
Block and Stream Ciphers and the Creatures in

Between

Alex Biryukov

University of Luxembourg, FSTC,
6, rue Richard Coudenhove-Kalergi,

L-1359 Luxembourg-Kirchberg LUXEMBOURG
http://www.esat.kuleuven.ac.be/~abiryuko/

Abstract. In this paper we define a notion of leak extraction from a
block cipher. We demonstrate this new concept on an example of AES.
A result is LEX: a simple AES-based stream cipher which is at least 2.5
times faster than AES both in software and in hardware.

1 Introduction

In this paper we suggest a simple notion of a leak extraction from a block cipher.
The idea is to extract parts of the internal state at certain rounds and give them
as the output key stream (possibly after passing an additional filter function).
This idea applies to any block cipher but a careful study by cryptanalyst is
required in each particular case in order to decide which parts of the internal
state may be given as output and at what frequency. This mainly depends on
the strength of the cipher’s round function and on the strength of the cipher’s
key-schedule. For example, ciphers with good diffusion might allow to output
larger parts of the internal state at each round than ciphers with weak diffusion.

In this paper we describe our idea on an example of 128/192/256 bit key
AES. Similar approach may be applied to the other block-ciphers, for exam-
ple to Serpent. Interesting lessons learnt from LEX so far are that: LEX setup
and resynchronization which are just a single AES key-setup and a single AES
encryption are much faster than for most of the other stream ciphers (see per-
formance evaluation of eSTREAM candidates [8]). This is due to the fact that
many stream ciphers aimed at fast encryption speed have a huge state which
takes very long time to initialize. Also, the state of the stream ciphers has to be
at least double of the keysize in order to avoid tradeoff attacks, but on the other
hand it does not have to be more than that. Moreover unlike in a typical stream
cipher, where all state changes with time, in LEX as much as half of the state
does not need to be changed or may evolve only very slowly.

2 Description of LEX

In this section we describe a 128-bit key stream cipher LEX (which stands for
Leak EXtraction, and is pronounced “leks”). In what follows we assume that the

Dagstuhl Seminar Proceedings 07021
Symmetric Cryptography
http://drops.dagstuhl.de/opus/volltexte/2007/1038

reader is familiar with the Advanced Encryption Standard Algorithm (AES) [7].
The design is simple and is using AES in a natural way: at each AES round we
output certain four bytes from the intermediate state. The AES with all three
different key lengths (128, 192, 256) can be used. The difference with AES is
that the attacker never sees the full 128-bit ciphertext but only portions of the
intermediate state. Similar principle can be applied to any other block-cipher.

IV AES

K K K

AES AES AES
128−bit

128−bit

K

Output stream

320−bit 320−bit 320−bit

128−bit 128−bit 128−bit

Fig. 1. Initialization and stream generation.

In Fig. 1 we show how the cipher is initialized and chained1. First a standard
AES key-schedule for some secret 128-bit key K is performed. Then a given
128-bit IV is encrypted by a single AES invocation: S = AESK(IV). The 128-
bit result S together with the secret key K constitute a 256-bit secret state of
the stream cipher.2 S is changed by a round function of AES every round and
K is kept unchanged (or in a more secure variant is changing every 500 AES
encryptions).

The most crucial part of this design is the exact location of the four bytes of
the internal state that are given as output as well as the frequency of outputs
(every round, every second round, etc.). So far we suggest to use the bytes
b0,0, b2,0, b0,2, b2,2 at every odd round and the bytes b0,1, b2,1, b0,3, b2,3 at every
even round. We note that the order of bytes is not relevant for the security but is
relevant for the fast software implementation. The order of bytes as given above
allows to extract a 32-bit value from two 32-bit row variables t0, t2 in just four
operations (that can be pipelined):

out32 = ((t0&0xFF00FF) << 8) ⊕ (t2&0xFF00FF),

1 There is a small caveat: we use full AES to encrypt the IV, but we use AES with
slightly modified last round for the stream generation, as will be explained further
in this section.

2 In fact the K part is expanded by the key-schedule into ten 128-bit subkeys.

2

while each round of AES uses about 40 operations. Here ti is a row of four bytes:
ti = (bi,0, bi,1, bi,2, bi,3). So far we do not propose to use any filter function and
output the bytes as they are. The choice of the output byte locations (see also

b
0,0

b
1,0

b

b b b b

bbb

b

b b b
0,1 0,2 0,3

1,1
b

0,0
b

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

b
0,0

b
1,0

b b b b

bb

b

b b
0,1 0,3

1,1
b

0,0
b

1,3

2,1 2,3

3,0 3,1 3,2 3,3

b
1,0

b

b b b b

bbb

b

b b b
0,1 0,2 0,3

1,1
b

0,0
b

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,2

b
2,0

b
2,2

bb

Odd rounds Even rounds

Fig. 2. The positions of the leak in the even and in the odd rounds.

Fig. 2) is motivated by the following: both sets constitute an invariant subset of
the ShiftRows operation (the first row is not shifted and the third is rotated by
two bytes). By alternating the two subsets in even and odd rounds we ensure
that the attacker does not see input and output bytes that are related by a
single SubBytes and a single MixColumn. This choice ensures that the attacker
will have to analyze two consecutive rounds. The two rounds of AES have full
diffusion thus limiting divide-and-conquer capabilities of the attacker. Note also
that in AES the 10th round differs from the rest, there is no MixColumn and
there is a XOR of the last (11th) subkey. In LEX there is no need to make the
10th round different from any other round. Any LEX encryption round consists
of:

Round(State, i)

{ SubBytes(State);

ShiftRows(State);

MixColumns(State);

AddRoundKey(State, ExpandedKey[i mod N_r]);

}

Here Nr is the number of rounds and is equal to 10 for 128-bit key AES. The
full T iterations of LEX would then look like:

LEX(State, SecretKey)

{

AESKeyExpansion(SecretKey, ExpandedKey);

State = AESEncrypt(IV, ExpandedKey);

AddroundKey(State, ExpandedKey[0]);

3

for (i=1; i < T; i++){

Round(State, i);

Output[i] = LeakExtract(State, i mod 2);

}

}

It is advisable to change the SecretKey at least every 232 IV setups, and to
change the IV every T = 500 iterations.

Note also that IV setup is performed by full AES encryption and the subtle
difference in the last round of AES and absence of such difference in encryption
rounds of LEX is crucial to break similarity which otherwise could be exploited
by slide attacks [5, 11] (see Section 3.8 for a discussion).

The speed of this cipher is more than 2.5 times faster than 128-bit key AES,
3 times faster than 192-bit key AES, and 3.5 times faster than 256-bit key AES.
So far there are no weaknesses known to the designers as well as there are no
hidden weaknesses inserted by the designers.

3 Analysis of LEX

In this section we analyze resistance of LEX to various attacks.

3.1 Period of the Output Sequence

The way we use AES is essentially an Output Feedback Mode (OFB), in which
instead of using the ciphertexts as a key-stream we use the leaks from the inter-
mediate rounds as a key-stream. The output stream will eventually cycle when
we traverse the full cycle of the AES-generated permutation. If one assumes
that AES is indistinguishable from a random permutation for any fixed key, one
would expect the cycle size to be of the order O(2128) since the probability of
falling into one of the short cycles is negligible3.

3.2 Tradeoff Attacks

For a stream cipher to be secure against time-memory and time-memory-data
tradeoff attacks [1, 9, 4] the following conditions are necessary: |K| = |IV | =
|State|/2. This ensures that the best tradeoff attack has complexity roughly
the same as the exhaustive key-search. The IV’s may be public, but it is very
important that full-entropy IV’s are used to avoid tradeoff-resynchronization
attacks [3, 10]. In the case of LEX |K| = |IV | = |Block| = 128 bits, where
Block denotes an intermediate state of the plaintext block during the encryption.
Internal state is the pair (IV, K) at the start and (Block, Key) during the stream
generation, and thus |K|+ |IV | = |K|+ |S| = 256 bits which is enough to avoid

3 A random permutation over n-bit integers typically consists of only about O(n)
cycles, the largest of them spanning about 62% of the space.

4

the tradeoff attacks. Note that if one uses LEX construction with larger key
variants of AES this might be a ”problem”. For example for 192-bit key AES the
state would consist of 128-bit internal variable and the 192-bit key. This would
allow to apply a time-memory-data tradeoff attack with roughly 2160 stream,
memory and time. For 256-bit key AES it would be 2192 stream, memory and
time. Such attack is absolutely impractical but may be viewed as a certificational
weakness.

3.3 Algebraic Attacks

Algebraic attack on stream ciphers [6] is a recent and a very powerful type of
attack. Applicability of these to LEX is to be carefully investigated. If one could
write a non-linear equation in terms of the outputs and the key – that could
lead to an attack. Re-keying every 500 AES encryptions may help to avoid such
attacks by limiting the number of samples the attacker might obtain while target-
ing a specific subkey. We expect that after the re-keying the system of non-linear
equations collected by the attacker would become obsolete. Shifting from AES
key-schedule to a more robust one might be another precaution against these at-
tacks. Note also that unlike in LFSR-based stream ciphers we expect that there
do not exist simple relations that connect internal variables at distances of 10 or
more steps. Such relations if they would exist would be useful in cryptanalysis
of AES itself.

3.4 Differential, Linear or Multiset Resynchronization Attacks

If mixing of IV and the key is weak the cipher might be prone to chosen or known
IV attacks similar to the chosen plaintext attacks on the block-ciphers. However
in our case this mixing is performed via a single AES encryption. Since AES
is designed to withstand such differential, linear or multiset attacks we believe
that such attacks pose no problem for our scheme either.

3.5 Potential Weakness – AES Key-schedule

There is a simple way to overcome weaknesses in AES key-schedule (which is
almost linear) and which might be crucial for our construction. One might use
ten consecutive encryptions of the IV as subkeys, prior to starting the encryption.
This method will however loose in key agility, since key-schedule time will be 11
AES encryptions instead of one. If better key-agility is required a faster dedicated
key-schedule may be designed.

If bulk encryption is required then it might be advisable to replace the static
key with a slowly time-varying key. One possibility would be to perform an
additional 10 AES encryptions every 500 AES encryptions and to use the 10
results as subkeys. This method is quite efficient in software but might not be
suitable for small hardware due to the requirement to store 1280 bits (160 bytes)
of the subkeys. The overhead of such key-change is only 2% slowdown, while it

5

might stop potential attacks which require more than 500 samples gathered for a
specific subkey. An alternative more gate-efficient solution would be to perform a
single AES encryption every 100 steps without revealing the intermediate values
and use the result as a new 128-bit key. Then use the keyschedule of AES to
generate the subkeys. Note, that previously by iterating AES with the same key
we explored a single cycle of AES, which was likely to be of length O(2128) due
to the cipher being a permutation of 2128 values. However by doing intermediate
key-changes we are now in a random mapping scenario. Since state size of our
random mapping is 256 bits (key + internal state), one would expect to get into
a “short cycle” in about O(2128) steps, which is the same as in the previous case
and poses no security problem.

3.6 No Weak Keys

Since there are no weak keys known for the underlying AES cipher we believe that
weak keys pose no problem for this design either. This is especially important
since we suggest frequent rekeying to make the design more robust against other
cryptanalytic attacks.

3.7 Dedicated Attacks

An obvious line of attack would be to concentrate on every 10th round, since it
reuses the same subkey, and thus if the attacker guesses parts of this subkey he
still can reuse this information 10t, t = 1, 2, . . . rounds later. Note however that
unlike in LFSR or LFSM based stream ciphers the other parts of the intermediate
state have hopelessly changed in a complex non-linear manner and any guesses
spent for those are wasted (unless there is some weakness in a full 10-round
AES).

3.8 The Slide Attack

In [11] a slide attack [5] on resynchronization mechanism of LEX (as it was
described for the eSTREAM project) is shown. The attack requires the ability
to perform 261 resynchronizations and uses 275 bytes of output stream data
produced under a single key and different IVs, which need to be stored and
sorted in 275 bytes of memory. This attack is comparable in complexity to time-
memory-key tradeoff attacks which are applicable to any block cipher in popular
modes of operation like ECB, CBC (time-memory-data complexity of O(264) for
any 128-bit cipher) [2, 3]4 This attack thus does not make LEX weaker than
128-bit key AES.

4 One may argue that attack on a single key is more interesting than the tradeoff
attack that breaks one key out of 264. Firstly we think that it is subjective and
depends on the appliation. Secondly, if we limit the amount of stream produced per
key to 232 as is typical for many other stream-ciphers, this argument will not be
valid any more. The slide attack will have 296 complexity and will need to try the
same amount of keys as the tradeoff attack – 264, before it succeeds.

6

However the observation leading to the attack is of interest since it can be
easily generalized and would apply to any leak-extraction cipher in which resyn-
chronization and encryption are performed by the same function. The idea of the
attack is simple: iterations of LEX explore a cycle of the size about 2128 starting
from IV. Random IV selections would sample random points on this cycle. If the
IV setup is performed by the same function as the subsequent stream generation
then one may pick an IV which is equal to the block-state just after the IV setup
of another sample. This causes the attacker to know the full block input of the
cipher and the result of the leak one round later, which clearly leaks lots of in-
formation about the secret subkey of that round. In order to find such colliding
block-states the attacker needs at least 265 block samples stored and sorted in
memory. The attack assumes the ability to perform about 264 resynchronizations
for the same key.

A natural way to increase resistance against the attack would be to require a
change of keys every 232 IV’s. There would still remain a chance of 2−64 to find
colliding block-states in a collection of 232 IV samples. However the complexity of
the attack would increase to 296 and the attacker would need to try the attack
for 264 different keys – the same number as in the tradeoff attack. Such high
complexity should be a sufficient protection for most of the practical purposes.
In addition, in order to completely get rid of the sliding property one should use
two different functions for the resynchronization and the encryption. Moreover
even a small difference between the two would suffice. For example, if one uses the
full AES with the XOR of the last subkey for the IV setup and AES without the
XOR of this subkey for the encryption – this is enough to break the similarities
used by sliding.

4 Implementation

As one may observe from software performance test done by ECRYPT [8], LEX
holds to its promise and runs 2.5 times faster than 128-bit key AES. We expect
that the same holds for hardware implementations. It is also somewhat pleas-
antly surprising that LEX is one of the fastest ciphers out of the 32 candidates
on many of the platforms: 6th on Intel Pentium M, 1700MHz; 4th on Intel Pen-
tium 4, 2.40GHz; 6th on AMD Athlon 64 3000+, 1.80GHz; 7th on PowerPC G4
533MHz; 6th on Alpha EV5.6, 400MHz; 5th on HP 9000/785, 875MHz; 5th on
UltraSPARC-III, 750MHz). It is also one of the best in terms of agility of the
key-setup, the IV-setup, and the combined Internet packet metric IMIX. LEX
is thus very well suited for the short packet exchanges typical for the Internet
environment.

Since LEX could reuse existing AES implementations it might provide a
simple and cheap speedup option in addition to the already existing base AES
encryption. For example, if one uses a fast software AES implementation which
runs at 14-15 clocks per byte we may expect LEX to be running at about 5-6
clocks per byte. The same leak extraction principle naturally applies to 192 and
256-bit AES resulting in LEX-192 and LEX-256. LEX-192 should be 3 times

7

faster than AES-192, and LEX-256 is 3.5 times faster than AES-256. Note that
unlike in AES the speed penalty for using larger key versions is much smaller in
LEX (a slight slowdown for a longer keyschedule and resynchronization but not
for the stream generation).

5 Strong Points of the Design

Here we list some benefits of using this design:

– AES hardware/software implementations can be reused with few simple
modifications. The implementors may use all their favorite AES implemen-
tation tricks.

– The cipher is at least 2.5 times faster than AES. In order to get an idea
of the speed of LEX divide cycles-per-byte performance figures of AES by
a factor 2.5. The speed of key and IV setup is equal to the speed of AES
keyschedule followed by a single AES encryption. In hardware the area and
gate count figures are essentially those of the AES.

– Unlike in the AES the key-setup for encryption and decryption in LEX are
the same.

– The cipher may be used as a speedup alternative to the existing AES imple-
mentation and with only minor changes to the existing software or hardware.

– Security analysis benefits from existing literature on AES.

– The speed/cost ratio of the design is even better than for the AES and
thus it makes this design attractive for both fast software and fast hardware
implementations. The design will also perform reasonably well in restricted
resource environments.

– Since this design comes with explicit specification of IV size and resynchro-
nization mechanism it is secure against time-memory-data tradeoff attacks.
This is not the case for the AES in ECB mode or for the AES with IV’s
shorter than 128-bits.

– Side-channel attack countermeasures developed for the AES will be useful
for this design as well.

6 Summary

In this paper we have suggested a new concept of conversion of block ciphers
into stream ciphers via leak extraction. As an example of this approach we have
described efficient extensions of AES into the world of stream ciphers, which
we called LEX. We expect that (if no serious weaknesses would be found) LEX
may provide a very useful speedup option to the existing base implementations
of AES. We hope that there are no attacks on this design faster than O(2128)
steps. The design is rather bold and of course requires further study.

8

7 Acknowledgment

This paper is a result of several inspiring discussions with Adi Shamir. We would
like to thank Christophe De Cannière, Joseph Lano, Ingrid Verbauwhede and
other cosix for the exchange of views on the stream cipher design. We also
would like to thank anonymous reviewers for comments that helped to improve
this paper.

References

[1] S. Babbage, “Improved “exhaustive search” attacks on stream ciphers,” in ECOS
95 (European Convention on Security and Detection), no. 408 in IEE Conference
Publication, May 1995.

[2] E. Biham, “How to decrypt or even substitute DES-encrypted messages in 228

steps,” Information Processing Letters, vol. 84, pp. 117–124, 2002.
[3] A. Biryukov, S. Mukhopadhyay, and P. Sarkar, “Improved Time-Memory Trade-

offs with Multiple Data,” in Proceedings of SAC’05 , Lecture Notes in Computer
Science, Springer-Verlag, 2005.

[4] A. Biryukov and A. Shamir, “Cryptanalytic time/memory/data tradeoffs for
stream ciphers,” in Proceedings of Asiacrypt’00 (T. Okamoto, ed.), no. 1976 in
Lecture Notes in Computer Science, pp. 1–13, Springer-Verlag, 2000.

[5] A. Biryukov and D. Wagner, “Slide attacks,” in Proceedings of Fast Software
Encryption – FSE’99 (L. R. Knudsen, ed.), no. 1636 in Lecture Notes in Computer
Science, pp. 245–259, Springer-Verlag, 1999.

[6] N. T. Courtois and W. Meier, “Algebraic attacks on stream ciphers with linear
feedback,” in Advances in Cryptology – EUROCRYPT 2003 (E. Biham, ed.),
Lecture Notes in Computer Science, pp. 345–359, Springer-Verlag, 2003.

[7] J. Daemen and V. Rijmen, The design of Rijndael: AES — The Advanced En-
cryption Standard . Springer-Verlag, 2002.

[8] eSTREAM, “eSTREAM Optimized Code HOWTO,” 2005. http://www.ecrypt.
eu.org/stream/perf/.

[9] J. D. Golic, “Cryptanalysis of alleged A5 stream cipher,” in Advances in Cryptol-
ogy – EUROCRYPT’97 (W. Fumy, ed.), vol. 1233 of Lecture Notes in Computer
Science, pp. 239–255, Springer-Verlag, 1997.

[10] J. Hong and P. Sarkar, “Rediscovery of time memory tradeoffs,” 2005. http:

//eprint.iacr.org/2005/090.
[11] H. Wu and B. Preneel, “Attacking the IV Setup of Stream Cipher LEX,” in

Proceedings of Fast Software Encryption – FSE’06 (M. Robshaw, ed.), Lecture
Notes in Computer Science, Springer-Verlag, 2006.

9

