, it can be treated
as a point when its radius is added to the radii of the
obstacles), for which a path should be found between
a start configuration s € R? and a goal configuration
g € R2. The robot has a maximal velocity V € R¥
which should be larger than the maximal velocity of
the obstacles, i.e. V > v.

As we do not assume any knowledge of the velocities
of the dynamic obstacles, other than that they have
a maximal velocity, the region that is guaranteed to
contain all the dynamic obstacles at some point in
time ¢ is bounded by {J; B(pi, ri+vt), where B(p,r) C
R? is an open disc centered at p with radius r. In other
words, each of the dynamic obstacles is conservatively
modeled by a disc that grows over time with a rate
corresponding to its maximal velocity (see Fig. 1 for
an example environment).

Definition 1 A point p € R? is collision-free at time
teR" if p & U, B(pi,ri + vt).

The goal of the problem is to compute the shortest
possible path 7 : [0,7] — R? between s and g (i.e. a
minimal time path) that is collision-free with respect
to the growing discs for all ¢ € [0, T].

3 Properties

Observation 1 A point p € R? that is collision-free
at time t = t/, is collision-free for all t :: 0 <t < ¢'.

Theorem 1 The velocity W of a shortest path
is constant and equal to the maximal velocity V.

Proof. Suppose 7 is a path to g, of which a sub-path
has a velocity smaller than V. Then this sub-path
could have been traversed at maximal velocity, so that
points further along the path would be reached at an
earlier time. Observation 1 proves that these points
are then collision-free as well, so also g could have
been reached sooner, and hence 7 is not a shortest
path. O

Theorem 2 A shortest path consists only of straight
line segments, and segments of a logarithmic spiral
incident to the boundary of a growing disc.

Figure 2: The three-dimensional space of the same
environment as Fig. 1.

Proof. Theorem 1 implies that the time it takes to
traverse a path is proportional to its length. Hence,
parts of the path in ‘open’ space can always be short-
cut by a straight-line segment. Only when the path
stays incident to the boundary of a growing disc, it is
not possible to shortcut. As both the velocity of the
path, and the growth rate of the disc are constant,
it is easily shown that such segments are part of a
logarithmic spiral [6]. O

Corollary 3 A shortest path is C'-smooth.

Proof. Suppose 7 is a path containing sharp turns.
Then these turns could be shortcut by a straight-line
segment, and hence 7 is not a shortest path. Thus, in
a shortest path the straight-line segments are tangent
to the supporting spirals of the spiral segments. [

4 Global Approach

As the discs grow over time, we can see the obsta-
cles as cones in a three-dimensional space (Fig. 2),
where the third dimension models the time. Each ob-
stacle O; transforms into a cone, whose central axis
is parallel to the time-axis of the coordinate frame,
and intersects the zy-plane at point p;. The maxi-
mal velocity v determines the opening angle of the
cone, and the initial radius r; determines the (nega-
tive) time-coordinate of the apex. The goal configura-
tion is transformed into a line parallel to the time-axis,
where we want to arrive as soon as possible (i.e. for
the lowest value of t). In this space it is easier to rea-
son about the algorithm we devise to find a shortest
path.

Our algorithm to solve the problem is based on a
Dijkstra’s shortest-path search [3], which starts from
the start configuration s. By Theorem 1, all straight-
line segments emanating from s of which the slope
equals the maximal velocity V', are possible initial
motions. This set is narrowed down by Corollary
3, which implies that only the segment leading di-
rectly to the goal, and straight-line segments tangent



to the cones are possibly part of the shortest path to
the goal. These segments may intersect other cones,
which would make them invalid, so only the collision-
free segments are considered. Each of them is put
into a priority queue Q with a key corresponding to
the t-value of its endpoint.

Now, the algorithm proceeds by handling the point
with the lowest t-value in the queue (the front ele-
ment of Q). This point is either the goal location,
in which case the shortest path has been found, or a
point on the surface of a cone. In this latter, more
general case we proceed similarly by finding straight-
line segments tangent to other cones and to the goal
configuration. However, as we are on the surface of a
cone, we first have to walk a piece of a spiral around
the cone such that the straight-line segment is tangent
to both the ‘source’ cone and the ‘destination’ cone.
For each cone, as well as for the goal configuration,
these segments are computed and if collision-free their
endpoints are inserted in Q.

This procedure is repeated until the goal configu-
ration is popped from the priority queue. In this case
the shortest path has been found, and can be read
out if backpointers have been maintained during the
algorithm. If the priority queue becomes empty, no
valid path exists.

5 Details

The algorithm described above will indeed find a
shortest path to the goal. However, in order to have
a finite bound on the running time we must define
‘nodes’ that can provably be visited only once in a
shortest path, such that we can do relaxation on them
as in Dijkstra’s algorithm.

Let us look at the following. A shortest path
consists of spiral segments on a cone’s surface and
straight-line segments that are bitangent to two cones.
There are four ways in which a segment can be bitan-
gent to a pair of cones: left-left, right-right, left-right
and right-left. In each of these cases, there is an infi-
nite number of bitangent segments with a slope corre-
sponding to the maximal velocity V', but the possible
tangency points at the source cone form a continuous
curve on the surface of the cone. We call such curve
a departure curve.

The departure curve may be cut into several
collision-free intervals by other cones that penetrate
the surface of the cone. These intervals form the
‘nodes’ in our search process. Only the path arriv-
ing earliest in an interval can contribute to a shortest
path. Other paths arriving later in the interval can-
not be part of the shortest path, because the path
arriving earliest in the interval can be extended with
a traversal along the interval to end up at the same
position (and time) as the path arriving later in the
interval. This argument applies if for the departure

Figure 3: An impression of an arrangement on the
surface of the cone. The thick lines are the departure
curves, of which one has a shadow interval (dashed).
The thin dashed lines are spiral segments that delimit
trapezoidal regions that have the same next departure
curve or collision (only the counter-clockwise spirals
are shown). The gray area depicts an intersection area
of another cone penetrating the surface, and cutting
several departure curves into two intervals.

curve holds that W < V. This is only the case
when all cones have the same opening angle. (This
explains our assumption that all discs have the same
maximal velocity v.) As the proof is rather technical,
we omit it here.

To identify these departure curve intervals, we com-
pute an arrangement [1] on the surface of each cone
of all departure curves on that cone (see Fig. 3). Ar-
eas on the surface on the cone that are intersected by
other cones are also inserted in this arrangement. The
intervals can then be extracted from the arrangement.

Each departure curve interval has two outgoing
edges. One —a spiral segment— to the next departure
curve on the source cone, and one —consisting of a bi-
tangent straight-line segment and a spiral segment— to
the first departure curve encountered on the destina-
tion cone that is associated with the departure curve.
For the first edge, which stays on the cone, we have
to determine the next departure curve that is encoun-
tered if we proceed by moving along the spiral around
the cone. This can be done using the arrangement, if
we have computed its trapezoidal map [1], where the
sides of the trapezoids are spiral segments.

For the second edge, which crosses to another cone,
we have to determine what the first departure curve
is we will encounter there. This is done using the
arrangement we have computed on that cone. Using a
point-location query, we can determine in what cell of
the arrangement the straight-line segment has arrived,
and using the trapezoidal map we know what the first
departure curve is we will encounter if we proceed



from there.

Finally, we must ascertain that each edge is
collision-free with respect to the other cones. Spiral
segments may collide with other cones if these pene-
trate the spiral’s cone surface. Since intersection areas
are incorporated into the arrangement, such collisions
are easily detected. Straight-line segments may col-
lide with any cone, so for each departure curve and
each cone, we calculate the ‘shadow’ interval this cone
casts on the departure curve, in which a departure will
result in collision. These shadow intervals are stored
in the arrangement as well. In Fig. 3, an impression
is given of how such an arrangement might look.

Theorem 4 The algorithm to compute a shortest
path amidst n growing discs runs in O(n3logn) time.

Proof. For each pair of cones there are O(1) depar-
ture curves. Since there are O(n?) pairs of cones,
there are O(n?) departure curves in total. Each of the
departure curves can be segmented into at most O(n)
intervals, as there are O(n) cones possibly intersecting
the departure curve. (Each cone can split the depar-
ture curve in at most two segments.) Hence, there
are O(n?®) departure curve intervals. Each departure
curve interval has O(1) outgoing edges, making a total
of O(n?) edges.

The complexity of Dijkstra’s algorithm is known to
be O(N log N + E) where N is the number of nodes,
and F the number of edges. Each edge requires some
additional work. Firstly, we have to find the depar-
ture curve interval in which it will arrive, by doing a
point-location query in the trapezoidal map of one of
the arrangements. This takes O(logn) time. Further,
we must determine whether an edge is collision-free.
Using the shadow intervals stored at the departure
curves, this can be done in O(logn) time as well.
Thus, as both N and E are O(n?), Dijkstra’s algo-
rithm will run in O(n®logn) time in total.

Computing the arrangements and their trapezoidal
maps takes O(n?) time per cone, as there are O(n)
departure curves on each cone, and O(n) intersection
areas of other cones. As there are O(n) cones, this
step takes O(n?) time in total. All the shadow inter-
vals can be computed in O(n?) time as well, as there
are O(n?) departure curves and O(n) cones.

Overall, we can conclude that our algorithm runs
in O(n?logn) time. O

6 Implementation

We created a fast implementation of the algorithm
presented above. Instead of using the arrangements,
we used some ad-hoc approaches for doing the elemen-
tary tests. These may have a slower asymptotic run-
ning time, but in practice they turned out to be fast.
For example, intersections between a spiral and a de-
parture curve cannot be found analytically, so we used

a combination of two approximate root-finding algo-
rithms [2]. The Dijkstra method was replaced by an
equally suited A*-method [4], that is faster in practice
as it focusses the search to the goal. The implementa-
tion runs at interactive rates even for many obstacles.
For example, a shortest path among 10 cones is com-
puted within 0.01 seconds on a Pentium IV 3.0GHz
with 1 GByte of memory. Figs. 1 and 2 were created
using our implementation.

7 Conclusion

In this paper we presented an algorithm for comput-
ing shortest paths (minimum time paths) amidst discs
that grow over time. A growing disc could model the
region that is guaranteed to contain a dynamic ob-
stacle of which the maximal velocity is given. Hence,
using our algorithm, paths can be found that are guar-
anteed to be collision-free in the future, regardless of
the behavior of the dynamic obstacles. As the regions
grow fast over time, a new path should be planned
from time to time —based on newly acquired sensor
data— to generate paths with more appealing global
characteristics. Our implementation shows that such
paths can be generated quickly. A great advantage
over other methods is that this replanning can be done
safely. The old path that is still used during replan-
ning is guaranteed to be collision-free. A requirement
though, is that the “robot” has a higher maximal ve-
locity than any of the dynamic obstacles.

A drawback of the method we presented is that a
path to the goal often does not exist. This occurs
when the goal is covered by a growing disc before it
can be reached. A solution to this problem would
be to find the path that comes closest to the goal.
It seems that this can easily be incorporated in our
algorithm, but it is still subject of ongoing research.

References

[1] M. de Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf. Computational Geometry, Algorithms
and Applications. Chapters 6 and 8. Springer-Verlag,
Berlin Heidelberg, 1997.

[2] R. L. Burden, J. D. Faires. Numerical analysis, 7th
edition. Chapter 2. Brooks/Cole, Pacific Grove, 2001.

[3] E. W. Dijkstra. A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1:269-271,
1959.

[4] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, 2006.

[5] J. S. B. Mitchell. Geometric shortest paths and net-
work optimization. In Handbook of Computational
Geometry, pages 633-701. Elsevier Science Publish-
ers, Amsterdam, 2000.

[6] E. W. Weisstein. Logarithmic Spiral. In MathWorld
— A Wolfram Web Resource. http://mathworld.wol-
fram.com/LogarithmicSpiral.html



