
XPathMark

Functional and Performance Tests for XPath

M. Franceschet

Department of Mathematics and Computer Science
University of Udine

Abstract. We present a major revision of the XPath benchmark known
as XPathMark [1]. The new version splits into a functional test over a
small educational document and a more elaborated performance test
over XMark [2] documents. We conclude by sharing with the reader our
experience on running XPathMark on some popular XSLT/XQuery pro-
cessors.

1 Functional and Performance Tests for XPath

The new release of XPathMark [3] consists of a functional and performance test
for the XPath language version 1.0.

1.1 XPath Functional Test

The main goal of XPath Functional Test (XPath-FT) is testing completeness
(which features of the language are supported?) and correctness (which features
of the language are correctly implemented?) of an XML query processing system
with respect to XPath 1.0.

XPath-FT contains several groups of queries each covering a different func-
tional aspect of the language including navigational axes, filters, node tests,
operators and functions. The queries are interpreted over a small educational
document and each query is accompanied with the correct answer. The skeleton
of the target XML document, depicted in Figure 1, rapresents the English al-
phabet in such a way that the preorder traversal of the XML tree corresponds
to the English alphabet sorted from A to Z. As an example of the query set,
we report four queries in the axes group along with their answers in graphical
format (see red nodes in Figure 2):

A3 The descendant nodes of L (Answer: Figure 2 top-left)

//L/descendant::*

A5 The ancestor nodes of L (Answer: Figure 2 top-right)

//L/ancestor::*

A9 The following nodes of L (Answer: Figure 2 bottom-left)

Dagstuhl Seminar Proceedings 06472
XQuery Implementation Paradigms
http://drops.dagstuhl.de/opus/volltexte/2007/892

A

B E X

C D F I L R U

G H J K M N Q

O P

S T V W

Y Z

Fig. 1. The alphabet tree

//L/following::*

A10 The preceding nodes of L (Answer: Figure 2 bottom-right)

//L/preceding::*

A

B E X

C D F I L R U

G H J K M N Q

O P

S T V W

Y Z

A

B E X

C D F I L R U

G H J K M N Q

O P

S T V W

Y Z

A

B E X

C D F I L R U

G H J K M N Q

O P

S T V W

Y Z

A

B E X

C D F I L R U

G H J K M N Q

O P

S T V W

Y Z

Fig. 2. Query answers (red nodes)

The full list of queries along with their answers (in textual format and, when
possible, in graphical format also) is accessible at the XPathMark website [3].
Incidentally, XPath-FT can also be used as an educational tool to learn XPath,
possibly accompanied with a XPath visualizer like BaseX (http://www.inf.
uni-konstanz.de/dbis/research/basex).

1.2 XPath Performance Test

XPath Performance Test (XPath-PT) aims at investigating the performance
of an XML query processor with respect to XPath 1.0 in terms of time spent

2

site

regions

africa asia australia europe namerica samerica

item

id name description incategory

item0 category

category0

site

categories catgraph

category

id name description

category0

edge

from to

category0 category0

site

people

person

id name emailaddress watches

person0 watch

open_auction

open_auction0

site

open_auctions

open_auction

id bidder itemref seller annotation

open_auction0 personref

person

person0

item

item0

person

person0

author

person

person0

site

closed_auctions

closed_auction

seller buyer itemref annotation

person

person0

person

person0

item

item0

author

person

person0

Fig. 3. XMark document components

3

to execute a query. Queries of the test are divided into groups according to
the intrinsic computational complexity of the corresponding evaluation problem.
They are defined to challenge both data and query scalability and include some
instances of transitive closure of path expressions. In the following we highlight
the main features of XPath-PT:

1. queries simulate realistic query needs of a potential user of an auction site.
They have a natural interpretation over documents generated with the pop-
ular XML benchmark XMark [2]. XMark provides an efficient and easy to
use data generator. It generates scalable documents modeling an Internet
auction website with different components like bidders, items, interest cat-
egories, open and closed auctions. The documents contain both data- and
text-centric XML fragments. A simplified version of the structure of the
different components of an XMark document is depicted in Figure 3;

2. queries are divided into groups according to the intrinsic computational com-
plexity of the corresponding evaluation problem. XPath language can be
stratified in a number of fragments for which different complexity bounds
are known [4]. Comparing the theoretical computational complexity of the
query evaluation problem with the actual amount of resources consumed
during query evaluation might be, at least, a stimulating and instructive
exercise;

3. queries are defined to challenge data scalability of the XML processing sys-
tem, that is the performance of the system as the data complexity (document
size) grows. In particular, the designed queries talk about document sections
(like open and closed auctions, items, people, descriptions) that become big-
ger when the XMark document scaling factor increases. Moreover, the results
of the queries are small compared to the size of the target document. This
avoids that the time taken to serialize the results (that may be relevant)
obfuscates the pure query processing time;

4. some of the queries are defined to challenge query scalability of the XML
processing system, that is the performance of the system as the query com-
plexity grows. These queries are parametric with respect to a given factor
that influences the query complexity, like length or nesting degree of predi-
cates, and for each parametric query a generator is provided;

5. finally, the test includes some instances of queries using transitive closure
of path expressions. A typical example of query using transitive closure is
reachability: find all nodes that are reachable from a given node trough an
arbitrary path in a graph. Transitive closure of path expressions is beyond
the expressive power of XPath. The addition of transitive closure to XPath
has been investigated from a theoretical point of view in [5, 6]. However,
a practical counterpart consisting of different approaches, implementations,
and optimizations to tackle the intrinsic complexity of transitive closure in
XPath is still missing, and a benchmark might help to start this endaveour.

XPath-PT consists of six groups of queries. Each group contains queries belong-
ing to a particular XPath language. The six XPath languages form an inclusion

4

chain in terms of expressivity and complexity. In the following we describe the
XPath languages that we consider and give corresponding examples taken from
XPath-PT. The full list of queries, along with generators for parametric ones,
can be found at the XPathMark website [3].

XPath-A
This fragment contains so-called unary tree pattern queries. These queries
use only child and descendant axes, node tests equal to * or to a tag name,
and filters (predicates). Conjunctive and disjunctive Boolean operators are
allowed, but negation is not. Relational and arithmetic operators and func-
tions are disallowed. Some examples follow:

A4 Closed auctions with an annotation containing a keyword

/site/closed auctions/closed auction

[annotation/description/text/keyword]

A6 People that have declared both gender and age

/site/people/person[profile/gender and profile/age]/name

XPath-B
This fragment contains so-called core or navigational XPath queries. This
fragment extends XPath-A by allowing all XPath axes and negation. Some
examples follow:

B3 Bidders except the last one of each open auction

/site/open auctions/open auction/bidder[following-sibling::bidder]

B8 Open auctions with exactly one bidder

/site/open auctions/open auction[bidder and

not(bidder/preceding-sibling::bidder)]

B13(i) Parametric query on query length (meant to challenge query scala-
bility)

//keyword(/ancestor::parlist/descendant::keyword)i for i ≥ 0, where
pathi means path repeated i times.

XPath-C
This fragment contains relational XPath queries. This fragment extends
XPath-B by allowing all relational operators (=, !=, >, <, >=, <=) and the
id() function. Some examples follow:

C3 People with an income equal to the current price of some item

/site/people/person[profile/@income =

/site/open auctions/open auction/current]/name

C4 People that are sellers in an auction that they are watching

/site/people/person

[watches/watch/id(@open auction)/seller/@person = @id]/name

5

C8(i) Categories that are reachable from a given category in i steps in the
category graph, for i ≥ 1 (parametric query on nesting degree of filters. It is
meant to challenge query scalability.)

id(Y(i))/name for i ≥ 1, where:

Y(1) = /site/catgraph/edge[@from = "category0"]/@to

Y(i) = /site/catgraph/edge[@from = Y(i-1)]/@to for i ≥ 2

XPath-D
This fragment contains arithmetic XPath queries. This fragment extends
XPath-C by allowing all arithmetic operators (+, -, *, div, mod) and func-
tions sum() and count(). Some examples follow:

D2 The number of pieces of prose contained in the document

count(//text) + count(//bold) + count(//emph) + count(//keyword)

D5 Open auctions with an average increase greater than the double of the
initial price

/site/open auctions/open auction[bidder and

(sum(bidder/increase) div count(bidder)) > 2 * initial]

XPath-E
This fragment contains all XPath 1.0 queries. In particular, it extends XPath-
D by allowing all functions (like position() and contains()). Some exam-
ples follow:

E1 Open auctions whose increase in the median position is contained between
the first and the last increase of the auction

site/open auctions/open auction[number(bidder[1]/increase) <

number(bidder[floor((last() + 1) div 2)]/increase) and

number(bidder[floor((last() + 1) div 2)]/increase) <

number(bidder[last()]/increase)]

E5 Items that have at least 100 items following them in the document and
at least 100 items preceding them in the document

/site/regions/*/item[preceding::item[100] and

following::item[100]]/name

E6 Items whose description contains the name of the item

/site/regions/*/item[contains(description, name)]/name

E7 Items whose description contains the word passion followed by the word
eros followed by the word dangerous

/site/regions/*/item[

contains(substring-before(description, "eros"), "passion") and

contains(substring-after(description, "eros"), "dangerous")]/name

6

XPath-F
This fragment contains all regular XPath queries. It extends XPath-E with
idref() and closure() functions. While idref(), the natural counter-
part of id(), is defined in XPath 2.0, closure() is new to XPath and
XQuery (though it has been added to EXSLT (http://www.exslt.org), an
extension of XSLT). The closure function takes two arguments: closure(C,
path), where C is a node set and path is a location path in XPath 1.0 (an ex-
pression that computes a node set). The closure function computes the tran-
sitive closure of path starting at C, that is, the set of nodes that are reached
in one or more applications of path setting C as the initial context set (see
Section 1.3 for the precise definition). For instance, closure(/, child::*)

returns all descendants of the root, while closure(/, child::a) returns
all descendants of the root that can be reached trough a path labelled with
a. Some examples follow:

F1 Bidders such that there exists a following sibling bidder with increase
bigger than 10 and for all bidders in between the increase is smaller or equal
than 10

//bidder[number(increase) <= 10 and (BIG or closure(.,SMALL)/BIG)],
where

BIG = following-sibling::bidder[position()=1 and number(increase)

> 10]

SMALL = following-sibling::bidder[position()=1 and number(increase)

<= 10]

F3 Paragraph items that contain a keyword nested under an odd number of
paragraph items

//listitem[text/keyword or

closure(.,parlist/listitem/parlist/listitem)/text/keyword]

F8 Categories that are reachable from a given category through an arbitrary
path in the category graph

id(//category[@id="category0"]/@id/

closure(.,idref(.)[name() = "from"]/../@to))/name

1.3 A Note on Transitive Closure

In this section we formally define the notion of transitive closure and describe
an algorithm to compute it. Let D be a finite domain of cardinality n and
Φ : 2D → 2D be a function from the power set of D to the power set of D. We
assume that Φ satisfies the following decomposition property. For any subset X

of D:

Φ(X) =
⋃

x∈X

Φ({x})

7

We define Φ0(X) = X and, for i ≥ 1, Φi+1(X) = Φ(Φi(X)). The transitive
closure of Φ is the function Φ+ : 2D → 2D such that:

Φ+(X) =

∞⋃

i=1

Φi(X)

The question is: given an algorithm to compute Φ, what is an algorithm to
compute the transitive closure Φ+ of Φ? Before giving an answer to this question,
let’s link it to XPath. A location path π in XPath can be interpreted as a function
Φπ that takes a set of nodes X as input and outputs the result of the evaluation
of π at X . Notice that, by definition of the semantics of XPath [8], Φπ satisfies
the decomposition property stated above. The result of the closure function
closure(X, π) is in fact the value of Φ+

π (X).
Let us define

Φi(X) =

i⋃

j=1

Φj(X)

The following two trivial observations hold for any Φ (even without assuming
the decomposition property):

(OBS1) There exist 1 ≤ i < k ≤ 2n such that Φk(X) = Φi(X).

That is, after at most 2n steps (the number of distinct subsets of the domain
D), Φ generates a result that was already generated in the past. It follows that
there is k ≤ 2n such that Φ+(X) = Φk(X). This induces an (expensive) algorithm
to compute Φ+(X) in the general case. Moreover,

(OBS2) There exists 2 ≤ k ≤ n such that Φk(X) is contained in Φk−1(X).

That is, after at most n steps (the number of distinct elements of the domain
D), Φ generates a result that does not contains any new element. The worst-case
(k = n) happens when X is a singleton and each iteration of Φ adds a different
element.

Exploiting the decomposition property of Φ, it is not difficult to show the
following two observations:

(OBS3) If, for some k ≥ 2, it holds that Φk(X) is contained in Φk−1(X),
then, for each i > k, it holds that Φi(X) is also contained in Φk−1(X).

In other words, if Φk(X) does not produce any new element, then no further
application of Φ will produce any new element. Putting together (OBS2) and
(OBS3) it follows that there is k ≤ n such that Φ+(X) = Φk(X). This induces
an algorithm to computes Φ+(X) that terminates in at most n applications of
Φ (assuming the decomposition property for Φ). Furthermore:

(OBS4) For i ≥ 1 it holds that:

Φi(X) = Φ(X) ∪
i⋃

j=2

Φ(Φj−1(X)) = Φ(X) ∪
i⋃

j=2

Φ(Φj−1(X) \ Φj−2(X))

8

It follows that we can compute each iteration of Φ only on the new elements,
that is on the elements that have been discovered during the last iteration. This
induces an optimization in the previous algorithm since, instead of computing
Φj(X) as the application of Φ to the last result Φj−1(X), we can compute it as
an application of Φ to the smaller set Φj−1(X) \ Φj−2(X).

The induced optimized algorithm to compute the transitive closure of the
function Φ can be encoded as follows:

closure(X,Φ)
result := ∅
new := X

while new 6= ∅ do
current← Φ(new)
new ← current \ result

result← result ∪ new

end while
return result

If the cost of computing Φ is C, then the worst-case complexity of the above
algorithm is O(n ·C). For instance, we know that it is possible to evaluate Core
XPath (XPath-B) queries in time O(n ·k), with n the data complexity and k the
query complexity. It follows that queries in Core XPath plus transitive closure
can be solved in time O(n2 · k) in the worst-case.

It is worth noticing that the above algorithm for transitive closure can be
easily encoded in a user-defined recursive function in XQuery (see XPathMark
website [3] for an encoding of such a function). In this way it is possible to exploit
an XQuery processor to compute transitive closure in XPath (and hence to run
XPath-F fragment of XPath-PT).

2 Testing Experience

In this section we would like to fully report our testing experience with XPath-
Mark. Most of experimental papers only report the last part of their testing
experience consisting of some of the experimental results and possibly their in-
terpretation. This is done mostly for space reasons. However, we are aware that
testing takes a large portion (sometimes the majority) of the time spent to pro-
duce the whole paper. Moreover, the technical details involved in testing might
be relevant to other researchers in order to reproduce and extend the experi-
ments, or to perform similar testing. For these reasons, we decided to present
in this section our full testing experience with XPathMark, from setting of the
experimental framework to interpretation of the experimental results.

We ran both XPath Functional and Performance Tests on the following XML
query processors:

1. XSLTproc (http://xmlsoft.org/XSLT) version 10114, an XSLT processor
developed in C for the Gnome project.

9

2. Xalan-Java (http://xml.apache.org) version 2.7.0, an XSLT processor wit-
ten in Java from The Apache Software Foundation.

3. SaxonB (http://saxon.sourceforge.net) version 8.8J, an XSLT and XQuery
processor written in Java from Saxonica of Michael Kay.

4. Qizx/open (http://www.axyana.com/qizxopen) version 1.1, an XQuery pro-
cessor witten in Java from Axyana Software.

All the tested processors support XPath 1.0 and are freely available on the
Internet. We ran the tests on an Intel Pentium III with CPU at 1 GHz, 256
MB of RAM, running Linux version 2.6.11-1.1369 FC4. We took advantage of
XCheck [9], a benchmarking platform for XML query engines. This saved much
time by automatizing a lot of tedious and repetitive tasks. If you want to run
yourself the tests or extend them, you may download XCheck-FT and XCheck-
PT archives from XPathMark website, containing XPath-FT and XPath-PT
tests in XCheck format. They include processor adapters, XML documents,
queries, and the XCheck experiment document that can be integrated with
XCheck software to automatically run the tests. You can easily extend the tests
to other processors, documents, and queries.

It is well noticing that our goal here is not to show that one of the above
engine is better than the other (even though, from our investigation, the reader
can draw his or her own conclusions). The aim is to give an instance of how the
proposed tests for XPath might be used to better understand the functional and
performance behavior of XML query processors.

2.1 Experimenting with XPath Functional Test

We report here about our outcomes for XPath Functional Test. For Xalan and
XSLTproc we prepared an XSLT version of each query as follows:

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<answer><xsl:copy-of select="query/is/here"/></answer>

</xsl:template>

</xsl:stylesheet>

For SaxonB and Qizx/open we prepared an XQuery version of each query as
follows:

let $x := doc("alphabet.xml")/query/is/here

return <answer>{$x}</answer>

Moreover, we ran XCheck with the following command:

$./XCheck.pl -n 1 -s -run xpath-ft

10

The above command starts XCheck in running mode (option -run xpath-ft,
where xpath-ft is the folder containing the experiment). XCheck runs each
query once (option -n 1), saving the query answer (option -s), without gener-
ating any plot.

We say that an engine supports a query if the engine runs the query without
errors. Moreover, an engine correctly supports a query if the engine supports the
query and produces the right answer. The functional completeness measure is
defined the number of queries that are supported by the engine divided by the
number of queries in the test. The functional correctness measure is the number
of queries that are correctly supported by the engine divided by the number of
queries that are supported by the engine (whenever the engine does not support
any query we set correctness to 0). The following table summarizes our findings:

engine completeness correctness
XSLTproc 66/66 65/66
Xalan-Java 66/66 66/66

SaxonB 66/66 66/66
Qizx/open 66/66 62/66

The problematic queries are F7 for XSLTproc and A9, A10, P9, and P10 for
Qizx/open. In particular Qizx/open misinterprets the semantics of following

and preceding axes. See XPathMark website [3] to compare the correct answer
and the engine one for the above queries.

2.2 Experimenting with XPath Performance Test

We now move to the evaluation of performance. In this case there are several
possible experiments, including query-by-query performance, aggregated per-
formance, data and query scalability. First of all, we have to decide what to
measure. The query evaluation task can be divided into different sub-tasks in-
cluding: document loading and parsing, query compilation, query processing,
result serialization. Ideally, a query processor should give timing information
about all these tasks. The total query evaluation time (TET) is the time taken
by the engine to complete the whole evaluation task. For each of these tasks
we can measure the elapsed real time or the user CPU time. The latter is more
accurate since it is independent of the workload of the CPU. XCheck captures
and analysis the partial evaluation times whenever they are given by the engine.
Furthermore, XCheck always measures TET as user CPU time.

In the following we discuss some typical performance experiments that we
have done and show how to run them with XCheck. We measured the time
for the complete evaluation of the query (TET) as user CPU time expressed in
seconds.

Query-by-query performance. This experiment is meant to measure the
query evaluation time for each query of the benchmark on a fixed document.

11

This is performed by describing the experiment (which queries, which docu-
ments, which engines) using an XML document and then by starting XCheck
in running mode. In this mode XCheck executes the described experiment
on the given sequence of engines. You can perform this with the following
command:

$./XCheck.pl -p -run xpath-ft

The option -p is used to generate different types of plots depicting the query
evaluation times for the different queries on the fixed document. By default,
each query is executed 4 times. The first invocation is discarded and the time
is computed as the average of the last 3 calls. You can change the number
of query executions with option -n number, where number is the number of
executions on which the average is computed, that is, number is 3 by default.
You might also want to run this experiment on a subset of the benchmark or
on a subset of the engine list (maybe because some queries are not supported
by some engine). For instance, we ran this experiment on a 2 MegaByte XML
document for all queries except those of XPath-F, which cannot be evaluated
by XSLT processors Xalan and XSLTproc (Figure 4 at the end of the paper).
Then, we ran the experiment on the same document for queries in XPath-F
and engines SaxonB and Qizx/open (Figure 5 at the end of the paper). We
ran XCheck in data analysis mode1. In this mode XCheck elaborates and/or
plots the timing information computed during the running phase. To do so
you have to configure the data analysis XML document (which subsets of
queries and engines) and run XCheck as follows:

$./XCheck.pl -p -data xpath-ft

Aggregated query performance. You can exploit the data analysis mode
also to generate some aggregating measures. For instance, you might want
to compute the averaged total evaluation time (ATET) over all queries but
XPath-F ones (Figure 6 at the end of the paper). Or you might be interested
in computing stability measure, that is the ratio of the standard deviation
and the mean on all queries but XPath-F (Figure 7 at the end of the paper).
Showing a stable performance is good for an engine since the response time is
predictable. You can run these experiments by properly configuring the data
analysis XML document (which aggregating measures on which experiment
components) an run XCheck in data analysis mode as follows:

$./XCheck.pl -p -data xpath-ft

Data scalability. This experiment is meant to evaluate the performance of
the evaluation of a fixed query over a sequence of XML documents of in-
creasing size. For instance, we fixed query E1 of XPath-PT and increase the

1 Another possibility is to change the experiment and run XCheck with update op-
tion. However, in this way, you are going to loose the timing informations for the
components that you have removed from the experiment. Use update option to run
an experiment incrementally, not decrementally.

12

document size from 2 to 22 MegaBytes (Figure 8 at the end of the paper). To
run this experiment with XCheck you have to configure an experiment XML
document with the query and the document sequence. Notice that XCheck
allows you generate the documents on-the-fly (assuming you have at disposal
a document generator. For XPath-PT you can use XMark document gener-
ator). Then you can start XCheck in running mode as follows (xpath-ds is
the folder of this experiment):

$./XCheck.pl -p -run xpath-ds

Query scalability.
This experiment is meant to evaluate the performance of the evaluation of
a sequence of queries of increasing complexity over a fixed XML document.
For instance, we fixed a document of 2 MegaBytes and tested the query se-
quence B13(i) of of XPath-PT (this is a parametric query), for i = 0, 1, . . . , 5
(Figure 9 at the end of the paper). To run this experiment with XCheck you
have to configure an experiment XML document with the query sequence and
the document. Notice that XCheck allows you generate the queries on-the-fly
(assuming you have at disposal a query generator. For each parametric query
in XPath-PT we provide a Perl generator). Then you can start XCheck in
running mode as follows (xpath-qs is the folder of this experiment):

$./XCheck.pl -p -run xpath-qs

2.3 Interpretation of the results

The crucial final step in the experimental experience consists in interpreting the
results of the experiments. The outcomes of the functional test are quite straight-
forward to understand. For instance, it is clear from our tests that Qizx/open
misinterprets following and preceding axes. It particular it considers descen-
dant nodes as part of following ones and ancestor nodes as part of preceding
ones.

Much more subtle is the interpretation of the performance experience. The
difficulty is due to the abundance of possible experiments and to the fact that
not all of them are meaningful. We refer to [10] for an interesting discussion of
issues that arise when one attempts to analyze algorithms experimentally. As said
above, our experimental analysis is meant to underline some typical experiments
suggested by the proposed banchmark and is far from being exhaustive. This does
not allow us to draw general conclusions about the performance behavior of the
involved engines. Nevertheless, it allows us to notice the following:

– on relatively small documents (2 MegaBytes), XSLTproc is generally the
fastest but have some bottlenecks for queries like B4, B9, B19, E5 involving
following and preceding axes (see Figure 4);

– however, on average, SaxonB is the fastest, followed by XSLTproc, Xalan,
and Qizx/open in this order (see Figure 6);

13

– SaxonB and Xalan show a very stable behavior. On the contrary, Qizx/open
and in particular XSLTproc are not stable (see Figure 7);

– all the processors show linear data scalability on query E1. Moreover, on this
query, XSLTproc is still the best performing also on bigger documents (see
Figure 8);

– apparently, XSLTproc is the only engine that implements early node du-
plicate elimination. Late duplicate elimination might results in exponential
blow-up as noticed in the pioneering paper [11] (see Figure 9).

References

1. Franceschet, M.: XPathMark: an XPath benchmark for XMark generated data.
In: XSym. Volume 3671 of LNCS. (2005) 129–143

2. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: A benchmark for XML data management. In: VLDB. (2002) 974–985
http://www.xml-benchmark.org.

3. Franceschet, M.: XPathMark. Functional and performance tests for XPath. http:
//www.dimi.uniud.it/∼francesc/xpathmark (2006)

4. Benedikt, M., Koch, C.: XPath leashed. Submitted for publication (see authors’
web pages for a draft version). (2006)

5. ten Cate, B.: The expressivity of XPath with transitive closure. In: PODS. (2006)
6. Marx, M.: Conditional XPath, the first order complete XPath dialect. In: PODS.

(2004) 13–22
7. Authors: Extended XSLT. http://www.exslt.org (2006)
8. World Wide Web Consortium: XML Path Language (XPath) Version 1.0. http:

//www.w3.org/TR/xpath (1999)
9. Afanasiev, L., Franceschet, M., Marx, M., Zimuel, E.: XCheck: A platform for

benchmarking XQuery engines (demonstration). In: VLDB. (2006) http://ilps.

science.uva.nl/Resources/XCheck.
10. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms.

In: Proceedings of DIMACS Implementation Challenges. (2002) 215–250
11. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath

queries. In: VLDB. (2002) 95–106

14

 1

 10

 100

8765432E15432D1765432C11098765432B18765432A1

Lo
g

T
E

T

Query

XSLTproc
Xalan

Qizx
SaxonB

Fig. 4. Query performance (excluding XPath-F)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

F8F7F6F5F4F3F2F1

T
E

T

Query

Qizx
SaxonB

Fig. 5. Query performance on XPath-F

15

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

SaxonBQizxXalanXSLTproc

A
T

E
T

engine

Fig. 6. Averaged query performance

 0

 1

 2

 3

 4

 5

SaxonBQizxXalanXSLTproc

st
ab

ili
ty

engine

Fig. 7. Stability

16

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

T
E

T

document size

XSLTproc
Xalan

Qizx
SaxonB

Fig. 8. Data scalability

 0

 10

 20

 30

 40

 50

543210

T
E

T

query complexity

XSLTproc
Xalan

Qizx
SaxonB

Fig. 9. Query scalability

17

