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Abstract

Mundici considered the question of whether the interpolant of two propositional formulas
of the form F → G can always have a short circuit description, and showed that if this is
the case then every problem in NP ∩ co-NP would have polynomial size circuits. In this
note we observe further consequences of the interpolant having short circuit descriptions,
namely that UP ⊆ P/poly, and that every single valued NP function has a total extension
in FP/poly. We also relate this question with other Complexity Theory assumptions.

1 Introduction

Craig’s Interpolation Theorem for propositional Logic [6] states that for every pair of
propositional formulas F, G such that F → G is a tautology, there is a formula H that
uses only the common variables from F and G satisfying F → H and H → G. Formula H
is called an interpolant for F and G.

The estimatation of the size of H with respect to the sizes of F and G, is an interesting
open question connected with the relationship between uniform and non-uniform complex-
ity classes. Mundici considered this question in [14, 15] and tried to estimate the size of
a circuit description for an interpolant of two formulas. He gave in [15] a lower bound for
the depth of such an interpolant circuit showing that there are infinitely many formulas
F → G for which a circuit description CH of any interpolant H must satisfy

depth(CH) > d +
1

3
log(

d

2
),

where d is the maximum of the circuit depths of G and H .
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Recently, several results bounding the size of the interpolants for a pair of formulas
F, G by the size of a formal proof of F → G in certain proof systems like Resolution or
Cutting Planes [13, 16, 4] have attracted again interest in this question.

For a given pair of formulas satisfying F → G, and with the set x = {x1, . . . , xm} of
common variables, let us denote by int(F, G) the size of the smallest Boolean circuit C
computing an interpolant for the formulas (that is, C has as input variables the set x of
common variables for F and G, and C computes an interpolation function for F → G).
The function δ measuring the largest size of a circuit computing an interpolant for formulas
of a certain length is defined as

δ(n) = max{int(F, G) | |F | = |G| = n}.

It is not hard to see that if every problem in NP has polynomial size circuits (NP ⊆
P/poly), then there is a polynomial p bounding the size of the function δ. Superpolynomial
(and even moderate polynomial) lower bounds for this function are therefore very hard to
prove. A different approach in order to give evidence that δ is not polynomially bounded
was taken by Mundici [14]. He considered the following hypothesis:

Hypothesis 1 (H1) There is a polynomial p such that for all n, δ(n) ≤ p(n).

Mundici proceeded to show that H1 implies unexpected results. He proved that if H1
holds, then the class NP ∩ co-NP has polynomial size circuits.

We obtain in this note further consequences of the assumption of this hypothesis, namely
that the class UP of problems in NP accepted by nondeterministic Turing machines with
unique accepting paths [18] has polynomial size circuits, and that every single valued NP
function has a total extension in FP/poly.

Observe that H1 assumes the existence of a single polynomial that bounds the size of
the interpolant for every possible pair of formulas. In order to deal with uniform complexity
classes and relate the size of the interpolants with other complexity theoretical assumptions,
we consider uniform families of (pairs of) Boolean formulas and assume the existence of
a polynomial bounding the size of the interpolant for each family (instead of a single
polynomial bounding all the interpolants, as it is done in H1). We consider the second
hypothesis:

Hypothesis 2 (H2) For every polynomial time uniform family of pairs of formulas F =
{Fn, Gn} such that for every n, Fn and Gn have n common variables and Fn → Gn is a
tautology, there is a polynomial p and a family H = {Hn} of circuits such that for every
n Hn is an interpolation circuit for Fn → Gn, with the set of common variables of Fn and
Gn as input gates, and with size |Hn| ≤ p(n).

Observe that it is possible to define different “uniform versions” of Mundici’s hypothesis
H1. The version considered [7] not only assumes that the interpolants have polynomial
size, but also that they are polynomial time computable. An alternative hypothesis whose
strength would lie between H1 and H2 can be defined by avoiding the requirement in H2
that forces the families of formulas to be polynomial time computable. We have choosen
H2 as the most adequate hypothesis since it the weakest hypothesis and relates better to
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other complexity assumptions. The corresponding results to the ones presented here can
be adapted to the other possible assumptions.

Clearly H1, implies H2, and the known consequences that follow from H1, follow already
from H2. In fact, as we show in Section 3, H2 is equivalent to the following two statements:

• for every pair of disjoint NP sets, there exist a family of polynomial size circuits
separating them,

• every single valued NP function can be extended to a total function in FP/poly.

Dahlhaus, Israeli and Makowski considered in [7] the interpolation problem for quanti-
fied Boolean formulas. Every pair of quantified Boolean formulas F, G satisfying F → G
has a quantifier free formula as interpolant, and one can also consider the size of its smallest
circuit description. It is not hard to see that for the case of existential Boolean formulas
F and ¬G, satisfying F → G, one can easily find a pair of quantifier-free formulas F ′, G′

(namely the same formulas without the quantifiers) satisfying F ′ → G′ and whose in-
terpolants are also interpolants for F → G. Because of this, H2 remains the same if we
consider existential Boolean formulas instead of quantifier-free formulas.

On the other hand, we show in Section 3 that H2 for universal formulas, that is, the
question of whether interpolants for such formulas have polynomial size, becomes equivalent
(in the non-uniform case) to the recently considered assumption Q′ [8]. Q′ is the question
of whether a single bit of an inverse of a polynomial time computable and onto function
can be computed in polynomial time. This question has been characterized in a variety of
ways [8], and is closely related to the Tautology Search Problem [10]. Assumption Q′ is
therefore, in a sense, dual to H2 since Q′ is equivalent to the statement that every pair
of disjoint co-NP sets is separable, while, as shown in Section 2, H2 is equivalent to every
pair of disjoint NP sets being separable.

In this note we use several well known complexity theory notions, like polynomial size
circuits, uniformity, or different complexity classes. For formal definitions we refer the
reader to the standard text books in the area.

2 Polynomial size interpolants imply UP ⊆ P/poly

Mundici proved in [14] that if H1 holds then the class NP ∩ co-NP has polynomial size
circuits. We show here that the same holds for UP, the class of NP problems accepted by
nondeterministic Turing machines with at most one computation path on every input. For
the proof we make use of the Cook formulas [5] for the languages in NP, in a similar way
as it was done in Mundici’s result.

Theorem 2.1 If H1 holds then UP ⊆ P/poly.

Proof. Let p be a polynomial and let A be a problem in UP computed by a non-
deterministic machine M in time p. For strings x of length n consider the Cook formula
Fn,0(x, y) expressing that y is an accepting path for x and its first bit is a 0. Define Fn,1(x, y)
annalogously. Since for every input there is at most one accepting path, we have that

Fn,1(x, y) → ¬Fn,0(x, z)
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is a tautology. By the hypothesis there is a small circuit description Cn for an interpolant
of the formulas. In case x ∈ A, Cn(x) outputs the first bit of the unique accepting path of
x.

In the same way, we can define a pair of Boolean formulas F i
n,1(x, y), F i

n,0(x, y), for every
position i in an accepting path for x, 1 ≤ i ≤ p(n). By H1 there are circuit descriptions Ci

n

of polynomial size computing the i − th bit of the unique accepting path. The circuits for
all the positions i can be combined into a single circuit of polynomial size in n. If x ∈ A
this circuit computes the accepting path of x.

The final circuit accepting A needs one more modification. It works as follows: on input
x, it uses the interpolation circuits to compute a string y and outputs a 1 if and only if
Fn(x, y) holds (y is an accepting path for x). This last check is necessary in order to detect
strings that do not belong to A, since in this case we do not have any control over the
values produced by the interpolants. 2

It is an open problem whether it also follows from H1 that the (probably) larger com-
plexity class FewP [1, 12] has polynomial size circuits.

Later in this section, we show that H1 implies that every pair of disjoint NP sets can
be separated by polynomial size circuits. This, together with the result of [9] showing that
if disjoint NP sets have separator circuits, then UP ⊆ P/poly, constitutes an alternative
proof for the previous result.

In order to be able to compare the question of whether interpolants of propositional
Boolean formulas have always short circuit description, with other standard (uniform)
complexity theory assumptions, we condidered in the Introduction a uniform version of
Mundici’s hypothesis, H2. We show next that H2 can be exactly characterized in terms
of separator circuits for NP problems, and single valued NP functions. Let us define these
concepts formally.

Definition 2.2 Let A, B ⊆ Σ∗ be two sets. We say that A and B have polynomial size
separator circuits if there is a polynomial p and a family of Boolean circuits C such that for
every n ∈ IN, and for every x ∈ Σn, if x ∈ A then Cn(x) = 1 and if x ∈ B then Cn(x) = 0.

Obviously, only disjoint sets A and B can have separator circuits.

Definition 2.3 The class of single valued NP functions, NPSV, is formed by the functions
f : Σ∗ −→ Σ∗ (not necessarily total), for which there is a nondeterministic Turing machine
with output, M , such that for every x, M(x) has accepting computations (with output) iff
f(x) is defined, and in case that f(x) is defined, all the accepting computations produce the
same output.

The assumption H2 can now be characterized in different ways.

Theorem 2.4 The following statements are equivalent:

1. H2.

2. Every disjoint pair of NP sets has polynomial size separator circuits.
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3. Every function in NPSV has a total extension in FP/poly.

Proof. 1 ⇒ 2: This proof is again based on Mundici’s idea of considering the
Cook’s formulas for NP problems. Let A0 and A1 be two disjoint NP sets accepted
by the nondeterministic polynomial time machines M0 and M1. For every n ∈ IN, let
Fn,a(x, y) (for a ∈ {0, 1}) be the propositional formula expressing that y is an accepting
path for the machine Ma on input x, (|x| = n). Since M0 and M1 accept disjoint sets,
Fn,1(x, y) → ¬Fn,0(x, z) holds. Consider the families of pairs of formulas {{Fn,1, Fn,0}. By
the assumption, these formulas have interpolation circuits Cn of polynomial size. The cir-
cuits are separators for A0 and A1 since for every n ∈ IN, and for every x ∈ Σn, if x ∈ A1

then Cn(x) = 1 and if x ∈ A0 then Cn(x) = 0.

2 ⇒ 3: Let f be a function in NPSV, computed by a nondeterministic machine M
being time bounded by polynomial p. In order to have the same length for the value of f
for every x of a given length, define f ′(x) as the string f ′(x) = 0p(|x|)−|f(x)|1f(x) in case f(x)
is defined. In case f(x) is not defined, then neither f ′(x) is defined. Clearly a polynomial
size circuit can extract from f ′ the value of f . Define for a ∈ {0, 1} the two disjoint NP
sets

Aa = {〈x, i〉 | 1 ≤ i ≤ p(|x|) + 1, and the i − th bit of f ′(x) is a}.

In case f(x) is defined, a separator circuit Cn for A1 and A0, on input 〈x, i〉 computes
the i-th bit of f ′(x). We can use this separator circuit to construct another one that on
input x computes in parallel the values Cn(〈x, i〉) for all the possible values of i, obtaining
f ′(x), and then extracts from this the correct value for f(x). The new circuit still has
polynomial size. In case f(x) is not defined, the circuit computes some value (depending
on the separator) for the total extension of f .

3 ⇒ 1: Let F = {Fn, Gn} be a polynomial size families of formulas satisfying that for
every n, Fn(x, y) → Gn(x, z) is a tautology and Fn and Gn have the common set of n
variables x. Define the function f as:

f(x) =







1 if for some y, F (x, y) holds
0 if for some z, ¬G(x, z) holds
undefined otherwise.

Observe that f is well defined by the logical relation between F and G, it can only take
one value. Also, since the families of formulas are polynomial time uniform, strings y and z
have polynomial length with respect to the length of x. Because of this, f ∈ NPSV. A total
extension for f (taking only values 0 and 1) is an interpolant for the families of formulas;
because if Fn(x, y) holds, then f(x) = 1, and if f(x) = 1, then Gn(x, z) holds. 2

Notice that the known conclusion, NP ∩ co-NP ⊆ P/poly and UP ⊆ P/poly, following
from Mundici’s assumption that there is a polynomial bounding the size of the interpolants
of all the propositional formulas, can already be derived from H2.

3 Interpolants and the hypothesis Q′

Dahlhaus et al. consider in [7] the interpolation problem for quantified Boolean formulas.
Following their notation, let us define Σ(0) = Π(0) as the class of quantifier free Boolean
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formulas. For k ≥ 1 let Σ(k) be the set of all the formulas of the form ∃x1∃x2 . . .∃xmF
with F ∈ Π(k−1), and let Π(k) be the class of formulas of the form ∀x1∀x2 . . .∀xmF with
F ∈ Σ(k − 1). For every pair of quantified Boolean formulas F, G satisfying F → G with
set x of common free variables, there is a quantifier free formula H that is an interpolant
for F and G and whose variables are those in x.

Dahlhaus et al. consider bounds on the size of the interpolants for certain classes of
quantified formulas.

Hypothesis 3 (HΣ(k)) For every polynomial size family F of pairs of formulas {Fn, Gn}
such that for every n, Fn,¬Gn ∈ Σ(k), Fn and Gn have n common variables and Fn → Gn

is a tautology, there is a polynomial p and family H of circuits such that for every n Hn is
an interpolation circuit for Fn → Gn, with the set of common variables of Fn and Gn as
input gates, and with size |Hn| ≤ p(n).

From the results in [7] follows that for k ≥ 2 HΣ(k) is equivalent to HΠ(k) and to NP
having polynomial size circuits. It follows also that the hypothesis for quantifier free for-
mulas, H2, is equivalent to the hypothesis for existential formulas, HΣ(1). We consider here
the only missing case, the interpolation of universal formulas, and show that the hypoth-
esis HΠ(1) is equivalent (in the non-uniform case) to the following complexity assumption,
denoted Q′ in [8]:

Q′: For all polynomial time computable onto functions f , there exists a poly-
nomial time computable function g that computes the first bit of f−1.

Observe that Q′ is a uniform assumption while HΠ(1) is non-uniform. In order to compare
both hypothesis, we consider the non-uniform version of Q′, that is, we allow function g to
be computable by a family of polynomial size circuits G. We will denote the non-uniform
version of Q′ by nQ′.

Theorem 3.1 HΠ(1) is equivalent to nQ′.

Proof. In [8] it is proved that nQ′ is true if and only if for every polynomial time
nondeterministic Turing machine M accepting Σ∗, there is a family G of polynomial size
circuits, that for every x, G|x|(x) computes the first bit of an accepting computation of
M(x). We show that HΠ(1) holds iff this statement is true.

From left to right, let M be a nondeterministic polynomial time Turing machine ac-
cepting Σ∗. By Cook’s Theorem, we can construct two families of formulas F0, F1 such
that for a given length of x, n,(a ∈ {0, 1}), Fn,a(x, y) is true iff

y is a rejecting path for x or y starts with bit a.

Consider the universal formulas ∀yFn,a(x, y) (for a ∈ {0, 1}). Since M accepts Σ∗, the
expression ∀yFn,1(x, y) → ¬∀zFn,0(x, z) is a tautology (this expression means that there is
some accepting path for x starting by 1 or there is an accepting path starting by 0). By
the hypothesis there is a circuit description Cn of an interpolant for these formulas, with
polynomial size with respect to n. It is easy to check that if Cn(x) outputs bit a then x
has an accepting path starting with a.
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For the other direction, let F = {Fn(x, y), Gn(x, z)} be a family of formulas such that
for every n the expression ∀yFn(x, y) → ∃zGn(x, z) is a tautology. Consider the following
nondeterministic Turing machine M :

input x;
guess a ∈ {0, 1};
if a = 0 then guess y

if ¬F (x, y) then accept;
else guess z

if Gn(x, z) then accept
end.

M accepts Σ∗ since for every x there are strings y, z such that ¬Fn(x, y) or Gn(x, z)
holds. A circuit computing the first bit of an accepting path for M on an input x is an
interpolant for the formulas. Observe that if ∀yFn(x, y) holds, then there are only accepting
paths starting by a 1, and some accepting path starts by a 1, then ∃zGn(x, z) holds.

2

Fenner et al. give in [8] several characterizations of Q′. Particularly interesting is that
Q′ is equivalent to every pair of disjoint co-NP sets being polynomial time separable. Recall
from Theorem 2.4 that H2 is equivalent to every pair of disjoint NP sets having separator
circuits of polynomial size. This shows that H2 and Q′ are dual assumptions.

The diagram summarizes the situation.
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NP ⊆ P/poly

UP ⊆ P/poly NP ∩ co-NP ⊆ P/poly

H2 nQ′

Disjoint NP sets are P/poly separable Disjoint co-NP sets are P/poly separable

4 Discussion and open problems

As observed by Mundici, the question of whether Craig Interpolats have polynomial size
is closely related to the existence of polynomia size circuits for NP. As we have mentioned
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above, a superpolynomial lower bound on the interpolant size implies that NP does not
have polynomial size circuits. A further relationship between the size of Boolean circuits
for NP problems, and the size of interpolation circuits arises when we restrict ourselves
to monotone circuits computing interpolants. Based on the results on exponential lower
bounds for monotone circuits for the Clique function [17, 2] it can be observed that there are
pairs of propositional formulas with monotone interpolants for which the smallest monotone
circuit description must have exponential size. In order to see this, consider pairs of formulas
Fn,k(x, y) and Gn,k(x, z) expressing that a graph Gx (encoded as adjacency matrix in the x
variables) is a k clique (respectively a (k−1)-coloring), and the variables y and z encode a
solution to the problem. Clearly we have that Fn,k(x, y) → ¬Gn,k(x, z) is a tautology and
therefore interpolants for F and ¬G depending only on the variables x exist. The formulas
have also monotone interpolants (for example the function Cliquen,k). By the lower bound

results in [2], for k = n2/3, any monotone circuit computing an interpolant for Fn,k → Gn,k

has exponential size. The existence of formulas Fn,k and Gn,k follow already from Cook’s
Theorem and it is not hard to construct explicitely such formulas of size O(n4) for any value
of k. (Similar families of formulas are given in [3]). From this fact and the monotone lower
bound result from Alon and Boppana, it follows that any monotone circuit computing an
interpolant for the formulas Fn,k(x, y) and, Gn,k(x, z) for k = n2/3 must have size 2Ω(mǫ)

for ǫ < 1/12, where m is the sum of the sizes of Fn,k and Gn,k.
Superpolynomial lower bounds on the size of circuits computing NP functions are only

known for the monotone case. On the other hand, it is well known that the existence of
polynomial size circuits for NP imply the collapse of the Polynomial Time Hierarchy [11].
It is an open question whether from the assumption H2 follows also a collapse of PH. In
[8] the same open question for the dual hypothesis Q′ is stated. It is also open whether the
simulataneous assumption of both hypothesis H2 and Q′ imply a collapse of PH.
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