
Dagstuhl Seminar 07011
“Runtime Verification”

January 2–6, 2007
Executive Summary

Bernd Finkbeiner1, Klaus Havelund2, Grigore Roşu3 and Oleg Sokolsky4

1 Saarland University, Reactive Systems Group
Saarbrücken, Germany

finkbeiner@cs.uni-sb.de
2 NASA’s Jet Propulsion Laboratory, Laboratory for Reliable Software

Pasadena, California, USA
Klaus.Havelund@jpl.nasa.gov

3 University of Illinois at Urbana-Champaign, Formal Systems Laboratory
Urbana, Illinois, USA
grosu@cs.uiuc.edu

4 University of Pennsylvania, Department of Computer and Information Science
Philadelphia, Pennsylvania, USA
sokolsky@saul.cis.upenn.edu

Abstract. From January 2 to January 6, 2007, the Dagstuhl Seminar
07011 ‘Runtime Verification’ was held in the International Conference
and Research Center (IBFI), Schloss Dagstuhl. Over the past few years,
runtime verification has emerged as a focused subject in program analysis
that bridges the gap between the complexity-haunted field of fully formal
verification methods and the ad-hoc field of testing. Other terms for this
subject are: program monitoring, dynamic program analysis, and runtime
analysis. Thirty researchers participated in the seminar and discussed
their recent work and recent trends in runtime verification.

Keywords. Program monitoring, dynamic program analysis, specifi-
cation languages and logics, concurrency errors, program instrumen-
tation, aspect-oriented programming, test oracles, fault protection, dy-
namic specification learning, combining static and dynamic analysis.

The 2007 Dagstuhl Seminar 07011 on Runtime Verification5 was held from Tues-
day January 2 to Saturday January 6, 2007. Thirty researchers participated and
discussed their recent work and recent trends in runtime verification. Other terms
for this subject are: program monitoring, dynamic program analysis, and run-
time analysis. Over the past few years, this field has emerged as a focused subject
5 The website for the seminar:

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=07011.

Dagstuhl Seminar Proceedings 07011 
Runtime Verification 
http://drops.dagstuhl.de/opus/volltexte/2008/1369 

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=07011


2 B. Finkbeiner, K. Havelund, G. Roşu, O. Sokolsky

in program analysis that bridges the gap between the complexity-haunted field
of fully formal verification methods and the ad-hoc field of testing. Runtime
verification supplements static analysis and formal verification with more light-
weight dynamic techniques when the static techniques fail due to complexity
issues. From the perspective of testing, runtime verification helps to formalize
oracle specification. Runtime verification uses some form of instrumentation to
extract, during test or in operation, a trace of observations from a program run
and then applies formal verification to this trace. The focus on traces rather
than on transition systems is of course what makes the approach more scalable
but also less effective at the same time. However, applying rigor and advanced
techniques in trace analysis may provide several practical advantages.

The seminar covered several areas, which we shall briefly touch upon. One of
the corner stones of this field is the monitoring of program executions (theoreti-
cally thought of as traces) against formal specifications, for example represented
in temporal logic, regular expressions or state machines. Specification logics can
include real-time features enabling the monitoring of real-time properties. Some
of the questions that arise in this context are the following: what expressive
power is required of a monitoring logic; what characteristics should it have in
order to make monitoring efficient with as little impact on the running program
as possible; and what characteristics will make such a logic easy and attractive
to use from a user’s point of view. The two first questions are specific to runtime
verification whereas the latter is of general interest to any formal method.

In order to monitor a program (or more generally: a system), the program
(system) must be instrumented to feed the monitor. This can happen by in-
strumenting the program to generate a trace in a log-file, which can be analyzed
off-line, or the program can be instrumented to drive the monitor directly during
execution, in which case errors are detected immediately as they occur. Aspect
oriented programming is an example of a technology for performing program
instrumentation. An interesting trend is the concept of state-full aspects, which
essentially extend the point-cut language of aspect oriented programming to tem-
poral predicates over the execution trace. In this view an aspect advice consists
of a temporal trace predicate and a statement to be executed when this predicate
gets violated during a program execution. This approach can be seen as com-
bining aspect oriented programming with runtime verification. The execution of
repair code when a property gets violated is an example of a fault protection
strategy. This leads into a paradigm for programming where programs are not
expected to behave correctly and where a program is embedded in a protection
armor, providing error diagnosis and recovery.

The formalization of properties in terms of specifications requires human
effort, which is known to cause resistance. A branch of the field attempts to
perform dynamic analysis in the absence of human-provided formal specifica-
tions. There are two variants of this work. In the first variant algorithms are
pre-programmed that analyze for specific generic kinds of errors that are gener-
ally regarded as problems in any application. Examples are concurrency errors
such as data races and deadlocks. The second variant, dynamic specification



Runtime Verification 3

learning, consists of learning specifications from runs. Each run that is accepted
by a user is regarded as contributing to a nominal behavior specification of the
program. After a period such a nominal behavioral specification can be turned
into an oracle used to detect deviations.

An important topic is the interaction between static and dynamic analysis.
Static analysis can be used to minimize the impact of monitoring a program by
for example reducing the number of program points where the program needs
to interact with the monitor. A dual view of this interaction between static and
dynamic analysis is to regard dynamic analysis as a rescue plan when static
analysis cannot determine whether a program satisfies a particular property. It
may for example be the case that a property can be proved about a program,
but only under the assumption of a set of proof-obligations (lemmas), each of
which can then be dynamically monitored during test runs or during operation.

The field of runtime verification overlaps with the field of testing from the
perspective of test oracles. Often, a monitor for a formally specified property
can be used to evaluate whether a test execution has been successful. However,
runtime verification is less concerned with the test case generation aspect of
testing, where the goal is to drive the program into all its corners. Runtime
verification focuses on analyzing or collecting information from individual runs,
independently of how they have been obtained. The Dagstuhl event included
contributions from the testing field on topics such as test case generation, fault
injection, and unit testing. These contributions explored the relationship between
the fields of testing and runtime verification.


	Dagstuhl Seminar 07011 ``Runtime Verification'' January 2--6, 2007 Executive Summary
	Bernd Finkbeiner, Klaus Havelund, Grigore Rosu and Oleg Sokolsky 



