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Abstract. We give an outline of the specification and provable security
features of the QUAD stream cipher proposed at Eurocrypt 2006 [5].
The cipher relies on the iteration of a multivariate system of quadratic
equations over a finite field, typically GF(2) or a small extension. In the
binary case, the security of the keystream generation can be related, in
the concrete security model, to the conjectured intractability of the MQ
problem of solving a random system of m equations in n unknowns. We
show that this security reduction can be extended to incorporate the key
and IV setup and provide a security argument related to the whole stream
cipher. We also briefly address software and hardware performance issues
and show that if one is willing to pseudorandomly generate the systems
of quadratic polynomials underlying the cipher, this leads to suprisingly
inexpensive hardware implementations of QUAD.

Key words: MQ problem, stream cipher, provable security, Grobner basis
computation

1 Introduction

Symmetric ciphers can be broadly classified into two main families of encryp-
tion algorithms: block ciphers and stream ciphers. Unlike block ciphers, stream
ciphers do not produce a key-dependent permutation over a large block space,
but a key-dependent sequence of numbers over a small alphabet, typically the
binary alphabet {0, 1}. To encrypt a plaintext sequence, each plaintext symbol is
combined with the corresponding symbol of the keystream sequence by using a
group operation, usually the exclusive or operation over {0, 1}. Nearly all stream
ciphers specified recently use two inputs to generate a keystream sequence: a se-
cret key and an additional parameter named initial value (IV) that is generally
not secret. The use of IVs allows to derive several independent keystream se-
quences from one single key by resynchronizing the stream cipher each time
with a new IV.
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The current status of stream ciphers design is characterized by a considerable
discrepancy between theory and practice.

On the theoretical side, seminal work by Shamir[31], Blum and Micali [7],
Yao [33], Levin and Goldreich [21] in the early 80’s produced the well founded
theory of pseudo-random generators, which represents one of the major achieve-
ments in the area of provable security. A pseudo-random number generator
(PRNG) can be viewed as an IV-less stream cipher. It expands a short seed,
e.g. a key, into a larger bit string in such a way that if the input seed is secret
and randomly drawn, then the resulting output is computationally indistinguish-
able from a perfect random sequence. The research effort on security proofs for
PRNGs has not only led to remarkable generic results, e.g. the proof by Impagli-
azzo, Levin, Luby and Hastad [24] that a secure PRNG can be constructed based
upon any one way function (OWF). It has also led to “provably secure” PRNG
constructions exploiting the conjectured one-wayness of specific permutation or
function f, which generally rely on the iteration of f and the extraction of a
few bits at each iteration. The first construction of this type was introduced by
Blum and Micali [7]. Its security reduction relates the security of the PRNG
to the one-wayness of exponentiation modulo a prime number. The construc-
tion proposed by L. Blum, M. Blum and M. Shub [6] exploits the conjectured
intractability of quadratic residuosity modulo Blum integers. Alexi, Chor, Gol-
dreich and Schnorr proposed a construction with security that relies upon the
RSA assumption. Impagliazzo and Naor [27] proposed a construction relying on
the difficulty of the subset sum problem. More recently, some efficiency improve-
ments were recently achieved, either by decreasing the state length as in Fisher
and Stern’s construction [16] based on the intractability of the syndrome decod-
ing problem, or by increasing the number of bits extracted at each iteration of
f as illustrated in Gennaro’s construction based on the intractability of the dis-
crete logarithm problem and Boneh, Halevi, Howgrave-Graham’s construction
[8] and in Steinfeld, Pieprzyk and Wang’s construction [32] respectively based
on the conjectured pseudo-randomness and one-wayness of RSA with small in-
puts. However, current provably secure PRNGs are still generally regarded as
too complex and inefficient to provide really practical stream ciphers. The lack,
for these various algorithms, of an extra IV parameter, represents an additional
drawback.

On the practical side, extremely efficient stream ciphers have been pro-
posed, which either allow like SCREAM [23], RC4 [30], SNOW 2.0 [14]and its
UMTS variant SNOW 3G) much faster software encryption than existing block
ciphers such as AES or require much lower computing resources for hardware
implementations or both, like the GRAIN [26] and TRIVIUM [9] candidates to
the ongoing European initiative eSTREAM [13]. However, the design of secure
stream ciphers is not currently as well understood as the design of secure block
ciphers. The state of the art of the cryptanalysis of stream ciphers has evolved
significantly over the last ten years with the development of attack techniques
such as algebraic attacks, fast correlation and linear masking attacks, resyn-
chronization attacks against IV-dependent stream ciphers, and it turns out that



many recent proposals still suffer from security weaknesses. This is illustrated
by the fact that more than one third of the 34 candidate algorithms submitted
to the eSTREAM stream ciphers evaluation project have already been shown to
be insecure.

The main design objective of QUAD was to contribute to reducing the dis-
crepancy between practical stream ciphers and provably secure PRNG construc-
tions depicted above by specifying a practical stream cipher with provable secu-
rity arguments. Instead of relying upon the conjectured intractability of number
theoretical problems -e.g. the the factoring and discrete logarithm problems-
like most provably secure PRNG constructions proposed so far, QUAD relies
upon the conjectured intractability of the MQ problem of solving a multivari-
ate system of m quadratic equations in n unknowns over a finite field GF(q),
e.g. GF(2), which is known to be NP-hard and conjectured to be intractable
in terms of average complexity even for extremely compact instances provided
that the 7 ratio is sufficiently close to 1. Thus QUAD belongs to the promising
and fast expanding family of multivariate cryptographic algorithms. Moreover,
unlike asymmetric multivariate algorithms relying upon the intractability of the
MQ problem proposed so far, e.g. HFE or UOV, QUAD can be based on a ran-
dom instance of MQ without any embedded trapdoor since QUAD is symmetric
cipher and the computations performed at the sending and receiving side do
not require any inversion of a M@ instance. In other words, QUAD’s security
relies more directly upon the intractability of the MQ problem than the one of
asymmetric multivariate algorithms.

This paper is organized as follows. We first summarize the status of the MQ
problem (Section 2) and recall basic security definitions in a concrete (non as-
ymptotic) security model (Section 3). We then describe the QUAD algorithm
(Section 4). We show that in the GF(2) case, the security of the QUAD’s
keystream generator can be provably related to the conjectured intractability
of the MQ problem (Section 5). We show how to extend this proof, also in the
GF(2) case, as to incorporate the key and IV setup to get a security reduction
for the whole cipher (Section 6). Finally, we address software and hardware im-
plementation issues (Section 7).

2 Multivariate quadratic systems

We consider a finite field GF(g). A multivariate quadratic equation (or equiva-
lently a multivariate quadratic polynomial) in n variables over GF(q) is a poly-
nomial of degree at most 2 in GF(q)[z1,...,zy,] which can be written as

Q)= > iz + > Biwi+7,

1<i<j<n 1<i<n

with coefficients «; j, 3;, and v in GF(¢). In the particular case ¢ = 2, which
is the one most often considered in the sequel, monomials x;x; and z; are equal.



It is easy to see that the set Q of multivariate quadratic polynomials in n vari-
ables is an N-dimensional vector space over GF(q), where N = in(n +3) + 1 if
qg#2and N = %n(n +1)+1if ¢ =2. A basis of this vector space is given by
the N — 1 distinct monomial functions of degree one or two, and the non-null
constant polynomial. Any element of @ can be represented by the N-tuple of its
GF(q) coefficients in this basis. Throughout the rest of this paper, by a randomly
chosen quadratic polynomial in n unknowns we mean the quadratic polynomial
represented in the above basis by a uniformly and independently drawn N-tuple
of GF(q) coefficients.

A multivariate quadratic system S of m quadratic equations in n variables
over GF(q) consist of a set (Q1,...,Qm) of m quadratic polynomials in n vari-
ables over GF(gq). In the sequel, by a randomly chosen system of m quadratic
poynomials in n unknowns, we mean m independently and randomly chosen
quadratic polynomials. Such a system is represented by mN coefficients uni-
formly and independently drawn from GF(g).

We define the problem of solving multivariate quadratic systems (MQ prob-
lem) as follows: given a multivariate quadratic system S = (Q1,...,Qm), of
m quadratic equations over GF(q), find a value x € GF(q)", if any, such that
Qi(x) =0forall 1 <i<m.

Depending on the respective values of n and m, instances of MQ can be
either easy or very difficult to solve. For mm = 1 the number of solutions is
known [28] and it is quite easy to find one solution. When m is significantly
smaller than n, that is for an underdefined quadratic system, finding a solution
is much easier than the exhaustive search on the number of variables [10]. In the
opposite situation of an overdefined system (m > n) containing nearly N linearly
independent quadratic equations solving an MQ problem is easy by linearization.
The total complexity is then only O(n%). However, for general values of m and n
the MQ problem is known to be NP-hard, even when restricted to quadratic
equations over GF(2) (see [18,17]) or over any finite field (see [29]).

Moreover, what makes the MQ problem particularly well suited for crypto-
graphic applications is that it is conjectured to be very difficult not only as-
ymptotically and in worst case, but already for small suitably selected values
of m and n and in terms of the average complexity of solving a random instance.
The problem seems to be the most difficult when m is close to n. For m = n

and ¢ = 2 the complexity of the best known solving algorithms is 9n=0(y/(n)
and thus rather close to the 2™ complexity of exhaustive search, and totally out
of reach of existing computers when n is larger than 100. Even when ¢ = 2
and m = kn, where k > 1 is small enough compared with %, the best known
algorithms XL [11] and improved variants of Buchbergers’s Grébner basis com-
putation algorithm such as Faugere’s F4 and F5 algorithms [15] are exponential
in n for a randomly chosen quadratic system. Much research has been dedicated
in the past years to the above problem [12, 11]. Bardet’s Ph.D. thesis [2] provides
an accurate analysis of the complexity of the most efficient algorithm comput-
ing Grobner basis known to solve a random system of m = kn equations in
n unknowns.



3 The stream cipher QUAD

This section describes the stream cipher QUAD, which specification was first
published in [5]. S = (Q1,...,Qks) denotes a multivariate quadratic system of
kn randomly chosen equations in n variables over GF'(q), and Sy and S; denote
two (k times smaller) additional multivariate systems of n randomly chosen
equations in n variables over GF(q). S, Sy and S; are fixed and publicly known.
During the key and IV loading and the keystream generation, the internal register
state is an n-tuple x = (x1,...,x,)of GF(q) values.

3.1 Keystream generation and encryption

The keystream generation process simply consists in iterating the three following
steps in order to produce (k — 1)n GF(q) keystream values at each iteration.

— Step 1: compute the kn-tuple of GF(q) values S(z) = (Q1(x), ..., Qrn(z))
where z is the current value of the internal state;

— Step 2: output the keystream sequence Sout () = (Qnt1(2), ..., Qrn(z)) of
(k—1)n GF(q) values

— Step 3: update the internal state x with the sequence of the n first generated
GF(q) values Si,(z) = (Q1(x),...,Qn(x))

The maximal length of the keystream sequence that can be generated with
a single (key,IV) pair is set to L GF(q) symbols. In order to encrypt a plaintext
of length [ < L GF(q) symbols, each of the first I GF(q) values of the keystream
sequence is added (using the GF(q) addition) with the corresponding plaintext
value.

I

xT

3.2 Key and IV setup

Before generating any keystream we need to initialize the internal state x, with
the key K and the initialization vector IV, which are respectively represented by
a sequence of GF(q) elements of length | K| and a binary sequence of {0, 1} values
of length |IV|. We assume for the time being, for simplicity of the subsequent
proofs that | K| is chosen exactly equal to n.

The initialization is done as follows: we first set the internal state value x
to the GF(q)" value K. Then for each of the IV bits IV} to IV of the IV



value, the internal state z is updated as follows: if IV; = 0, x is replaced by the
GF(q)" value Sy(x) ; otherwise, x is replaced by the GF(q)™ value S1(z). These
|IV] steps provide a key and IV dependent internal state value . We then clock
the cipher n additional times as described in section 3.1, but without outputting
the keystream. After this preliminary runup phase, the keystream is generated
as described in section 3.1.

4 Basic security notions

We first recall definitions of advantages for distinguishing a number generator
from a perfect random generator and a function generator from a perfect ran-
dom function generator, and the notions of Pseudo Random Number Generator
(PRNG) and Pseudo Random Function (PRF). All the security definitions used
throughout this paper relate to the concrete (non asymptotic) security model.
In the sequel, when we state that a value u is randomly chosen in a set U, we
implicitly mean that w is drawn according to the uniform law over U.

Single-query distinguisher for a number generator: let us consider a num-
ber generator g : {0,1}" — {0, 1}* with input and output lengths L > n, used
to expand an n-bit secret random seed into an L-bit sequence. A distinguisher
in time ¢ for g is a probabilistic testing algorithm A which when input with an
L-bit string outputs either 0 or 1 with time complexity at most t. We define the
advantage of A for distinguishing g from a perfect random generator as

Advgmg(A) = ‘Prxe{o,l}"(A(g(x)) =1) - PryE{O,l}L(A(y) = 1)’7

where the probabilities are not only taken over the value of an unknown ran-
domly chosen z € {0,1}" (resp. of a randomly chosen y € {0,1}), as explicitly
stated in the above formula, but also over the random choices of the probabilistic
algorithm A.

We define the advantage for distinguishing the function ¢ in time t as

Advy™(t) = ij{AdV;;rng (A},

where the maximum is taken over all testing algorithms of time complexity at
most ¢.

Pseudo Random Generator (PRNG): a function g is said to be a PRNG
if Advh™9(t) is negligible (for example less than 270) for values of ¢ strictly
lower than a fixed threshold (for example 280 or 2128). The definition of a PRNG
is therefore dependent upon thresholds reflecting the current perception of an
acceptably secure number generator.



Distinguisher for a function generator: let us now consider a function
generator, i.e. a family F' = {fx} of {0,1}" — {0,1}"™ functions indexed by
a key K randomly chosen from {0, 1}*. A distinguisher in time ¢ with ¢ queries
for F is a probabilistic testing algorithm A7 capable to query an n-bit to m-
bit oracle function f up to ¢ times. Such an algorithm allows to distinguish a
randomly chosen function fx of F' from a perfect random function f* randomly
chosen in the set F; , of all {0,1}" — {0, 1}™ functions with a distinguishing
advantage
Advh 7 (A) = |[Pr(ATx = 1) — Pr(Al" =1)),

where the probabilities are taken over K € {0,1}* (resp f* € Fy,,) and over
the random choices of A. We define the advantage for distinguishing the family
F in time ¢ with ¢ queries as

AdvP (t,q) = mjx{Adv’}rf (A)},

where the maximum is taken over all testing algorithms A working in time at
most ¢ and capable to query an n-bit to m-bit oracle function up to ¢ times.

Pseudo Random Function (PRF): a family of functions F' = {fx} is said
to be a PRF if Adv%rf(t7 q) is negligible for values of ¢ and ¢ strictly lower than
the respective threshold (for example 280 or 2128 for ¢ and 240 for q).

5 Security of the keystream generation

We now give an outline of the security reduction relating, in the GF(2) case,
the PRNG-indistiguishability of the keystream generation part of QUAD to
the conjectured intractability of the MQ problem. This security reduction is
expressed by Theorem 4 hereafter. The details of the proof of Theorem 4 are
given in [5]. In this paper, we only describe the structure of this proof, which is
divided in three parts.

5.1 Part 1: distinguishing the keystream allows to distinguish the
output of a random quadratic function

In the first part (Theorem 1), we prove that if the L-bit keystream sequence
associated with a known fixed or randomly chosen system S of m = kn quadratic
equations and an unknown randomly chosen initial internal state z € {0,1}™ is
distinguishable from the L-bit output of a perfectly uniform generator, then for
a known random quadratic system S of m = kn equations and an unknown
randomly chosen input value = € {0,1}", S(z) is distinguishable from a random
kn bit word. Though we consider a randomly chosen system .S because we need
distinguishing properties related to a random system for the sequel, the property
we prove would also hold if we considered a fixed system S. Our proof is inspired
by the proof given in [22] that a similar result holds for the generator based on
iteration of any fixed n-bit to m-bit function, where m > n, but provides a
tighter bound for the advantage than [22].



Theorem 1. Let L = Ak — 1)n be the number of keystream bits produced in
time XI's using \ iterations of our construction. Suppose there is an algorithm
A that distinguishes the L-bit keystream sequence associated with a known ran-
domly chosen system S and an unknown randomly chosen initial internal state
x € {0,1}" from a random L-bit sequence in time T with advantage €. Then
there exists an algorithm B that for a randomly chosen S distinguishes S(x)
corresponding to an unknown random input x, from a random value of size kn
in time T" = T + NTs with advantage 5.

5.2 Part 2: distinguishing the output of a random quadratic
function allows to predict any linear function of its input

In the second part (Theorem 2), we prove that if for a known randomly chosen
quadratic system S and an unknown randomly chosen x, there exists a distin-
guisher allowing to distinguish S(z) from a random kn bit word such as the one
considered in Theorem 1 above, then it can be converted into an algorithm al-
lowing, for any n-bit to 1-bit quadratic function R, in particular any linear form
R, to predict R(x) for a randomly chosen n bit value z better than at random
given S(zx).

Theorem 2. Suppose there is an algorithm A that, given a randomly chosen
known multivariate quadratic system S of kn equations in n unknowns, distin-
guishes S(x), where x is an unknown random input value, from a random string
of length kn with advantage at least € and in time T'. Then there is an algorithm
B that, given a randomly chosen quadratic system S of kn equations in n un-
knowns, any n-bit to 1-bit quadratic form R, and y = S(x) where z is a random
input value, predicts R(x) with success probability at least % + 7 using at most
T' =T + 2Ts operations.

5.3 Part 3: predicting any linear function of the input of a quadratic
function allows to invert it

In the third part (Theorem 3), we show that if for a fixed or random quadratic
system S and more generally any fixed or random n-bit to m-bit function f
there exists a predictor such as the one considered in the former theorem, i.e. a
predictor allowing, given an n-bit to 1-bit linear form R, to predict R(z) with
a success probability (over all S and z values) strictly larger than i, then a
preimage of S(x) (resp. f(x)) can be efficiently computed, so that S (resp f)
is not one way. This part is essentially a proof of Goldreich-Levin’s theorem
([21]), in which a fast Walsh transform computation is used to get a tighter
reduction. In order to proof Theorem 3, which relates to the computation, given
the image S(x) or f(z) for a random unknown value z and a random system S,
of a list containing x, we first establish a lemma representing the technical core
of the proof, in which a fixed (unknown) value of x is considered. Our proofs
are inspired by the simplified treatment of the original Goldreich-Levin proofs
developed by Rackoff, Goldreich in [19] and Bellare in [3], and also by the proofs
provided by Hastad and Néslund in [25].



Lemma 1. Let us denote by = a fized unknown n-bit value and denote by f
a fived n-bit to m-bit function. Suppose there exists an algorithm B that given
the value of f(z) allows to predict the value of any linear equation R over n
unknowns with probability % + € over R, using at most T' operations. Then there
exists an algorithm C, which given f(x) produces in time at most T' a list of at
most 4n%e~? values such that the probability that = appears in this list is at least

1/2.
2n2 2n 2n
!
== (7 “‘)g(ez) ”) T2l

This Lemma applies to a fixed z and a fixed system S (or a fixed n-bit to
m-bit function f). However, the success probability of the predictor of Theorem
2 is taken over all (z, S) pairs for any linear form R. Consequently, we need
a theorem allowing us to exploit the existence of such a predictor to show the
applicability of the lemma to a non-negligible fraction of (x,.S) pairs.

Theorem 3. Suppose there exists an algorithm B, that given a randomly chosen
quadratic system S of m quadratic equations, a randomly chosen n-bit to 1-bit
quadratic form R and the image S(xz) of a randomly chosen (unknown) n-bit
value x, predicts the value of R(x) with probability at least % + € over all possi-
ble (z, S, R) triplets using T operations. Then there is an algorithm C, which
given the image S(x) of a randomly chosen (unknown) n-bit value x produces a
preimage of S(x) with probability at least €/2 (over all possible values of x and

S) in time T".
8n? 8n 8&n

5.4 Security proof for the keystream generation

Now it is easy to see that if we sequentially apply theorems 1, 2, and 3, we obtain
the following reduction theorem, which states that if, for a random system and
a random initial value, the L-bit keystream sequence was distinguishable from
a random L-bit sequence then there would exist an efficient algorithm allowing
to find a preimage of the image of a random n-bit input value by a random
quadratic n-bit to m-bit system, which for suitably chosen values of n would
contradict the assumptions made in Section 2 on the difficulty of solving MQ.

Random Quadratic
Keystream Thm. 1
L i System Output
Distinguisher o i
Distinguisher
Thm. 4 Thm. 2
. Thm. 3 Linear Bit
Inversion o
Prediction




Theorem 4. Let L = A(k — 1)n be the number of keystream bits produced by in
time XTs using X iterations of our construction. Suppose there exists an algo-
rithm A that distinguishes the L-bit keystream sequence associated with a known
randomly chosen system S and an unknown randomly chosen initial internal
state © € {0,1}" from a random L-bit sequence in time T with advantage e.
Then there exists an algorithm C, which given the image S(x) of a randomly
chosen (unknown) n-bit value x by a randomly chosen n-bit to m-bit quadratic
system S produces a preimage of S(x) with probability at least 55 over all pos-
sible values of x and S in time upper bounded by T.
7,022 70 \2 7032
T = 2 7:2)‘ <T+(A+2)Ts+log<2 ZA ) +2) + 2 Z\ Ts

Theorem 4 above relates to the keystream generation part of QUAD only, not
to the key and IV setup computation for deriving the initial state. Moreover it
does not guarantee the strength of a particular instance of QUAD associated with
a fixed system S but (informally) it shows that for suitably chosen parameter
values if MQ is intractable then most instances of QUAD are secure.

5.5 Specifying Parameter Values for QUAD

We now propose concrete parameters n, k, and L for our construction. We still
restrict ourselves to the GF(2) case. We want to ensure a security level of at
least 28°. More precisely we want Theorem 4 to ensure that if for a random sys-
tem and a random initial internal state value at the beginning of the keystream
generation there exists a testing algorithm that allows us to distinguish an L-bit
keystream produced by QUAD from a uniformly drawn keystream sequence with
an advantage of more than € = ff5 in time less than 7' = 259, this would im-
ply the existence of an inversion algorithm of non negligible success probability
€' = 55y allowing, given a random n-bit to kn-bit system of quadratic equations
and the S(z) image by S of a random input value z, to find a preimage by S
of S(z) in time T’ lower by a substantial factor, say é7 than the best known
inversion algorithms for the MQ problem, and thus result in the existence of a
large set of weak instances of MQ.

Depending on the intended application of the pseudorandom number gener-
ator, the maximum keystream length L can vary from a few hundreds bits for a
mobile phone application to up to 240 bits. Consequently the allowed parameter
values for n and k will also vary, since it is much more demanding to get a se-
curity argument for L = 240 bits than for L = 1000 bits. We will however retain
the latter value L = 240 for a first estimate of the corresponding required value
of n.

In her thesis, Magali Bardet [2] shows that the best Groebner basis algo-
rithm to solve a system of kn equations in k unknowns has (in the case of

a regular system) a complexity of T'(k,n) = (("51))2'37, where D is close to

(—k +14 %\/2]62 — 10k =1+ 2(k + 2)\/k(k + 2)) n. To obtain a contradic-

tion, we need to have T” lower than ¢'T'(k,n). For k = 2 and with the previous

10



values of L = 240, T'= 280 and ¢ = 1—3)0, we get € = 2742 and we need to have
n greater than 350. For n = 256 and k = 2, we only get a contradiction if we
produce less than L = 222 = 4 Mbits of keystream.

Parameter values recommended in practice: for QUAD over GF(2), we
recommend in practice an internal state length of n = 160 bits and an expansion
factor k of 2 and a maximum keystream length L = 24°. For such n, k and L
values, the former concrete security reduction is not applicable, i.e. we do not get
a contradiction as for the former parameter values. However our proof reduction
is not optimal, and we conjecture that these parameter values suffice to provide
the desired security level of at least 230,

6 Extending the security proof to the Key and IV setup

The security proof of the former section only relates to the keystream generation
part of QUAD. We now extend this proof to include the key and IV setup. Our
aim is to relate the indistinguishability of the QUAD cipher, more precisely of
the family of IV to keystream functions indexed by the key K associated with
QUAD, to the conjectured intractability of the MQ problem. For that purpose,
we view QUAD as the composition of two functions, and provide security proofs
for these functions.

— A keyed initial state derivation function, which consists of the initial
phase of the key and IV setup, i.e. the derivation of the initial state be-
fore the runup phase. This part can be viewed as a family of IV to initial
state functions indexed by the key K. We will show that for suitably chosen
parameter sizes, this family of functions can be expected to be a PRF.

— An unkeyed initial state to keystream function, which consists of the
runup phase of the key and IV setup followed by the keystream generation.
We will show that for suitably chosen parameter sizes, this function can be
expected to be a PRNG.

A simple composition theorem (stating essentially that the composition of a
PRF and a PRNG with fitting output and input lengths is a PRF) allows then
to derive a security reduction for the whole cipher.

6.1 PRF-indistiguishability of the initial state derivation function
of QUAD

The key observation allowing to establish that if the MQ problem is intractable
then the initial state derivation function of QUAD is a secure is that this function
results from applying the Tree Based Construction introduced by Goldreich,
Goldwasser, and Micali in [20] to the quadratic n-bit to 2n-bit function S’ =
(S0, 51). Indeed, the IV bits determine a path leading from the key to the initial
state in the binary tree induced by S’ and thus plays exactly the role of the
input bits in the Tree Based Construction.

11



The Tree Based Construction is a generic construction allowing to derive
a PRF from a PRNG. It can be defined as follows. Let us consider a PRNG
g:{0,1}™ — {0,1}*™ and let us denote the 2m-bit image of y € {0,1}"™ by
9(y) = 2021 .. 22m—1. We derive from g two m-bit to m-bit functions gy : y €
{0,1}™ — 20,..., 2m-1 and g1 : y € {0, 1} — 2z, ..., 22m—1-

The PRF F9 is the family of functions {f,},c{0,1}m where

fy {0, 13" — {0, 13™

(:Z?l,fEQ, cee 793n) L fy(xhx%---amn) =Yz, © Gz, - -- Ogml(y)

This construction is illustrated on Figure 4.

[\

1
90(y) 91(y)
T2
z3
Tp—1 1
T

F9(x) (m bits) *

Fig. 1. Tree Based Construction

The following Theorem relates the PRF-advantage for distinguishing F9 to
the PRNG-advantage for distinguishing g. The proof is essentially the same as
the security proof for the Tree Based Construction given by Goldreich in [19], up
to the fact that we consider the concrete security model instead of the asymptotic
polynomial time indistinguishability model.

Theorem 5. Let g : {0,1}"™ — {0,1}2™ be a number generator which gener-
ates 2m outputs bits in time T;™ and let F9 = {f,},eq0.13m be the family of
n-bit to m-bit functions derived from g by the Tree Based Construction. The
(t,q) PRF advantage of F9 is related to the single-query PRNG advantage of g
by the following inequality

AdVY (t,q) < ngAdvE™ (t + q(n + 1)T2™).

The application of Theorem 5 to the initial state derivation of QUAD is
straightforward. We denote by ¢° : {0,1}" — {0,1}?" the n-bit to 2n-bit
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function associated with S’, and by F 9% the resulting family of initial state
derivation functions. Theorem 5 allows to relate the PRF-advantage for distin-

guishing F 9% to the PRNG-advantage for distinguising gS/ by the inequality

AV (t,q) < 2qAdVET (8 +g(ITV] +2)T28)
Moreover, Theorem 4 above allows to relate the PRNG-advantage for distinguish
g% to the hardness of inverting MQ.

6.2 PRNG-indistinguishability of the initial state to keystream
function

Let us denote by ¢° : {0,1}" — {0,1}* the keystream generation function
induced by the iteration of the quadratic function S. The security of the number
generator greq which starts by running n clocks like ¢° without producing any
keystream to reflect the runup of QUAD and then produces L bits of keystream
in the same way as ¢ is related to the security of §5 : {0,1}" — {0, 1}L+(=Dn*
which iterates S to produce L + (k — 1)n? bits, since g,cq; produces the same
keystream as §° up to the fact that the first (k — 1)n? bits of g% are discarded.
Consequently a distinguisher for g.q is also a distinguisher for §°. Thus the
advantage of greq; is upper-bounded by the advantage of §°.

AdVE™ (1) < AdvPE (¢4 T D)

Greal g‘S

6.3 PRF-indistinguishability of the whole cipher

Now a simlpe composition theorem (Theorem 6 hereafter) allows to derive from
the two former results a security reduction related to the whole cipher (Theorem
7 hereafter). We define the composition G of a family of function F' and a function
g, and relate the PRF-indistinguishability of G to the PRF-indistinguishability
of F' and the PRNG-indistinguishability of g.

Definition 1. The composition G = goF' of an n-bit to m-bit family of functions
F = {fk} and of an m-bit to L-bit function g is the n-bit to L-bit family of
functions

G={go fx}.

Theorem 6. Let us consider F = {fx} where fr : {0,1}" — {0,1}™ a
functions family and g : {0,1}™ — {0,1}* a number generator that produces
L bits in time TgL. The (t,q) advantage of G = go F = {go fik} can be upper
bounded as follows

AdvPT(t,q) < Advh (t + qTF) + qAdvE™(t + qTF).

The stream cipher QUAD results from the composition of the function family

’

F9° and the number generator greq;- Due to the composition Theorem 6, the
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security of QUAD can be related to the security of F' 9° and Greqr Which can in
turn, as established in the former sections, be related to the security ¢° and §°.
We get the inequality:

—1)n?
AdvT o (t,q) < 20AdVTE (t4q(| TV |43) T )+ AdVEE™ (4T +Tyc ™)
The initial state derivation and initial state to keystream functions of QUAD
are based on the iteration of a randomly chosen quadratic system of km equations
in m variables (with k = 2 for S”). If S” and S are equal (or S’ consists of the
2n first polynomials of S) we have:

AQVEE L0 (tq) < BgAdVIE™ (¢ + q(TV] + 3)T e * D)

We can now use the results of Theorem 4 to relate the security of the whole
stream cipher QUAD to the difficulty of the MQ problem, i.e. show that if there
exists an adversary capable to distinguish QUAD from a perfect random function
in time t with ¢ queries then there exists a MQ solver. We estimate the time to
compute a quadratic equation in n variables to n? and the time to compute a
system of kn equations in n unknowns to kn3.

Theorem 7. Let us denote A = L4(-](€117—1)17):L2 Suppose there exists an algorithm A

which distinguishes the stream cipher QUAD producing L keystream bits for each
of the 2V IVs from a perfect random function in time T, with q queries and a
PRF-advantage €. Then there exists an algorithm B which given the image S(x)
of a randomly (unknown) n-bit value x by a randomly chosen n-bit to kn-bit
quadratic system S produces a preimage of S(x) with probability at least ﬁ
over all possible values of x and S in time upper bounded by T".

L 9TR2 242 T2
T = 9# (T+ g(ITV| 4+ 2)An® + (A + 4)kn® + log <9€Z‘q> + 2)

Now we have extended the security proof of QUAD to include the key and
IV setup we can, as done after the security proof of the keystream generation,
propose parameter values for n, k, L, |K| and |IV| allowing to get a concrete
security reduction for whole stream cipher. We restrict ourselves to the GF(2)
case. We want to ensure a security level of at least 250, More precisely, we want
Theorem 7 to ensure that the existence of an algorithm allowing, for a randomly
chosen system S, to distinguish the IV to keystream function induced by the
stream cipher QUAD and a random key from a random function with ¢ queries
and an advantage of more than ¢ = 1(1]—0 in time less than T' = 289 would imply
the existence of an inversion algorithm of non negligible success probability ¢’ =
ﬁ allowing, given a random n-bit to kn-bit system of quadratic equations
and the image S(z) of a random input value z, to find a preimage of S(x) by S
in time 7" substantially lower, by a factor of more than ¢, than the best known
inversion algorithms for the MQ problem, and thus the existence of a large set
of weak instances of MQ.
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For k = 2 and with the previous values of L = 240, ¢ = 240, T = 280 and
€= ﬁ, we get ¢ =277 and we need to have n greater than 760. For n = 512
and k£ = 2, we only get a contradiction if we produce less than L = 22! bits of
keystream and allow up to ¢ = 239 queries. These values of n are higher than
those for the keystream generation. However our proofs are not perfectly tight
and 760 bits is still quite low compared to the size stream ciphers based on
discrete log or RSA would require.

7 Software and Hardware Implementation of QUAD

7.1 Software Implementation

Implementing QUAD in software essentially amounts to computing a system of
quadratic functions in n variables over GF(q). This holds for the the key and
IV setup and the runup and keystream generation phases of QUAD, the main
differences between the two phases being that the number of quadratic functions
one has to compute at each iteration are n and m > n respectively. There are two
main steps in the computation of a system of m quadratic functions Q1,--- , Qm
in n variables x1,- -+ ,z,: firstly a monomials generation step which consists of
computing the N = in(n+3) + 1 ((q # 2) case) or N = in(n+1) 4+ 1 mono-
mials of degree 0, 1 or 2. Secondly a polynomials computation step which can
be viewed as the computation of the product of the vector of the N monomials
produced at the first step by the m x N matrix () which rows are the coeffi-
cients of the m quadratic functions Q1,- - - , Q.. Various techniques allowing to
efficiently implement these two steps are described in [4]. In the case of a system
over a small extension of GF(2), e.g. GF(2%), the use of bitslicing techniques
allows to speed up the first step by computing several monomials in parallel,
whereas the use of lookup tables containing, for each column vector of () and
each scalar coefficient a € GF(q), the product of the column vector by a allows
to speed up the second step.

]name\ vendor \ processor \ frequency \ L2 cache \
M1 Intel Pentium 4 2505 MHz 512 kB
M2 Intel Pentium M 1862 MHz 2048 kB
M3 Intel Xeon 2784 MHz 512 kB
M4 AMD Opteron 2197 MHz 1024 kB
M5 AMD AMDG64 1790 MHz 512 kB
M6 AMD Athlon XP 2162 MHz 512 kB
M7 Power PC | G3 900 MHz 512 kB

Implementations of QUAD in C were produced for the two sets of para-
meters described hereafter, and a modified version of the eSTREAM Testing
Framework made by C. de Canniére [13] was used to evaluate the performance
of these implementations on various platforms listed in the table below when
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compiled with different compilers and compiling options. We mostly used com-
pilers gcc-4, gcc-3.4, gcc-3.3, and gcc-2.95, although Intel’s icc compiler
was also supported.

The two parameters sets we considered are the following;:

— The GF(2) version of QUAD with a 160-bit state in which a system of 320
equations in 160 variables is iterated recommended in Section 6. Although
n = 160 is not enough in order for the security reduction of QUAD to give
any formal reduction argument, i.e. any contradiction with the conjectured
intractability of MQ, we believe that this is in practice a rather conservative

instance of QUAD.

— The GF(16) version of QUAD with a 160-bit state in which a system of
80 equations in 40 variables is iterated. Though there is no evidence so far
that existing methods result in an attack of complexity less that 289 against
the keystream generator, the underlying MQ problem of solving a system
of 80 equations in 40 variables can be solved in substantially less than 289
GF(16) operations. Therefore, this is a much less conservative version of
QUAD than the former one that we do not recommend for use in applications
with strong security requirements. Although it does not make much sense
to compare the performance of two instances which do not offer the same
security level, the higher throughput achieved with this version suggests that
one may expect some performance improvements when implementing QUAD
on a small extension of GF(2) rather than GF(2).

The associated performance figures (in cycles per byte) are given in the two
tables hereafter. The orders of magnitudes of the encryption speeds obtained for
fastest implementations of the GF(2) instance and the GF(16) instance are 8
Mbit/s and 24 Mbit/s.

Table 1. GF(2) case: n = 160, t = 2 - speed in cycles/byte

[version| M1 | M2 [ M3 [ M4 [ M5 | M6 | M7 |
32 bit |7057|3746]4600[29303205|4866|4983
64 bit 2081|2636

Table 2. GF(16) case: n = 40, t = 2 - speed in cycles/byte

[version| M1 [ M2 [ M3 | M4 [M5] M6 [M7|
32 bit [1906[1204[1849[1003][990]1257|874
64 bit 745 (885
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7.2 Hardware Performance

It might seem at first glance that QUAD is not well fit for hardware implemen-
tations because it is impractical to manage a large random system of quadratic
equations in hardware. We show in this section that however, if one is will-
ing to generate the fixed multivariate quadratic function S iterated by QUAD
pseudo-randomly rather than randomly by means of a simple non linear number
generator, this results in surprisingly good hardware performance: about 3500
Gate Equivalents (GE) for the smallest implementation reported here. Though
one can argue that the security reduction relating the indistinguishability of the
QUAD output to the intractability of a random MQ instance can no longer be
invoked in such a setting and that moreover we are considering smaller parame-
ter sizes than those needed to get a strong formal security argument, we think
that the existence of a strong link between the security of QUAD and the one
of the underlying MQ problem still provides a partial security argument in this
setting. We implemented binary version of QUAD with state lengths of n = 128,
160 and 256 bits (for an intended security level of approximately 2% on a Xilinx
Virtex4d FPGA. For each state length, we developed two main implementations
realizing distinct trade-offs between area and throughput.

NFSR

temp. value of Qg (x)

Fig. 2. The low area design QU AD'""

In the first implementation, named QU AD'"Y, area is minimized but the
throughput is rather low. The second implementation, named QU AD™edivm
achieves a much higher throughput at the expense of a moderate area increase. In
the QUAD'"" implementation, we performed all binary operations sequentially
in order to save area, as depicted in Figure 2. The implementation involves
two main components. The first component is a linear feedback shift register
(NFSR) which provides the sequence of binary coefficients for Q1, - - - , @, where
m = 2n. In our implementation, we used one of the NFSRs of the Achterbahn
stream cipher proposal, of length 31 and period 23! — 1. The second component
contains the current state x and produces the associated sequence of momomials
x;xj. At each step, the AND product of the current coefficient and the current
monomial is computed, and accumulated in a temporary output value. At the
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end of the computation, the obtained final output value is partly fed back to the
state memory, and partly output as keystream bits.

Table 3. Low area implementation

| Version [128 bits[160 bits[256 bits|
Flip/Flops 66 68 68
4 input LUTs 153 169 181
Slices 85 92 97
Gate Equiv. (GE) 2961 | 3694 | 4611
Max. Freq. (MHz) 267 244 243
Throughput (Kbps) 16.1 9.5 3.7

Table 4. Medium area implementation with an improved throughput/area ratio

| Version 128 bits[160 bits|256 bits|
Flip/Flops 350 418 613
4 input LUTs 781 970 1471
Slices 406 509 763
GE 8117 | 10184 | 14959
Max. Freq. (MHz) 262 269 260
Throughput (Mbps) 4.1 3.3 2.0

In order to improve the throughput, the QU AD™e%w™ implementation si-
multaneously computes for each pair (¢,5) € {1,--- ,n} x{1,--- ,m}, the 2n-bit
word of the coefficients of monomial z;x; in Q1,- -, Qm. For that purpose, the
NFSR component of QUAD" " was replaced by a more expensive finite state
machine (FSM), in which we used the S-boxes of Serpent [1] to produce 2n
bits at each iteration. Tables 3 and 4 provide detailed performance figures for
QUAD"™ and QUAD™¢¥u™ (QOne can see that for the 160-bit versions, the
orders of magnitude of the gate counts are 3500 GE and 10000 GE, whereas the
obtained throughputs are approximately 10 Kbit/s and 3.3 Mbit/s.

8 Conclusion

QUAD is a practical stream cipher whose security is provably related, for suitable
parameter values, to the conjectured intractability of the MQ problem. QUAD
seems well suited for three main kinds of environments:

— software platforms, e.g. on PCs, for applications where the use of a cipher

of unusually strong security arguments matters and where a throughput of
a few Mbit/s is sufficient;
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— embedded devices with hardware encryption capabilities, e.g. mo-

bile stations. The area-throughput trade-off given by QU AD™¢%u™ gseems
best suited for this use case. Due to the fact that for suitable parameter
values, the quadratic function iterated in QUAD is expected to be strongly
one-way, modes of operation of QUAD allowing to provide other security
functionalities than mere encryption, in particular authentication and key
agreement, are easy to define.

lightweight devices with highly limited computation capabilities
such as RFID tags. On such environments, QUAD can be used to provide
encryption and even more advanced security functionnalities such as un-
traceable identification with forward security. The most compact hardware
implementation of QUAD seems to be best suited for this environment.
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