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Abstract

We study the power assignment problem in radio networks, where each radio station can
transmit in one of two possible power levels, corresponding to two ranges – short and long.
We show that this problem is NP-hard, and present an O(n2)-time assignment algorithm, such
that the number of transmitters that are assigned long range by the algorithm is at most (11/6)
times the number of transmitters that are assigned long range by an optimal algorithm. We also
present an (9/5)-approximation algorithm for this problem whose running time is considerably
higher.

1 Introduction

Assigning power levels (corresponding to transmission ranges) to the transmitters of a radio net-
work, so that the total power consumption is as low as possible, is often an extremely important
issue. Let P be a set of n points in the plane, representing n transmitters-receivers (or transmitters
for short). We need to assign transmission ranges to the transmitters in P, so that (i) the result-
ing communication graph is strongly connected; that is, the graph over P in which there exists a
directed edge from p to q if and only if q lies within the transmission range rp assigned to p, should
contain a directed path from any transmitter p ∈ P to any other transmitter q ∈ P, and (ii) the
total power consumption (i.e., the cost of the assignment of ranges) is minimized, where the total
power consumption is a function of the form

∑
p∈P rc

p, and c > 0 is a constant typically between 2
and 5.

This version of the power assignment problem is known to be NP-hard; Kirousis et al. [12] first
proved this for 3-dimensional point sets and Clementi et al. [8] then proved this also for planar point
sets. Kirousis et al. also present a 2-approximation algorithm, based on the minimum spanning
tree of P, which is the best approximation known.

In practice, it is usually impossible to assign arbitrary power levels (ranges) to the transmitters
of a radio network. Instead one can only choose from a constant number of preset power levels,

∗Research by P. Carmi is partially supported by a Kreitman Foundation doctoral fellowship. Research by M. Katz

is partially supported by grant No. 2000160 from the U.S.-Israel Binational Science Foundation.

1Dagstuhl Seminar Proceedings 06481
Geometric Networks and Metric Space Embeddings
http://drops.dagstuhl.de/opus/volltexte/2007/1027



corresponding to a constant number of ranges. In this paper we consider the power assignment
problem in radio networks, where each transmitter can transmit in one of two given power levels –
low or high, corresponding to two possible ranges – short (r1) and long (r2). Since the cost of an
assignment of power levels to the transmitters is a function of the form n1r

c
1 + (n − n1)r

c
2, where

n1 is the number of transmitters that are assigned range r1 and c ≥ 1 is some constant, the cost of
an assignment is determined solely by the number of transmitters that are assigned range r2. We
are not aware of previous work on the power assignment problem under this model.

In Section 6 we prove that the power assignment problem with two power levels is NP-hard,
by constructing a reduction from planar cubic vertex cover. More precisely, we show this for the
special case where the initial components graph (see below) is a star. Recently we learned that the
NP-hardness proof in [8] (that follows the NP-hardness proof in [12]) can be adapted to the case
of two power levels. Our proof is similar to the second part of the proof in [8]; in the first part of
this proof gadgets are constructed to force the optimal solution to use only three ranges, and it is
easy to see that actually two ranges are enough.

Let m be the number of transmitters that are assigned range r2 in an optimal assignment OPT .
In Section 2 we describe an algorithm that assigns range r2 to at most (11/6)m transmitters,
or, in other words, the algorithm computes an (11/6)-approximation (with respect to the number
of transmitters that are assigned long range). The running time of this algorithm is O(n2) (see
Section 4).

An immediate corollary of this result is that for any ranges r1, r2 and for any c, we can compute
an assignment whose cost is at most (11/6) times the cost of an optimal assignment. Usually
though the cost of our assignment is much less than this, as is shown in Section 2.1. In this section
we analyze the common case where r1 = 1 and r2 = d. Our algorithm computes in this case an
assignment whose cost is at most 11dc

6dc+5 times the cost of an optimal assignment. Plugging for
example d = 2 we get a 44/29 ≈ 1.52 approximation, if c = 2, and a 22/17 ≈ 1.29 approximation,
if c = 1.

A by-product of our range assignment algorithm is an algorithm for assigning ranges in the spe-
cial case where the initial components graph is a tree. That is, consider the connected components
of the communication graph that is obtained after assigning short range to all transmitters in P.
We draw an edge between two components C1 and C2 if and only if there exists transmitters p1 ∈ C1

and p2 ∈ C2, such that the distance between them is at most r2. Now if this graph happens to be a
tree then the algorithm described in Section 3 assigns long range to at most (4/3)m transmitters,
where m is the number of transmitters assigned long range by an optimal algorithm.

In Section 5 we describe another algorithm for the special case where the initial components
graph is a tree. This algorithm assigns long range to at most (6/5)m transmitters (rather than
(4/3)m transmitters), where m is the number of transmitters assigned long range by an optimal
algorithm; however, its running time is extremely high. This algorithm allows us to achieve an
approximation factor of (9/5) instead of (11/6) for our range assignment problem; however, this
result is only interesting from a purely theoretical point of view because of the unrealistic running
time.

More related work. Other variants of the power assignment problem have been studied. One
such variant is the symmetric power assignment problem, where the corresponding communication
graph is undirected and there exists an edge between two transmitters p and q if and only if both
transmitters were assigned ranges greater than (or equal to) the distance between them; see [2, 3, 4].
Clementi et al. [6] consider the problem of assigning ranges to a set of transmitters on a common
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line, so that for any two transmitters p and q there exists a path from p to q of at most h hops in
the corresponding (directed) communication graph. The case where h = n− 1 was also considered
by [12]. An important related problem is the minimum-energy broadcast tree problem: Assign
ranges to the transmitters so that a designated source transmitter can broadcast messages to all
other transmitters; see, e.g., [5, 7, 13, 15, 17, 18, 19].

2 An (11/6)-Approximation

Let P be a set of n points in the plane representing n transmitters-receivers (or transmitters for
short), and assume that each transmitter can transmit in one of two possible power levels – low or
high, corresponding to short range (r1) or long range (r2). Further assume that if all transmitters
in P are assigned long range, then the resulting communication graph is strongly connected. In
this section we describe an algorithm for assigning ranges to the transmitters in P, such that the
number of transmitters that are assigned long range is at most (11/6)m, where m is the number of
transmitters that are assigned long range by OPT . In Section 4 we show that the time complexity
of the algorithm is O(n2).

Let G be the (undirected) graph of components. G is defined as follows. Assign to each
transmitter in P short range and draw an edge between two transmitters p and q if |p, q| ≤ r1,
where |p, q| denotes the Euclidean distance between p and q. We think of each of the connected
components in this graph as a subset of P. These subsets are the nodes of the graph G; we shall
call them components. We draw an edge between two components C1 and C2 of G if there exist
transmitters p ∈ C1 and q ∈ C2, such that |p, q| ≤ r2. See Fig. 1.

Figure 1: The components graph G.

Notice that we can easily obtain a 2-approximation. Simply compute a minimum spanning tree
of G, and, for each edge (C1, C2) of the tree, assign long range to two transmitters p ∈ C1 and
q ∈ C2, such that |p, q| ≤ r2.

Our range assignment algorithm consists of two stages. In the first stage we repeatedly find a
cycle in G and reduce it to a single component by assigning long range to one transmitter in each
of the components in the cycle. The second stage begins when there are no more cycles in G, i.e.,
when G is a tree. In this stage we assign long range to some more transmitters in order to complete
our task.
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We now describe the first stage in detail. While there is a cycle in G do the following. Let
C1, C2, . . . , Cl, C1 be any cycle of size l ≥ 3. Assign long range to any transmitter in C1 that can
reach a transmitter in C2, assign long range to any transmitter in C2 that can reach a transmitter
in C3, etc. All together we assign long range to l transmitters. Notice that after doing so any
two transmitters in the union C = C1 ∪ · · · ∪ Cl can talk with each other possibly through other
transmitters in C. Thus these l components reduce to a single component C and the number of
components decreases by l − 1. We update the graph G by replacing C1, . . . , Cl with the single
component C. After doing so we forget that some of the transmitters in C have already been
assigned long range, and update the edges in G accordingly, see Fig. 2.
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Figure 2: Reducing the cycle C1, C2, C3, C4, C1 to the single component C.

At this point there are no cycles left in G, in other words G is a tree. In the next section we
present a range assignment algorithm for the case where the components graph is a tree. This
algorithm assigns long range to at most 4

3mtree of the transmitters, where mtree is the number of
transmitters that are assigned long range by an optimal algorithm for this case. Thus in the second
stage we apply the algorithm of the next section to G to complete the range assignment task. We
now show that the overall number of transmitters that were assigned long range is bounded by
11
6 m.

Theorem 2.1 The range assignment algorithm (described above) computes an (11/6)-approximation.

Proof: Recall that in the first stage a loop is executed, such that, in each iteration a cycle in G
of length at least three is found and replaced by a single component. Let i be the number of cycles
that were found during the execution of the loop. We assume that all these cycles are of length
exactly three, since this is the worst case for our analysis.

Let k be the initial number of components in G, i.e., right at the beginning of the first stage.
Then m, the number of transmitters assigned long range by OPT , is at least k, since in each initial
component at least one of the transmitters must be assigned long range. During the first stage the
algorithm assigns long range to at most 3i transmitters, and the number of components in G at
the end of the first stage is k − 2i.

At this point G is a tree and we distinguish between two cases.
Case 1: i > k/2 − m/3. In this case, instead of performing the second stage, we proceed in
the most trivial way (for the purpose of the analysis only) and assign long range to 2(k − 2i − 1)
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transmitters. That is, for each edge in G connecting between two components C1 and C2, we assign
long range to any transmitter in C1 that can reach a transmitter in C2 and vise versa. The total
number of transmitters that were assigned long range is thus bounded by

3i + 2(k − 2i − 1) < 2k − i < 2k − (
k

2
− m

3
) =

3k

2
+

m

3
≤ 11

6
m .

Case 2: i ≤ k/2 − m/3. In this case we perform the second stage as described in Section 3 and
assign long range to at most (4/3)mtree transmitters, where mtree is the number of long range
assignments needed to solve the tree G. But clearly mtree ≤ m, so the number of transmitters
assigned long range in the second stage is at most (4/3)m. The total number of transmitter that
were assigned long range is thus bounded by

3i +
4m

3
≤ 3(

k

2
− m

3
) +

4m

3
=

3k

2
+

m

3
≤ 11

6
m .

Since in both cases we were able to bound the total number of long range assignments by (11/6)m,
we conclude that our range assignment algorithm computes an (11/6)-approximation.

�

Recall that the cost of an assignment is n1r
c
1+(n−n1)r

c
2 , where n1 is the number of transmitters

that are assigned range r1 and c ≥ 1 is some constant typically between 2 and 5. An immediate
corollary of Theorem 2.1 is that for any ranges r1, r2 and for any c, we can compute an assignment
whose cost is at most (11/6) times the cost of an optimal assignment. Usually though the cost of
our assignment is much less than this, as is shown below.

2.1 The Cost for Ranges 1 and d

Theorem 2.2 If r1 = 1 and r2 = d, then one can compute a range assignment whose cost is at
most 11dc

6dc+5 times the cost of an optimal assignment. For d = 2 we get a (44/29)-approximation, if
c = 2, and a (22/17)-approximation, if c = 1.

Proof: The cost of an optimal algorithm is dc · m + 1 · (n − m) = n + (dc − 1)m, where m is the
number of transmitters assigned long range. We apply both our algorithm and the naive algorithm
which assigns range d to all the transmitters. Put a = n/m. We distinguish between two cases.
Case 1: a ≤ 11/6. In this case we use the naive algorithm whose cost is dcn. The ratio between
the cost of the naive algorithm and the cost of an optimal algorithm is

dcn

n + (dc − 1)m
≤ dcn

n + (dc − 1)(6/11)n
=

dc

(6/11)dc + (5/11)
.

Case 2: a ≥ 11/6. In this case we run our algorithm whose cost is at most

dc · (11/6)m + 1 · (n − (11/6)m) = n + (11/6)(dc − 1)m .

The ratio between the costs is

n + (11/6)(dc − 1)m

n + (dc − 1)m
=

a + (11/6)(dc − 1)

a + (dc − 1)
≤ (11/6)dc

dc + 5/6
=

dc

(6/11)dc + (5/11)
.

5



(By replacing a with the smallest value that it can receive, the expression to the left of the inequality
is maximized.)

In both cases we got a dc

(6/11)dc+(5/11) -approximation on the cost. Thus for d = 2 we get a

(44/29)-approximation, if c = 2, and a (22/17)-approximation, if c = 1. �

3 A (4/3)-Approximation for a Tree of Components

In this section we present a (4/3)-approximation algorithm for the case where the components
graph G is cycle free, i.e., where G is a tree. In particular G may be the graph that is obtained at
the end of the first stage of the general algorithm above.

We first pick an arbitrary component in G to be the root of G. Given a component C in G, we
can now refer to its children components and to its parent component in the regular meaning.

For each component C we need to assign long range to some of the transmitters in C, so that for
each child C ′ of C at least one of the transmitters in C assigned long range can reach (a transmitter
in) C ′, and also at least one of these transmitters can reach the parent of C. A neighbor (i.e., one
of the children or the parent) C ′ of C is satisfied if at least one of the transmitters in C that can
reach it when assigned long range is assigned long range.

Initially all neighbors of C are unsatisfied. Our goal is to assign long range to a small number
of transmitters in C so that all neighbors of C are satisfied. One can view this problem as a set
cover problem: For each transmitter p in C let Cp be the subset of the neighbors of C that can be
reached from p by assigning long range to p. It is easy to verify that the size of Cp is at most 5
(since no two components in Cp can be neighbors in G). Thus we could apply known results for
k-set cover to achieve our goal; however, this would lead to a weaker result than the one that we
obtain below.

We start with the leaf components. The case of a leaf component C is very simple; we assign
long range to any transmitter in C that can reach the parent of C (when it is assigned long range).
After considering all leaf components, we consider the internal components, where an internal
component may be considered only if all its children have already been considered.

Let C be the internal component that is about to be considered. Let χC be the number of
children of C. Clearly for each child C ′ of C, we must assign long range to at least one of the
transmitters in C ′ that can reach C (after it is assigned long range). Let m′

C be the number of
long range assignments (to transmitters in C) needed to satisfy all children of C. Then mC , the
number of long range assignments (to transmitters in C) assigned by OPT, is either m ′

C , if the m′
C

transmitters satisfying the children of C can be chosen so that one of them also satisfies the parent
of C, or mC = m′

C +1, otherwise. The following inequalities are immediate:
∑

C mC = m, where m
is the overall number of long range assignments assigned by OPT, and

∑
C χC = k− 1 < m, where

k is the number of components in G. We will assign long range to at most 1
3χC + mC transmitters

in C. Summing over all components in G we obtain

∑

C

(
1

3
χC + mC) ≤ 1

3
m + m =

4

3
m .

For each transmitter p in C, let dp (the degree of p) be the number of unsatisfied children of C
that would be satisfied if p were assigned long range. Notice that dp refers only to the children of
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C and not to its parent. After assigning long range to a transmitter q in C we update the degrees
dp of all transmitters p in C (in particular dq becomes 0).

We are now ready to describe our algorithm for assigning long range to transmitters in C. If
χC ≤ 2, then we “solve” C optimally, that is, we find a minimum subset of transmitters in C that
can reach all children of C and can also reach its parent (when assigned long range). We can do
this since in this case mC ≤ 3.

Otherwise, as long as the number of unsatisfied children is at least 3 and there exists a trans-
mitter of degree at least 3, we assign long range to any such transmitter q and update the degrees of
all transmitters in C accordingly. By assigning long range to q we satisfy at least 3 of the children
of C. Since for each of these 3 children, OPT assigns long range to one of their transmitters so
that it can reach C, we charge the assignment to q to these 3 assignments of OPT. Thus in this
loop we have used at most 1

3(χC − x) long range assignments to transmitters in C, where x ≥ 0 is
the number of remaining unsatisfied children of C.

At this point either x ≤ 2, or x ≥ 3 and all transmitters in C have degree at most 2. In
the former case we “solve” the remaining subproblem optimally (assigning long range to at most
3 ≤ mC transmitters in C). We have used in total at most mC + 1

3χC long range assignments.
In the latter case, where we are left with at least 3 unsatisfied children and transmitters of

degree at most 2, we first assign long range to any transmitter in C that can reach C’s parent
(when assigned long range), and update the degrees of the transmitters in C. We charge this
assignment to the at least 3 remaining unsatisfied children of C. Next we “solve” the remaining
subproblem, which is an instance of 2-set cover, optimally. Again we have used in total at most
mC + 1

3χC long range assignments.

Theorem 3.1 If the components graph G is a tree, one can compute a range assignment that is a
(4/3)-approximation.

4 Running Time

In this section we show that the time complexity of our algorithm is O(n2). This bound holds for
both stages of the algorithm described in Sections 2 and 3.

Computing the set of components of the initial graph of components G takes O(n2) time.
Computing the edges between components also takes O(n2) time. For each such edge (C1, C2) we
keep a pair of transmitters, one from each component, such that the distance between them is at
most r2.

In the first stage of the algorithm (Section 2), we repeatedly find a cycle in G and reduce it to
a single component. A cycle in G (if exists) can be found in time proportional to the number of
components in G, using a variant of DFS (see, e.g., [10]). The reduction of the cycle to a single
component can be done in time proportional to the number of components in G plus the sum over
the degrees of the components in the cycle. Thus the total time spent in this stage is O(n2).

Consider the second stage of the algorithm (Section 3). Let k be the number of components in
the tree of components. We first analyze the running time for a single component Ci. The total
time spent in this stage is then the sum of the running times for the k components.

Recall that χCi
is the number of children of Ci. We maintain two dynamic lists, the high-degree

list and the low-degree list. If the degree of a transmitter q ∈ Ci is greater than 2, we put it in the
high-degree list, otherwise we put it in the low-degree list.
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The following three cases are handled by the algorithm. If χCi
≤ 2, then we “solve” Ci optimally

in O(|Ci|) time. If χCi
≥ 3 and the high-degree list is not empty, then we assign long range to any

transmitter q in the list and update the degrees of all transmitters in Ci accordingly. (The update
phase can be done in O(|Ci|) time, since the degree of q is bounded by some constant.) This case
may repeat O(χCi

) times, and thus the total running time due to this case is O(χCi
|Ci|). Finally, if

χCi
≥ 3 but the high-degree list is empty, then we solve an instance of 2-set cover optimally using

matching techniques [14] in O(
√

χCi
|Ci|) time.

We conclude that the running time for Ci is O(χCi
|Ci|). Since we have k components, the total

time spent in the second stage is

O(n2) + O(

k∑

i=1

(χCi
|Ci|)) ≤ O(n2) + O(

k∑

i=1

(χCi
)

k∑

i=1

(|Ci|)) ≤ O(n2) + O(kn) = O(n2)

Theorem 4.1 The range assignment algorithm (described in Sections 2 and 3) computes an (11/6)-
approximation in O(n2) time.

Remark: It is natural to consider the range assignment problem in the plane. However, our
algorithm can be applied in any fixed dimension to compute an (11/6)-approximation in O(n2)
time.

5 A (6/5)-Approximation for a Tree of Components

In this section we present an improved (6/5)-approximation algorithm for the case where the
components graph G is a tree. This algorithm also allows us to achieve an approximation factor of
(9/5) instead of (11/6) for our range assignment problem. The algorithm’s top level is quite simple,
but it includes calls to non-trivial (approximation) algorithms for 3-set cover and 4-set cover. Its
analysis is rather difficult, and its time complexity is extremely high (though polynomial of course).
Thus the results of this section are only interesting from a purely theoretical point of view.

We may assume that there exists a component in the components graph G that has more than
5 neighboring components. (Otherwise, we can compute an optimal solution by computing an
optimal solution for each of the components). We pick any such component to be the root of the
tree. We now apply the following three-stage algorithm to each of the components C in the tree.
(At the root we only apply the first two stages of the algorithm.) Recall the χC denotes the number
of children of component C, and that the degree of a transmitter in C is the number of (unsatisfied)
children that it would reach if it were assigned long range.

In the first two stages we assign long range to a subset of the transmitters in C in order to
satisfy all children of C. In the third stage, if still necessary, we assign long range to any transmitter
in C that can reach C’s father. Let πC be the number of transmitters in C assigned long range by
our algorithm, and let π(χC) be the number of transmitters in C assigned long range in the first
two stages. Then either πC = π(χC) or πC = π(χC) + 1.

We now describe the first two stages of our algorithm. In the first stage we perform the following
loop. While there still remains a transmitter of degree at least 5: Pick an arbitrary transmitter of
degree at least 5, assign to it long range, and update the degrees of all transmitters. Let l5C be the
number of transmitters that were assigned long range in the first stage, and let χ ′

C be the number
of the remaining unsatisfied children. Then χ′

C ≤ χC − 5l5C .
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In the second stage we apply two different procedures for satisfying the remaining χ ′
C unsatisfied

children. Our algorithm chooses the better of the two solutions. We denote by π(χ ′
C) the number

of transmitters that were assigned long range in this solution. Thus π(χC) = l5C +π(χ′
C). The first

procedure is simply the 4-set cover algorithm. Let s4(χ
′
C) be the size of the solution obtained. Then

π(χ′
C) ≤ s4(χ

′
C) ≤ 19/12m(χ′

C ), where m(χ′
C) is the size of an optimal solution for the remaining

χ′
C children and 19/12 is the approximation ratio of the 4-set cover algorithm [9].

The second procedure repeatedly assigns long range to a transmitter of degree exactly 4 until
the degree of all transmitters is at most 3. It then applies the 3-set cover algorithm. Let l4C be the
number of transmitters of degree 4 that were assigned long range, and let χ′′

C be the number of
remaining unsatisfied transmitters. Then χ′′

C = χ′
C − 4l4C . Also, let s3(χ

′′
C) denote the size of the

solution of the 3-set cover algorithm. Then π(χ′
C) ≤ l4C +s3(χ

′′
C) ≤ l4C +4/3m(χ′′

C), where m(χ′′
C) is

the optimal solution for the remaining χ′′ children and 4/3 is the approximation ratio of the 3-set
cover algorithm [9].

We now prove that our algorithm computes a (6/5)-approximation; i.e., that

∑
C πC∑
C mC

≤ 6

5
.

The structure of the proof is as follows. In subsection 5.1 we show that it suffices to prove that for
each component C with χC > 5 it holds that

π(χC) + χC

mC + χC − 1
≤ 6

5
,

and in subsection 5.2 we prove that indeed for each component C with χC > 5 this inequality holds.
Some additional notation. Recall that k denotes the number of components in the tree. We

also denote the number of leaves in the tree by k0, and the number of components in the tree for
which 1 ≤ χC ≤ 5 by k1:5.

Since the result of this section is purely theoretical, we may assume that for each component
C, mC ≥ 100. Otherwise we can solve this component optimally by brute force and πC = mC .

5.1 A Sufficient Condition

In this subsection we show that it suffices to prove that for each component C with χC > 5 it holds
that

π(χC) + χC

mC + χC − 1
≤ 6

5
.

We begin with two observations.
Observation 1. ∑

C

mC = 1 +
∑

C:χC≥1

(mC + χC − 1)

Proof:

∑

C

mC =
∑

C:χC=0

mC +
∑

C:χC≥1

mC = k0 +
∑

C:χC≥1

mC = 1 + (k − 1) − (k − k0) +
∑

C:χC≥1

mC

= 1 +
∑

C:χC≥1

χC −
∑

C:χC≥1

1 +
∑

C:χC≥1

mC = 1 +
∑

C:χC≥1

(mC + χC − 1)
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Observation 2.

∑

C

πC ≤
∑

C:1≤χC≤5

(mC + χC − 1) +
∑

C:χC>5

(π(χC) + χC)

Proof:

∑

C

πC = k0 +
∑

C:χC≥1

πC ≤ k0 +
∑

C:1≤χC≤5

πC +
∑

C:χC>5

(π(χC) + 1) − 11

= k0 +
∑

C:1≤χC≤5

mC +
∑

C:χC>5

(π(χC)) + (k − k0 − k1:5) − 1

=
∑

C:1≤χC≤5

(mC) − k1:5 +
∑

C:χC>5

(π(χC)) + k − 1

=
∑

C:1≤χC≤5

(mC − 1) +
∑

C:χC>5

(π(χC)) + (k − 1)

=
∑

C:1≤χC≤5

(mC + χC − 1) +
∑

C:χC>5

(π(χC) + χC)

�

We now use the two observations above to obtain the sufficient condition.

∑
C πC∑
C mC

≤
∑

C:1≤χC≤5(mC + χC − 1) +
∑

C:χC>5(π(χC) + χC)

1 +
∑

C:χC≥1(mC + χC − 1)

=

∑
C:1≤χC≤5(mC + χC − 1) +

∑
C:χC>5(π(χC) + χC)

1 +
∑

C:1≤χC≤5(mC + χC − 1) +
∑

C:χC>5(mC + χC − 1)

≤
∑

C:χC>5(π(χC) + χC)
∑

C:χC>5(mC + χC − 1)

(In the last step we used the fact that if a ≥ b > 0 and c ≥ c′ ≥ 0, then a+c
b+c ≤ a+c′

b+c′ .) Now, in order
to prove that the latter expression is bounded by 6/5, it suffices to prove that for each component
C with χC > 5 it holds that

π(χC) + χC

mC + χC − 1
≤ 6

5
.

5.2 The Sufficient Condition Holds

In this subsection we prove that for each component C with χC > 5 it holds that

π(χC) + χC

mC + χC − 1
≤ 6

5
.

1Recall that we are assuming that the root has more than 5 children; hence the minus 1.
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We do this by following the stages of the algorithm. The first stage of the algorithm assigns long
range to transmitters of degree greater or equal 5. At the end of this stage we have (see above)
π(χC) = l5c + π(χ′

C) and χC ≥ 5l5c + χ′
C . Therefore

π(χC) + χC

mC + χC − 1
≤ π(χ′

C) + χC + l5c
mC + χC − 1

≤ π(χ′
C) + χ′

C + 6l5c
mC + χ′

C + 5l5c − 1
.

Since we want to show that the latter expression is bounded by 6/5, it suffices to show that

π(χ′
C) + χ′

C

mC + χ′
C − 1

≤ 6

5
.

At this point we are left with transmitters of degree less than 5. The second stage of the algo-
rithm applies two different procedures in order to satisfy the remaining χ′

C children (see algorithm
description at the beginning of section), and π(χ′

C) is the number of transmitters assigned long
range by the one that finds a better solution. We may assume that χ′

C ≥ 100. (Otherwise we solve

the problem with χ′
C children optimally, so π(χ′

C) = m(χ′
C) ≤ mC and

π(χ′

C
)+χ′

C

mC+χ′

C
−1 ≤ mC+χ′

C

mC+χ′

C
−1 ≤ 6

5

.)
Recall that the first procedure is simply the 4-set cover algorithm, and the second procedure

assigns long range to a transmitter of degree 4 as long as there is such a transmitter, and then
applies the 3-set cover algorithm.

We list a few simple claims by which we justify the subsequent calculations.

1. π(χ′
C) ≤ χ′

C ; Trivial.

2. π(χ′
C) ≤ s4(χ

′
C); See above.

3. π(χ′
C) ≤ l4c + s3(χ

′′
C); See above.

4. χ′
C = 4l4c + χ′′

C ; See above.

5. l4c < mC ; Recall that l4c is the number of transmitters of degree exactly 4 found by the second
procedure. There is no transmitter in C that, when assigned long range, can transmit to
more than 4 of the χ′

C children, since if there were such a transmitter it would have been
chosen in the first stage. Hence it follows that l4c ≤ m(χ′

C). But if l4c = m(χ′
C), then

π(χ′
C) = m(χ′

C) ≤ mC , and the desired bound follows immediately.

6. s3(χ
′′
C) ≤ χ′′

C ; Trivial.

7. For some q ≥ 0, s3(χ
′′
C) = 4

3m(χ′′
C) − q; The 3-set cover approximation algorithm has an

approximation ratio of 4
3 .

8. χ′′
C ≥ 4

3m(χ′′
C) − q; Follows from claims 6 and 7.

9. π(χ′
C) ≤ s4(χ

′
C) ≤ 19

12m(χ′
C); The 4-set cover approximation algorithm has an approximation

ratio of 19
12 .

10. χ′′
C ≥ m(χ′′

C); Trivial.

We shall assume that m(χ′′
C) ≥ 50; this is justified by the following lemma.

11



Lemma 5.1 If m(χ′′
C) < 50 then it holds that

π(χ′
C) + χ′

C

mC + χ′
C − 1

≤ 6

5
.

Proof:

l4c ≤(5) mC ≤ 2mC−6 ≤ 6mC−4m(χ′′
C)−6 = 6mC−5m(χ′′

C)+m(χ′′
C)−6 ≤(10) 6mC−5m(χ′′

C)+χ′′
C−6 .

We thus got
(!) l4c ≤ 6mC − 5m(χ′′

C) + χ′′
C − 6

We use the second procedure, but instead of applying the 3-set cover approximation algorithm to
χ′′

C , we compute an optimal solution of size m(χ′′
C). Hence

π(χ′
C) + χ′

C

mC + χ′
C − 1

≤ l4c + m(χ′′
C) + χ′

C

mC + χ′
C − 1

=(4) m(χ′′
C) + χ′′

C + 5l4c
mC + χ′′

C + 4l4c − 1
≤(!) 6

5

�

We now prove that if m(χ′′
C) ≥ 50 (and χ′

C ≥ 100) then it holds that

π(χ′
C) + χ′

C

mC + χ′
C − 1

≤ 6

5
.

We do this by distinguishing between two cases.

Lemma 5.2 If l4c ≤ 2
3m(χ′′

C)−6 or l4c ≥ 4
5s3(χ

′′
C), then by applying the second procedure we obtain

the desired ratio.

Proof: If l4c ≤ 2
3m(χ′′

C) − 6, then

π(χ′
C) + χ′

C

mC + χ′
C − 1

≤(3,4) l4c + s3(χ
′′
C) + 4l4c + χ′′

C

mC + 4l4c + χ′′
C − 1

=(7) l4c + 4
3m(χ′′

C) − q + 4l4c + χ′′
C

mC + 4l4c + χ′′
C − 1

≤(8)
8
3m(χ′′

C) + 5l4c − 2q

mC + 4
3m(χ′′

C) + 4l4c − q − 1
≤

8
3m(χ′′

C) + 5l4c − 2q
7
3m(χ′′

C) + 4l4c − q − 1
≤ 6

5
.

If l4c ≥ 4
5s3(χ

′′
C), then

π(χ′
C) + χ′

C

mC + χ′
C − 1

≤(3,4) l4c + s3(χ
′′
C) + 4l4c + χ′′

C

mC + 4l4c + χ′′
C − 1

≤ s3(χ
′′
C) + 5l4c + χ′′

C

mC + 4l4c + χ′′
C − 1

≤(5) s3(χ
′′
C) + 5l4c + χ′′

C

5l4c + χ′′
C

≤(6) 2s3(χ
′′
C) + 5l4c

s3(χ
′′
C) + 5l4c

≤ 2s3(χ
′′
C) + 4s3(χ

′′
C)

s3(χ
′′
C) + 4s3(χ

′′
C)

≤ 6

5
.

�

Clearly 2
3m(χ′′

C) − 6 < 4
5s3(χ

′′
C). The following lemma shows that if l4c is in between these two

values, then we also obtain the desired ratio.

12



Lemma 5.3 If

(∗) 2

3
m(χ′′

C) − 6 < l4c <
4

5
s3(χ

′′
C) ,

then we obtain the desired ratio.

Proof: We distinguish between two cases. If 7
3mC ≤ 11

3 m(χ′′
C) − 30, then by applying the first

procedure we obtain the desired ratio.

π(χ′
C) + χ′

C

mC + χ′
C − 1

≤(9)
19
12m(χ′

C) + χ′
C

mC + χ′
C − 1

≤(4)
19
12mC + 4l4c + χ′′

C

mC + 4l4c + χ′′
C − 1

≤(∗)
19
12mC + 8

3m(χ′′
C) − 24 + χ′′

C

mC + 8
3m(χ′′

C) − 24 + χ′′
C − 1

≤(10)
19
12mC + 8

3m(χ′′
C) − 24 + m(χ′′

C)

mC + 8
3m(χ′′

C) − 25 + m(χ′′
C)

≤
19
12mC + 11

3 m(χ′′
C) − 24

mC + 11
3 m(χ′′

C) − 25

≤
19
12mC + 7

3mC + 30 − 24

mC + 7
3mC + 30 − 25

≤
12
3 mC + 6
10
3 mC + 5

≤ 6

5
.

If 7
3mC ≥ 11

3 m(χ′′
C) − 30, then by applying the second procedure we obtain the desired ratio.

π(χ′
C) + χ′

C

mC + χ′
C − 1

≤(3,4) l4c + s3(χ
′′
C) + 4l4c + χ′′

C

mC + 4l4c + χ′′
C − 1

≤(7) l4c + 4
3m(χ′′

C) − q + 4l4c + χ′′
C

mC + 4l4c + χ′′
C − 1

≤(8)
8
3m(χ′′

C) + 5l4c − 2q

mC + 4
3m(χ′′

C) + 4l4c − q − 1
≤

8
3m(χ′′

C) + 5l4c − 2q
11
7 m(χ′′

C) − 90
7 + 4

3m(χ′′
C) + 4l4c − q − 1

≤
8
3m(χ′′

C) + 5l4c − 2q
61
21m(χ′′

C) − 90
7 + 4l4c − q − 1

≤ 6

5
.

The last inequality follows from the assumptions that l4c < 4
5s3(χ

′′
C) and that m(χ′′

C) is large enough.
�

We summarize the result of this section concerning a tree of components.

Theorem 5.4 If the components graph G is a tree, one can compute a range assignment that is a
(6/5)-approximation in polynomial time.

This result allows us to achieve an approximation factor of (9/5) instead of (11/6) for our
range assignment problem. The algorithm is identical to the algorithm described in Section 2,
except that, instead of computing a (4/3)-approximation for a tree of components, we compute a
(6/5)-approximation.

Theorem 5.5 One can compute in polynomial time a (9/5)-approximation for the range assign-
ment problem with two power levels.

Proof: The proof is identical to the proof of Theorem 2.1, except that Case 1 is performed if
i > k/2 − 3m/10 − 1/2 and Case 2 is performed if i ≤ k/2 − 3m/10 − 1/2. The corresponding
computations change accordingly. In Case 1 the total number of transmitters assigned long range
is bounded by

3i + 2(k − 2i − 1) = 2k − i − 2 < 2k − (
k

2
− 3m

10
− 1

2
) − 2 <

3k

2
+

3m

10
≤ 9

5
m ,
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and in Case 2 the total number of transmitters assigned long range is bounded by

3i +
6m

5
≤ 3(

k

2
− 3m

10
− 1

2
) +

6m

5
<

3k

2
+

3m

10
≤ 9

5
m .

�

6 NP-Hardness

Let r1 and r2 be any two ranges, such that r1 < r2 (and r2 is polynomial in r1). In this section we
show that the problem of finding an optimal range assignment for a given set P of points in the
plane (representing transmitters-receivers) is NP-hard. One can think of the problem as follows:
Assign short range (r1) to each of the transmitters in P. The goal now is to find a smallest subset
P ′ ⊆ P of transmitters, such that, after assigning long range (r2) to each of the transmitters in P ′,
one obtains a strongly connected graph.

Consider the components graph G that is obtained when each transmitter in P is assigned short
range (see Section 2 for a precise definition of G). We show that even the special case where G is
a star, i.e., G consists of one central component C that is connected to k orbit components (see
Fig. 3) is NP-hard. In this case, the problem is to find a smallest subset of transmitters in C that
satisfies all orbit components (when each of the transmitters in the subset is assigned long range).

We describe a reduction from minimum vertex cover in planar cubic graphs. Let PCG = (V,E)
be a planar cubic graph (i.e., each of the nodes in PCG has degree at most 3). A vertex cover
for PCG is a subset U of V , such that, for each edge (v1, v2) ∈ E, either v1 ∈ U or v2 ∈ U . The
problem of finding a vertex cover of minimum size in planar cubic graphs is known to be NP-hard
[1, 11].
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Figure 3: A star graph of components.

Valiant [16] showed that any planar cubic graph PCG = (V,E) can be embedded in a rectan-
gular grid of size O(|V |2) as follows. Each node v ∈ V corresponds to some grid vertex, and each
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4r2

v′ o1
o3

o2

Sv
′

o1

60◦60◦
60◦ 60◦

o3

o2

v′

120◦

2r2

r2
Sv

′

Figure 4: Top: Converting the embedded graph PCG′ to a star graph of components. Bottom:
Zooming in on the vicinity Sv′ of a vertex v′. One can connect v′ to any of the four centers c of
its adjacent grid cells by a sequence of transmitters starting at v ′ and ending at c, such that the
transmitters lie on the dashed path between v ′ and c, the distance between any two consecutive
transmitters is at most r1, and none of the transmitters is within range r1 of a point on an edge e′

adjacent to v′.
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edge (v1, v2) ∈ E corresponds to a rectilinear path formed of grid edges, whose endpoints are the
grid vertices corresponding to v1 and v2. Moreover the interiors of any two such paths are disjoint.

We now convert the embedded graph PCG′ = (V ′, E′) into a star components graph G, see
Fig. 4. We assume that the distance between adjacent grid vertices is 4r2. Each edge e′ ∈ E′ is
converted into an orbit component of G, and the set V ′ is converted into the central component of
G. In general, we convert e′ = (v′1, v

′
2) ∈ E′ into an orbit component by placing transmitters on the

path e′ as follows. Place transmitters along the path e′ beginning at the point on e′ at distance r2

from v′1 and ending at the point on e′ at distance r2 from v′2, such that the distance between any
two consecutive transmitters is at most r1.

v′
1

v′
2

Figure 5: Connecting between v′
1 and v′2.

In general, we convert the set V ′ into the central component by placing transmitters as follows.
For each edge e′ = (v′1, v

′
2) ∈ E′ we place transmitters at v′1 and at v′2 and along one of the

two dashed paths between them (see Fig. 5), so that the distance between any two consecutive
transmitters is at most r1. However, we must be careful in the vicinity of a vertex v ′ ∈ V ′. In order
to avoid a situation where a transmitter on the portion of a dashed path connecting v ′ to the center
of an adjacent grid cell is within distance r1 of a transmitter belonging to an orbit component
obtained from an edge of E ′ adjacent v′, we slightly modify some of the paths in the vicinity of v ′

as depicted in Figure 4 (bottom). It is easy to see now that the transmitters belonging to the orbits
obtained from the edges of E ′ adjacent to v′ cannot cover a continuous portion of length greater or
equal to r1 of a dashed path connecting v′ to the center of an adjacent cell. (Notice that we may
assume that PCG is connected, since otherwise we could find a minimum vertex cover for each of
its connected components and their union would be a minimum vertex cover for PCG.)

It is easy to verify that we obtained a star components graph G. That is (i) a transmitter in
an orbit component C ′ that is assigned long range can either not reach any other component, or
can only reach the central component (as is the case for the extreme transmitters in C ′), and (ii)
for each orbit component C ′ obtained from the edge e′ = (v′1, v

′
2) there exists a transmitter in the

central component that can reach C ′, when assigned long range. The transmitters at v ′
1 and at v′2

are such transmitters.
Moreover, for any transmitter p in the central component, there exists a vertex v ′ that dominates

it, in the sense that if both p and v′ are assigned long range, then any orbit component that can
be reached from p can also be reached from v ′. Therefore when solving the range assignment
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problem, we may restrict ourselves to vertices v ′ in the central component. Also, assuming that
r2 is polynomial in r1, the total number of transmitters that were used in the construction is
polynomial in n. Finally, an optimal solution for the range assignment problem corresponds to a
minimum vertex cover for the graph PCG.

Theorem 6.1 Let r1 and r2 be any two ranges, such that r2 is polynomial in r1. Then the problem
of finding an optimal range assignment (where r1 and r2 are the two possible ranges) for a given
set P of points in the plane is NP-hard.

7 Conclusion

As for the non-restricted version of the power assignment problem (described in the introduction),
it remains open whether in 2-dimensional space the power assignment problem with two power
levels admits a PTAS. Clementi et al. [8] showed that in 3-dimensional space the non-restricted
version is APX-hard, and their proof also holds in our case, i.e., for the power assignment problem
with two power levels. The gap however is big, so it would be interesting to try to close or reduce
this gap.

Another natural and interesting problem that arises is the power assignment problem with k > 2
power levels, corresponding to k ranges r1 < · · · < rk, for some fixed integer k. Notice that there is
a significant difference between the case k = 2 and the case k > 2, since in the former case the goal
is to minimize the number of transmitters assigned long range, while in the latter case a solution
that minimizes the number of transmitters assigned the longest edge is not necessarily optimal.
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