Runtime Verification for Wireless Sensor Network Applications

Usa Sammapun’, John Regehr*, Insup Lee', Oleg Sokolsky'

TDepartment of Computer and Information Science

University of Pennsylvania

*Department of Computer Science

University of Utah

Abstract

Wireless sensor networks are widely used to detect envi-
ronment information that is not accessible by human. De-
veloping such networks however requires low-level pro-
gramming. The lack of sophisticated debugging tools for
sensor networks makes it difficult to make the connec-
tion between a high-level functional or performance re-
quirement and low-level implementation. This paper in-
vestigates a high-level approach by examining low-level
execution data from a simulator and checking the data
against specification written in formal logics. Such a tech-
nique raise the development level for wireless sensor net-
work and providing a mechanism for understanding high-
level behaviors of the system in terms of low-level obser-
vation. This study can become a road map for wireless
sensor network application development.

1 Introduction

A wireless sensor network usually comprises of a collec-
tion of tiny devices with built-in processors that can gather
physical and environment information such as tempera-
ture, light, sound, etc., and communicate with one an-
other over radio. Wireless sensor network applications
sit on top of an operating system called TinyOS [2] and
are mostly written in nesC [4], an extension of C that pro-
vides a component-based programming paradigm. Most
of wireless sensor network applications are developed and
tested on a simulator before they are deployed in the envi-
ronment because testing and debugging directly on physi-
cal devices are very difficult, especially when the network
consists of many nodes, and may not provide enough in-
formation for debugging. A simulator usually produces
detailed execution information and can help find errors.
However, even with the simulator and nesC, the current
state of development tools for wireless sensor network
still requires very low-level programming, which makes

Dagstuhl Seminar Proceedings 07011
Runtime Verification
http://drops.dagstuhl.de/opus/volltexte/2008/1371

it hard for the developers to maintain a high-level view of
the system operation. During the validation stage, lack of
sophisticated debugging tools for sensor networks makes
it difficult to make the connection between a high-level
functional or performance requirement and a particular
aspect of system implementation.

This paper investigates a high-level approach to exam-
ine execution data from a simulator and analyze it using
formal methods. The technique 1) identifies and formally
specifies high-level requirements for the system under de-
velopment, 2) monitors a distributed wireless sensor net-
work application using data provided by the simulator,
and 3) checks for timing and dynamic properties to gain
understanding of the relevant behaviors of wireless sen-
sor nodes and to provide a systematic approach in find-
ing bugs and errors. This paper uses a monitoring and
checking technique, called runtime verification [3, 5, 1],
which observes program executions at runtime and checks
whether the behavior complies with a given formal speci-
fication. A particular runtime verification used in this pa-
per is MaC or Monitoring and Checking [5, 7, 8]. MaC
provides specification languages capable of expressing
functional, timing, and probabilistic properties to specify
requirements or patterns of errors. Properties can be ex-
amining periodic behaviors or identifying a faulty node.
MacC then monitors and checks a wireless sensor network
application against its specification by observing data pro-
duced by a simulator. In this paper, a simulator called
Avrora [9] is used.

Contributions for applying the monitoring and check-
ing technique to check wireless sensor network applica-
tions are threefold: 1) raising the development level for
wireless sensor network, 2) providing a mechanism for
understanding high-level behaviors of the system in terms
of low-level observation, and 3) providing a tool based on
the acceptance of the state of the art development tool for
sensor networks. The result of this paper can provide a
road map for wireless sensor network development.

Sensor App

i

TinyOS
nesC

nesC Complier

App/TinyOS
inC

avr-gcc

T

i

App/TinyOS
in Machine Code

Figure 1: Wireless sensor application and TinyOS

2 TinyOS and Avrora

This section provides some background on TinyOS and
Avrora.

2.1 TinyOS

A TinyOS [2] is a component-based operating system
with a simple event-based concurrency model. Its modest
power load and small size make it suitable for the tiny sen-
sor devices. TinyOS has a small scheduler and provides
many reusable system components such as timers, LEDs,
and sensors which can be excluded when not in used.
These components are either software modules or thin
wrappers around hardware components. A component is
described in terms of implementation and the intercon-
nection between its lower-level subcomponents. A com-
ponent consists of commands, tasks, and events. Com-
mands are synchronous non-blocking requests made to
lower-level components and usually return immediately.
Tasks in TinyOS are computational units that run to com-
pletion without preempting any computation but may be
postponed. Thus, tasks are more suitable for non time-
critical computation. Events are asynchronous computa-
tional units that run to completion but may preempt other
events or tasks. Events are for time-critical computations
such as low-level communication.

Figure 1 shows the relationship between TinyOS and
TinyOS wireless sensor applications. TinyOS itself and
TinyOS applications are written in nesC [4]. Before appli-
cations can be run on hardware, TinyOS itself and appli-
cations are compiled into C programs by a nesC compiler
and then compiled again into specific hardware instruc-
tions by a compiler avr—gcc.

Sensor App
TinyOS

nesC

v

nesC Complier

App/TinyOS
inC

avr-gcc

EnergyMonitor
Avrora CallMonitor

y

App/TinyOS
in Machine Code

Figure 2: Wireless sensor application, TinyOS, and
Avrora

2.2 Avrora

Avrora [9], written in Java, is a simulator for wireless
sensor network applications. Figure 2 illustrates Avrora.
Avrora takes as an input a program in machine code such
as Berkely motes or Mica2Dot and then simulates the
program. Each node is represented by one Java thread.
Each instruction is represented by a Java object with its
operands stored in the object. The instruction object
also has several utility methods such as getCycles()
and getSize(), which returns corresponding information
about the instruction. Avrora also provides state informa-
tion such as the values of different registers, memory, and
program counter. Avrora executes instruction via an in-
terpreter specific each hardware such as Berkely motes or
Mica2Dot.

Avrora also provides several Monitor modules
for probing applications such as an EnergyMonitor
module that monitors energy levels of an applica-
tion and a CallMonitor that monitors any TinyOS
events, tasks and commands, shown in Figure 2. A
custom Monitor can also be added. Avrora provides
methods such as insertProbe() and removeProbe()
to insert or remove a probe at a particular point
in a program. The probes also have methods
fireBeforeCall() and fireAfterCall() to be
executed before or after a particular instruction. Memory
can also be examined through watchpoints using meth-
ods insertWatchpoint(), fireBeforeRead(),
fireBeforeWrite(), fireAfterRead(), and
fireAfterWrite(). The progress of time in Avrora is
driven by the execution cycles of instrunctions. Avrora
represents multi-nodes using multi-thread instances of
the Simulator class. Each node runs its own code with

Target MaC Specification
Program
. .| PEDL MEDL SADL

vy ¥ v v

Instrumentator ‘ MaC Comiler ‘

i static phase
; H . runtime phase
v : :

Target v v

Program
9 low-level ‘ Event | nigh-level | checker [VI9120ns | injector

info | |REcognizer e
MacC Verifier

steering

actions

Figure 3: Overview of the MaC framework

its own view of environment and local simulation time.
They are synchronized periodically to a global clock.

3 Monitoring and Checking (MaC)

Monitoring and Checking or MaC [5, 7, 8] can provide
a sophisticated debugging tool for wireless sensor net-
works. MacC, illustated in Figure 3, ensure that a pro-
gram is executing correctly with respect to its formal spec-
ification. It has two phases: static phase and runtime
phase. During static phase, formal requirements are used
to generate runtime components, and a program is instru-
mented with probes, called filter, to extract low-level in-
formation. During runtime phase, a program execution is
monitored and checked with respect to the MaC specifi-
cation. An event recognizer detects low-level information
specific to program implementation from the filter, trans-
forms the low-level information into high-level informa-
tion, and forwards it to a checker. The checker then deter-
mines whether the high-level information satisfy the high-
level requirement. If the checker detects any violations, an
alarm is raised and may be handled by an injector, which
attempts to steer the program back to its safe states.

Specification Language. The main aspect of MaC is to
specify formal requirements. MaC provides three specifi-
cation languages. The low-level monitoring specification
or Primitive Event Definition Language (PEDL), defines
which low-level application-dependent information is ex-
tracted, and how the information is transformed into high-
level information. The high-level requirement specifica-
tion or Meta-Event Definition Language (MEDL), based
on Linear Temporal Logic (LTL) [6] and regular expres-
sions, allows one to specify safety properties based on the
high-level information. PEDL is tied to a particular im-
plementation while MEDL is independent of any imple-

E = e|(E)|E||F|E&&E | start(C)
| end(C)| EwhenC|E+d
| Ep?"(<p07E) |Ep'f'(> pOaE)

c == c|O)]lC|C|C|C&&C|C—C
|

[E,E)|[E,E)<a

Figure 4: Syntax of events and conditions

mentation. The steering specification or Steering Action
Definition Language (SADL) specifies how violations of
safety properties should be handled. Only MEDL is pre-
sented in this paper. See MaC [5] for PEDL and SADL.

The high-level information can be distinguished into
two forms: events and conditions. Events occur instan-
taneously during execution, whereas conditions represent
system states that hold for a duration of time and can be
true or false. For example, an event denoting a call to
a method init occurs at the instant the control is passed
to the method, while a condition v < 5 holds as long as
the value v does not exceed 5. The syntax of events and
conditions are given in Figure 4. (Please note the over-
loaded term, events, used in different contexts in MaC and
TinyOS. Here, events in TinyOS are called TinyOS events
and events in MaC are called MaC events to avoid confu-
sion. When the context is clear, only events will be used.)

The models for MEDL are sequences of worlds, simi-
lar to those used for LTL. Each world represents one time
instant containing event and condition values. A world
is changed from one to aother when the event recognizer
forwards events and conditions to the checker. Events are
present only at an instant in a specific world whereas con-
ditions retain their values between worlds. The semantics
of events and conditions are given as follows. e and c are
an event and a condition forwarded from the event recog-
nizer. Disjunction E'||E; and conjunction F;&& E5 are
defined normally. start(C') is an instant when a condition
C becomes true, and similarly, end(C') is an instant when
a condition C becomes false. An event (E when C) is
present if F/ occurs at a time when a condition C'is true.
A timing event F + d occurs d time units after an event
occurs. d is a non-negative constant and is counted start-
ing from the most recent occurrence of e. Probabilistic
events E pr(< po, Ep) and E pr(> pg, Ep) are present
when an event E occurs with probabability < pg or > po,
respectively, given that an event F has occurred.

For conditions, negation (!C), disjunction (C1||C5),
conjunction (C1&&C5), and implication (C; — Cs) are
also interpreted classically. Any pair of events define an
interval forming a condition [E7, Fs) that is true from
an event F/; until an event E5. The time-bound interval
[E1, E2)<q holds true from an event E; until an event

F5 and from an event F; until d time units after ;. This
time-bound interval is a generalization of [E1, E), which
can be written as [F1, F3) < oo-

MEDL also allows variables to store histories of events,
for instance, to count how many events have occurred.
These variables are updated in respond to event occur-
rences. Events have two attributes associated with them.
An attribute time refers to a timestamp of the most recent
occurrence of an event while an attribute value is a tu-
ple of application-dependent values. MEDL distinguishes
special events and conditions that denote system specifi-
cation. Safety properties are conditions that must always
be true during an execution. Alarms, on the other hand,
are events that must never be raised during an execution.
From the viewpoint of expressiveness, both safety proper-
ties and alarms correspond to the safety properties [6].

Events and conditions are assigned to names and can be
indexed by node identifiers. For example,

event send[i] = func[i] when
value(func,0) == ’SurgeM$sendData’;

An event send for a node i is triggered when a function
SurgeM$sendData from node i is invoked. This function
corrensponds to either a TinyOS event, command, or task.
An event func carries its name as its first value, which
can be retrieved from an attribute value using an index 0.

4 Integrating Avrora and MaC

While an application execution can be examined via
Avrora, its detailed information may be too low level
making it difficult to make a connection between the gap
of low-level implementation and high-level specification,
and consequently, errors are hard to locate. MaC closes
the gap by checking low-level implementation against
high-level specification written in formal logic. This sec-
tion describes how MaC can be integrated into Avrora to
monitor and check wireless sensor network applications.

Connecting Avrora and MaC. Recall that Avrora al-
lows a developer to write a custom Monitor mod-
ule to probe wireless sensor applications. A new
custom Monitor module, called Logger, is added to
Avrora to log TinyOS events, tasks, and commands.
Logger, adapted from examples available on Avrora
website [9], calls methods fireBeforeCall() and
fireAfterCall() to log all calls to execute TinyOS
events, tasks, and commands and also uses memory
watchpoints to monitor BASE address, for instance, to log
function parameters. to log function parameters. MaC

Sensor App

nesC

MaC Specification

MacC Compiler ‘

nesC Complier

App/TinyOS
inC ‘

EnergyMonitor
CallMonitor
Avrora
TCP/,
Logget
[togger |3

avr-gcc

MacC Verifier

Event
Recognizer

App/TinyOS

in Machine Code — Checker

Figure 5: Integrating Avrora and MaC

Optimize Flags Code size | Run on | Function
(Byte) Avrora | Detected
None -00 828471 No Yes
Low -ol 424450 No Yes
Balanced | -0l1/02 408597 Yes Yes
High -02 401750 Yes No
For size -os 390740 Yes No

Table 1: How optimization affects code size

reads these logs of function calls and memory via TCP/IP
sockets.

The integration of Avrora and MaC is shown in Fig-
ure 5. Here, the new monitor, Logger is added to Avrora.
Logger sends information about wireless sensor applica-
tions and TinyOS to MaC via TCP/IP. An event recog-
nizer in MacC receives the information and forwards it to
the checker which checks the application against its spec-
ification written in MEDL. Since the feedback is not used
in here, the injector and SADL are not present.

Low-Level Information Extraction. For MaC to check
wireless sensor applications, the monitor Logger must at
least be able to detect TinyOS events, tasks, and com-
mands. These TinyOS events, tasks, and commands,
originally written in nesC, are actually C functions after
their nesC implementation is compiled into C. A com-
piler avr—gcc compiles these C functions into labels and
jump instructions in machine code. Avrora simulates
the machine code and detects TinyOS events, tasks, and
commands by looking for appropriate jump instructions.
These functions’ invocation is a good low-level monitor-
ing point for checking properties using MaC.

Detecting the function invocation can be difficult be-
cause of optimization in compilers. When a nesC pro-
gram is compiled into C, inline keywords are inserted
into some functions. The inline keyword tells avr-gcc

to embed the function code into its caller. The func-
tion thereby no longer exists and cannot be detected by
Avrora. If inline functions are essential for checking prop-
erties, these inline keywords need to be manually re-
moved from the C program. without the inline key-
words, avr—gcc still inlines some functions when some
optimization flags are present. Optimization are however
necessary to keep TinyOS applications small enough to
run on Avrora. Therefore, the right combination of opti-
mization is needed to keep the functions not inlined and
still keep the application size small.

Table 1 shows how optimization affects machine code
size and inlined functions. When optimization is low,
code size is large freezing Avrora but functions are not
inlined and can be detected. When optimization is low,
code size is small but functions are inlined and cannot be
detected. One exception is when the flag is —03, which
tries to inline all “simple” functions and may produce in-
verse effect that increases code size rather than decreases.
To get the right combination of optimization, the —o1 flag
is used with some of —02 optimization.

-0l —-fforce-mem -foptimize-sibling-calls
—fstrength-reduce -fcse-follow-jumps
—frerun—-loop-opt —-fgcse —-fgcse-lm-fgcse—-sm
—fdelete-null-pointer-checks -fpeephole2
—fexpensive-optimizations—fregmove
—freorder-functions —-fstrict-aliasing

With these combination of optimization, the size of the
machine is small enough to run on Avrora and the func-
tions are also logged appropriately.

S Checking TinyOS Applications

After the connection between Avrora and MaC is es-
tablished, TinyOS applications can be checked by MaC
via Avrora. This section presents a wireless sensor net-
work application called Surge, describes how to specify
its properties in MEDL, and provides results.

5.1 Surge

Surge [4] is an application that periodically samples a sen-
sor to obtain environment information such as light or
temperature and reports its readings to a base station. Be-
fore the sampling is done, multi-hop routing is discoverd
in terms of spanning tree where the base station is the root.
Each node discovers the route by sending messages to its
neighbor and then establishes an appropriate node as its
parent. Each node also maintains an address of this par-
ent and a depth of the spanning tree. The parent and depth

Base (D)< o
Station 0 &) @
- N
1 O @
- 2
2 ® ®

Figure 6: Surge topology used in this case study

information may be updated periodically afterward. After
the route is discovered, each node samples the environ-
ment and sends data to its parent, which then forwards to
its parent until the data arrives at the base station.

When the Surge application is run on Avrora, the topol-
ogy of nodes must be supplied to Avrora. Figure 6
presents the topology used in this case study. There are
nine nodes in total. All the data collected at each node
must be sent to the base station by sending and forward-
ing via its parent. Here, Node O is connected a base station
via UART port while other nodes send and forward mes-
sage via radio. Node 3 sends data to the base station via
Node 0. Node 6 sends data to the base station via Node 3,
which then forwards the data of Node 6 to Node 0. Other
nodes send and forward message similarly according to
their topology.

Surge consists of different components: system boot
code (Main), a timer (Timer), multi-hop message routing
(Multihop) a sensor (Photo), and LEDs (Leds). These
components are provided by TinyOS. Surge can just wire
these component appropriately and implements necessary
operations such as a task SendData that reads a sensor
and sends data. Although Surge has only a few tasks
or events, it generates many other tasks and events via
its TinyOS subcomponents. These tasks and events are
logged and sent to MaC to be checked against Surge’s
specification, described in the next subsection.

5.2 Specifying High-Level Properties

This subsection identifies possible properties for the Surge
application. Since Surge nodes should send data periodi-
cally, possible properties are 1) examining periodic behav-
iors, 2) identifying a faulty node, and 3) analyzing send
and forward behaviors.

Examining periodic behaviors. Each node in Surge
periodically reads and sends environment data to a base
station. We may want to identify its period. Figure 7
shows MEDL properties for finding Surge’s period. A
variable prevSend stores the timestamp of previous send

var int prevSend[i] = 0;
var int avg = 0;

[e BN o) SRY I O S

event send[i] = func[i] when
value(func,0) == ’SurgeM$sendData’;
send —> {
avg = (avg == 0) ? time(send) :

O

(avg + (time(send) — prevSend[send.i]))/2;
10 prevSend[send.i] = time(send);

11}

Figure 7: Properties for identifying its period

sendData sendData sendData

di\/

d
(a) Relative

sendData

‘\/l\/l\/

d d d
(b) Absolute

sendData sendData

Figure 8: Periodic behaviors

for each node i while avg keeps the current average
of a period (lines 1-2). An event send, described ear-
lier in Section 3, specifies an instant when a function
SurgeM$sendData from node i is invoked where a MaC
event func is triggered when any tasks, commands, or
TinyOS events are called (lines 4-5). Whenever a send
occurs, avg and prevSend are updated accordingly (lines
7-11). After running the Surge application with 200
sends, the average period in Avrora simulation time unit
is 14750917.

Periodic behaviors can be thought of as being either rel-
ative or absolute. For relative periodic behaviors shown in
Figure 8(a), a period starts right after a send occurs, and
the next send must occur within d time unit after a cur-
rent send occurs. On the other hand, a period for absolute
periodic behaviors shown in Figure 8(b) starts at specific
absolute time. The next send does not have to occur within
d time unit after a current send occurs as long as the next
send occurs within the next period frame. Both periodic
behaviors can be specified in RT-MEDL. An excerpt be-
low shows MEDL for relative periodic behaviors.

alarm missRel[i] = end(
[send[i], send[i] + 14700000));

An alarm missRel for node i is defined by an end of

1 var int period = 14700000;

2 wvar int prevTime[i] = 0;

3 var int nextPeriod[i] = 14700000;

4 var int countPeriod[i] = O;

5

6 event endPeriod = func when

7 (prevTime[func.i] < nextPeriod[func.i] &&

8 nextPeriod[func.i]) <= time(func);

9 alarm missAbs[i] = start(countPeriod[i] >= 2);
10

11 endPeriod —> {

12 nextPeriod[func.i] = nextPeriod[func.i] + period,;
13 countPeriod[func.i] = countPeriod[func.i] + 1;
14 }

15 send —>{

16 countPeriod[func.i] = 0;

17 }

Figure 9: MEDL properties for checking absolute peri-
odic behaviors

a condition [send[i], send[i]4+ 14700000). The con-
dition becomes true when a MaC event send occurs
and stays true as long as send occurs periodically up-
dating the time of the most recent occurrence of send
and preventing the MaC event send[i] + 14700000
from occurring. When send does not occur within
14700000 time units after its last occurrence, the condi-
tion [send[i], send[i] + 14700000) becomes false and
triggers an alarm missRel, which indicates that a corre-
sponding mote fails to send current periodic data.

Specifying absolute periodic behaviors in MEDL is
also possible albeit more complicated as shown in Fig-
ure 9. Lines 1-4 declare four variables: 1) period keeps
an absolute period, 2) prevTime stores timestamps of the
previous send for each mote, 3) nextPeriod specifies the
absolute time where the send for each mote must occur
before, and 4) countPeriod keeps counts of how many
time an end of a period has occurred without any send.

An MaC event endPeriod, specified in lines 6-8, in-
dicates an end of an absolute period, which occurs when
current absolute period is between the timestamp of a pre-
vious call of a TinyOS event, tasks, or command and the
timestamp of the current call. Because MaC cannot trig-
ger events at a certain Avrora’s absolute time, this specifi-
cation of the MaC event works sufficiently to detect an end
of a period. When an end of period is reached, the vari-
able nextPeriod for each mote is updated to a new abso-
lute period by adding a period to its current value and the
variable countPeriod is also incremented. (lines 11-14).
Line 15-17 resets the variable countPeriod to zero. An
alarm missAbs raised when the variable countPeriod is

sendData sendData sendData

d d d

(a) Relative

sendData sendData sendData

d d d d

(b) Absolute

Figure 10: Periodic behaviors when periods are too small

250

200

150

100

Number of Misses

50

0 T T T T T T
14640000 14660000 14680000 14700000 14720000 14740000 14760000 14780000
Relative Periods

Figure 11: Number of nodes that did not send data within
its relative periods

equal or greater than 2, which indicates that a correspond-
ing mote has failed to send data within its absolute period.

To examine Surge periodic behaviors, Surge is run on
Avrora and checked against periodic behavior properties
by MaC. Different values for both relative and absolute
periods are collected to see the affect of different peri-
ods to the number of sends that fail to occur within cor-
responding periods. We call a send that does not occur
within corresponding periods as a “miss”. For relative pe-
riods, when the period is too small, there are many misses
because the period ends before another send occurs shown
in Figure 10(a). Thus, when there are 200 sends for in-
stance, the number of misses can go up to the maximum
of 200. When the absolute periods are too small causing
many misses, send would occur within some periods but
not others shown in Figure 10(b). In this case, if there are
200 sends, the number of misses would never get to the
maximum of 200 because a send must occur at least in
one period.

Figure 11 presents experimental data for different val-
ues of relative periods to see how these different periods
affect the number of sends that do not occur within cor-
responding relative periods. In this experiment, the total
number of sends is 200. Figure 12 shows similar data for
absolute periods. Please notice the different scales on the
two figures. The data for relative periods illustrates a sud-

180
160 Toas

140 ‘.“\
120

100

80 4

60
40 e,
2 T eae,,

0 : : : ‘ e,
8000000 9000000 10000000 11000000 12000000 13000000 14000000 15000000 16000000
Absolute Periods

Number of Misses

Figure 12: Number of nodes that did not send data within
its absolute periods

sendData sendData sendData sendData sendData sendData

Figure 13: Slightly small absolute periods may not pro-
duce misses for small number of trials

den drop of numbers of misses from a period of 14745000
to a period of 14746000 and becomes zero at 14768000.
The sudden drop infers that the time duration between two
sends are very precise between 14745000 and 14746000.

The data for absolute periods shows a linear decrease
in the number of misses. It becomes 0 at a period of
14600000. This infers that as the period increases and
gets close to 14600000, the period becomes large enough
to include at least one send in its period and when it
reaches zero, the period is very close to its actual period.
Since the data from relative periods clearly shows that the
time duration between two sends are very precise between
14745000 and 14746000, 14600000 seems too small to be
an absolute period. It is possible that even when the num-
ber of misses is zero, the specified period might still be
too small but just so slightly that 200 sends cannot catch
it. Figure 13 illustrates such an example. Here, d is the
actual period and d; is the slightly smaller specified pe-
riod. With only five sends, the smaller period d; produces
0 miss. With six sends, however, there is a miss. In our
data, it is possible that the difference between 14600000
and the actual period is so small that 200 sends cannot
detect a miss.

Nonetheless, because of the sudden drop in the relative
data, it clearly shows that the periodic behaviors are rel-
ative. This is not surprising however since the nodes are
run on a simulator that most likely simulates the perfect
environment.

Node | True p | # Misses P z Alarm
0 1 0 0.0 -2.981 No
1 0.05 5 0.0625 | -1.118 No
2 1 0 0.0 -2.981 No
3 1 0 0.0 -2.981 No
4 0.3 19 0.2375 | 4.099 Yes
5 1 0 0.0 -2.981 No
6 1 0 0.0 -2.981 No
7 1 0 0.0 -2.981 No
8 0.2 13 0.1625 | 1.863 Yes

Table 2: Probabilistic send in Node 4 and Node 8

Identifying a faulty node. After a period is identified,
it can be used to pinpoint a faulty node that may stop send-
ing data a few times. An excerpt of MEDL below specifies
how to identify a faulty node using probabilistic proper-
ties.

alarm faultyNode[i] =
missRel[i] prob(> 0.3,send[i]) ||
end([send[i], send[i] + 50000000));

Here, each node is monitored to see if the periodic send
has stopped for sometime or delayed for too long. An
alarm faultyNode of a node 1 is triggered when a faulty
node i is found. faultyNode is triggered when a MaC
event missRel occurs with probability more than 0.3 with
respect to a MaC event send or the node has not sent data
for more than 50000000 time units after its last occur-
rence.

This faulty node error however is a physical error rather
than a software error. Because the environment simulated
by Avrora is perfect, it is impossible to detect this error on
Avrora unless an artificial bug is introduced into Avrora to
simulate the unpredictable environment of sensor nodes.
In this case study, using the java class Random, the arti-
ficial bug using is introduced into Node 1, Node 4, and
Node 8, shown in Figure 6. Node 1 would produce a send
that fails to execute within its period with only a probabil-
ity 0.05 while Node 4 and Node 8 would fail with higher
probabilities of 0.3 and 0.2, respectively. Table 2 shows
the result of probabilistic properties. The sends by other
nodes are still simulated perfectly by Avrora. When the
node fails to send data in time with probability greater
than 0.1, MaC raises an alarm appropriately. Otherwise,
MacC does not raise an alarm.

Analyzing send and forward behaviors. Change the
topology to linear, increase the number of nodes to see if
the forwarding behaviors intefere with the send of envi-
ronment data.

5.3 Limitation

Monitoring and checking wireless sensor network appli-
cations using MaC and Avrora are somewhat limited. Be-
cause it is done through Avrora which always simulates
perfect environment, it can only detect software errors but
not hardware errors. The distributed nature of TinyOS ap-
plications also posts a problem. MaC can check propoties
for multiple nodes but still limited. In the actual world,
data received from multiple nodes will not be complete
nor in order, and thus only local properties but global can
be checked. As our future work, MaC needs to be ex-
tended to be able to handle global properties when check-
ing sensor nodes in their physical worlds.

6 Related Work

related work for programming support for wireless sensor
network, mac. could be here or right before conclusion?

John says: I prefer right before conclusion

http://www.cs.ucla.edu/~kohler/pubs/
sympathy—-emnets04.pdf

http://www.cs.virginia.edu/~control/
docs/papers/infocoml6-envirolog.pdf

http://www.vs.inf.ethz.ch/publ/
papers/mringwal-monito-2005.pdf

http://www.eecs.harvard.edu/~mdw/
papers/motelab-spots05.pdf

7 Conclusion

Low-level programming for wireless sensor network ap-
plications can be difficult. Although Avrora already pro-
vides a tool for to examine a program, Avrora data may
be too detailed and overwhelming making the process
of finding errors difficult. Monitoring and checking us-
ing MaC can aggregate Avrora data and provide a higher
overview of the application. The result of the monitor-
ing and checking allows us to gain some understanding of
relevant behaviors of wireless sensor devices and can nar-
row the gap between the high-level requirement and the
implemention of an application. Future works include ex-
tensions to check sensor devices in their physical worlds
to be able to detect physical errors since Avrora’s perfect
simulation of environment allows only software errors to
be checked. MaC should also be extended to handle wider
variety of distributed global property checking.

References

[1]

(3]

[7]

H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based runtime verification. In Proceedings of
the 5th Conference on Verification, Model Checking
and Abstract Interpretation, Vanice, Italy, 2004.

D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk,
and A. Woo. A network-centric approach to em-
bedded software for tiny devices. In Proceedings of
the ACM Conference on Embedded Systems Software
(EMSOFT), Tahoe City, California, October 2001.

D. Drusinsky. Monitoring temporal logic specifica-
tions combined with Time Series constraints. Jour-
nal of Universal Computer Science, 9(11), November
2003.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic ap-
proach to networked embedded systems. In Proceed-
ings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2003.

M. Kim, S. Kannan, I. Lee, O. Sokolsky, and
M. Viswanathan. Java-MaC: a runtime assurance ap-
proach for Java programs. Formal Methods in Systems
Design, 24(2):129-155, March 2004.

Z.Manna and A. Pnueli. The Temporal Logic of Reac-
tive and Concurrent Systems. Springer-Verlag, 1992.

U. Sammapun, I. Lee, and O. Sokolsky. RT-MaC:
Runtime monitoring and checking of quantitative and
probabilistic properties. In Proceedings of the 11th
IEEE Conference of Embedded and Real-Time Com-
puting Systems and Applications, 2005.

O. Sokolsky, U. Sammapun, I. Lee, and J. Kim. Run-
time checking of dynamic properties. In Proceeding
of the 5th Workshop on Runtime Verification (RV’05),
Edinburgh, Scotland, UK, July 2005.

B. L. Titzer. Avrora: The AVR simulation and analy-
sis framework. Master’s thesis, University of Califor-
nia, Los Angeles, June 2004.

