
Compiler-based Software Power Peak
Elimination on Smart Card Systems

Matthias Grumer1, Manuel Wendt1, Christian Steger1, Reinhold Weiß1,
Ulrich Neffe2 and Andreas Mühlberger2

1 Institute for Technical Informatics, Graz University of Technology
8010, Graz, Inffeldgasse 16, Austria

{grumer,wendt,steger,rweiss}@iti.tugraz.at
2 NXP Semiconductors, Business Line Identification

8101, Gratkorn, Mikronweg 1, Austria
{ulrich.neffe,andreas.muehlberger}@nxp.com

Abstract. RF-powered smart cards are widely used in different applica-
tion areas today. For smart cards not only performance is an important
attribute, but also the power consumed by a given application. The power
consumed is heavily depending on the software executed on the system.
The power profile, especially the power peaks, of an executed application
influence the system stability and security. Flattening the power profile
can thus increase the stability and security of a system.
In this paper we present an optimization system that allows a reduction
of power peaks based on a compiler optimization. The optimizations are
done on different levels of the compiler. In the backend of the compiler
we present new instruction scheduling algorithms. On the intermediate
language level we propose the use of iterative compiling for reducing
critical peaks.

Keywords. Software power optimization, compiler optimization, peak
reduction.

1 Introduction

The complexity and functionality of smart cards is growing continuously. This
results in a higher energy consumption of such devices. Smart cards are often
supplied by a radio frequency (RF) field which provides a strictly limited amount
of power. If the power consumed by such a device exceeds this limit a reset
can be triggered by the power control unit or otherwise the chip may stay in
an unpredictable state [1]. Furthermore the transmission from RF-system to a
reader is often done via amplitude shift keying. Power peaks, which result in an
unwanted modulation of the field, can potentially disturb the communication.
Therefore the smart card has to be optimized for low power with the constraint
to avoid peaks in power consumption. Mobile devices are often used to process
and store confidential information. Simple power analysis (SPA) and differential
power analysis (DPA) are attacks based on the analysis of the power consumption

Dagstuhl Seminar Proceedings 07041
Power-aware Computing Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1103

2 M. Grumer, M. Wendt, C. Steger, R. Weiß, U. Neffe, A. Mühlberger

Fig. 1. Compiler loop for software power optimization.

profile of a smart card [2]. Reducing power peaks an thus flattening the power
consumption profile can hinder these attacks.

To address these problems different solutions to reduce the power consump-
tion at different system levels have been proposed. As power peaks are mainly
caused by determined instruction sequences, in this work we focus on the soft-
ware level. We present a new concept, where the optimization is done by the
compiler. As depicted in Fig. 1, the source code is first compiled and then exe-
cuted on an instruction set simulator. The simulator has an interface to a power
model and can deliver a cycle accurate power profile of the executed code. The
power model is derived from a previous characterization of the processor. The
power profile is then processed by an energy analysis unit. The compiler uses the
produced data to reduce and eliminate the power peaks. This cycle can be re-
peated in an iterative manner to find the optimal trade-off between performance
and system stability and security.

The remainder of this paper is organized as follows. Section 2 surveys related
work for software power optimization. In section 3 the optimization system is
described. Section 4 depicts the optimization strategies on the different compiler
levels. Results are presented in section 5. The conclusions are summarized in
section 6.

2 Related Work

Tiwari et al. [3,4] outlined the importance of energy optimization at the software
level in embedded systems already in the nineties. They presented different op-
timization techniques for reducing the software energy consumption. All these
techniques are based on instruction level power analysis. The underlying energy

Compiler-based Software Power Peak Elimination on Smart Card Systems
3

model defines base costs (BC) to characterize a single instruction. The circuit
state overhead (CSO) describes circuit switching activity between two consecu-
tive instructions.

Based on the energy model, different optimization strategies at the software
level have been implemented. Tiwari et al. propose different compilation tech-
niques for low energy software in [5]. They suggest the use of a code-generator-
generator like IBURG [6], where the cost of each pattern is defined by the energy
consumption. This technique, however, was not effective, as the authors observed
that the energy-based and the cycle-based code generators produced very similar
code.

In the same work the authors propose to reorder the instructions in such a
way that the circuit switching activity is minimized. Therefore, the instructions
are scheduled depending on the circuit state overhead. On a 486DX2 architecture
this technique only led to a energy reduction of 2%.

Similar to the last technique, in [7] a novel list-scheduling algorithm for low-
energy program execution is presented. The algorithm is based on a basic block
approach. First a dependency table is derived for each block, then registers are
renamed for reducing output dependencies. From the ready set of instructions,
the instruction which minimizes the inter-instruction cost is selected to be sched-
uled. The results of this algorithm have shown a 4.54% decrease in the total
energy dissipation. Coupled with other optimization strategies such as operand
replacements, total energy savings of over 9% are achieved.

On a higher level of compilation a promising technique for the reduction
of power peaks is iterative compiling. Iterative Compiling was first presented
by Knijnenburg et al. [8,9]. They propose to generate many variants of source
programs and to select the best one by profiling these variants. The main problem
is to find the the best solution in the extremely large search space. They propose
to randomly evaluate a small percentage of the transformation space.

While performance optimization is the main objective in research about it-
erative compiling, Gheorghita et al. use iterative compilation to reduce energy
consumption [10].The authors use iterative compilation in order to find the best
compiled code for energy and energy-delay product. However the work only con-
centrates on the loop transformation passes.

In this work we propose to use iterative compiling for the power peak reduc-
tion on all compiler passes influencing the power behavior of an application.

3 Optimization system overview

The whole optimization system is depicted in Fig. 2. The source code of an ap-
plication is compiled to target code. As compiler the GNU Compiler Collection
(GCC) is used. The target architecture is a MIPS32 4KSc processor. The tar-
get code is then executed via a debugger on an cycle accurate instruction set
simulator. The simulator is directly attached to the energy analysis unit which,
based on the energy model, calculates the energy consumption per instruction.

4 M. Grumer, M. Wendt, C. Steger, R. Weiß, U. Neffe, A. Mühlberger

As presented in [11] our simulator achieves an accuracy of more than 95% for
all benchmarks.

Fig. 2. Software energy optimization system overview.

Using symbolic information, the energy analysis unit abstracts these values
and calculates the energy consumption at different levels. The resulting reports
and the energy model are then used by the optimization unit to perform opti-
mizations at the intermediate language levels.

3.1 Structure of GCC

The two intermediate languages under consideration in this work are the Reg-
ister Transfer Language (RTL) and the GIMPLE language. Like most portable
compilers, the compilation process of a GCC-based compiler can be conceptually
split up in three phases:

– There is a separate front end for each supported language. A front end takes
the source code, and does whatever is needed to translate that source code
into a semantically equivalent, language independent abstract syntax tree
(AST). The syntax and semantics of this AST are defined by the GIMPLE
language, the highest level language independent intermediate representation
GCC has.

– This AST is then run through a list of target independent code transfor-
mations that take care of such things as constructing a control flow graph,
and optimizing the AST for optimizing compilations, lowering to non-strict
RTL, and running RTL-based optimizations for optimizing compilations.
The generation of the non-strict RTL-representation is performed based on
the machine description of the target processor. The machine description

Compiler-based Software Power Peak Elimination on Smart Card Systems
5

contains a pattern for each instruction that the target machine supports.
These patterns are used to generate an non-strict RTL-list based on named
instruction patterns. In this generation process, a pattern code and a unique
id-number is assigned to each RTL-expression. The non-strict RTL is handed
over to more low-level passes.

– The low-level passes are the passes that are part of the code generation
process. The first job of these passes is to turn the non-strict RTL rep-
resentation into strict RTL. Strict RTL-patterns fully match all operand
constraints. Other jobs of the strict RTL-passes include scheduling, doing
peephole optimizations, and emitting the assembly output. For further de-
tails on GCC see [12].

On the RTL level this work concentrates on the instruction scheduling pass.
Originally, this pass looks for instructions whose output won’t be available by
the time it is used in subsequent instructions. It reorders instructions within
a basic block to try to separate the definition and use of items that would
otherwise cause pipeline stalls. This pass is used in this work to implement a
power optimization scheme.

On the GIMPLE level the work is still ongoing. At the moment different
passes on this level are analyzed to determine the influence on the power con-
sumption of the system. In a next step optimizations on this level will be imple-
mented.

4 Optimization strategies

In this section we present our optimizations implemented on the RTL-level and
propose optimizations on the GIMPLE-level.

4.1 Optimizations on the RTL-Level

The system performs two optimizations at the RTL-level. Both optimizations are
implemented in the instruction schedule pass of the compiler and are described
in the following two sections.

Instruction packing As there are no CSO costs when two equal instructions
are executed successively, this optimization simply tries to group equal instruc-
tions. For this purpose, the algorithm searches for expressions in the ready list,
having the same pattern code as the last expression scheduled. If there is no
expression with the same pattern code, normal scheduling is continued.

Instruction Scheduling by CSO-Costs A new greedy algorithm has been
implemented, which schedules the RTL-expressions depending on their CSO-
costs. This algorithm substitutes the original selection algorithm in the Haifa
scheduler.

6 M. Grumer, M. Wendt, C. Steger, R. Weiß, U. Neffe, A. Mühlberger

The algorithm requires double compilation for an application. In the first
compilation cycle, the algorithm matches the unique id generated for each RTL-
expression against the CSO-cost. This is necessary because the mapping of RTL-
expressions to instructions is ambiguous. In a second compilation cycle, for every
RTL-expression scheduled, the algorithm searches the RTL-expression with the
lowest CSO-costs in the ready list. The algorithm schedules this RTL-statement,
updates the ready list and identifies the next RTL-statement to be scheduled.

This algorithm doubles the compilation time. However application for em-
bedded system tend to be relatively small and thus compile time is acceptable.

4.2 Optimizations on the GIMPLE-level

Work on this level is still in progress. We first analyzed the impact on the power
consumption of the different optimization passes of this level. Table 1 summarizes
the results of the benchmark “bubblesort”.

Gain [%]

Pass Cycles Energy Std-dev Mean Power

cse-skip-blocks -77,59 -76,81 -23,65 3,46

delayed-branch -4,11 -3,80 1,78 0,32

gcse -79,58 -78,93 -23,35 3,21

no-delayed-branch -75,51 -75,13 -15,20 1,57

O1 -79,54 -78,90 -23,32 3,15

O1 no-loop-optimize 0,37 0,33 0,15 -0,04

O1 no-tree-copy-rename 19,11 17,87 7,69 -1,04

O1 no-tree-ch 19,50 19,41 4,56 -0,07

O1 no-tree-dominator-opts 9,56 8,18 -0,74 -1,26

O1 schedule-insn -0,19 -0,09 -0,22 0,09

O1 schedule-insn2 -0,19 -0,09 -0,52 0,10

O2 -79,58 -78,14 -22,80 7,06

O2 no-gcse 0,00 0,00 -0,02 0,00

O2 no-cse-skip-blocks -0,01 -3,57 -1,17 -3,56

O2 no-schedule-insns2 0,00 0,00 0,31 0,00

Os -75,59 -74,00 -15,60 6,53

Table 1. Energyanalyse Bubblesort.

The results show clearly, that the total energy consumed is heavily depend-
ing on the execution time. Thus optimizations of the performance usually also
influence the total energy consumption in a positive way. While the total energy
consumption decreases, the mean power mostly increases. It can be deduced,
that the power level is higher and thus resulting peaks are more critical for the
system. The lower standard deviation is possibly caused by the higher mean
power and not from peak reduction. Results of other benchmarks show, that a

Compiler-based Software Power Peak Elimination on Smart Card Systems
7

certain pass can influence the power and energy consumption in different man-
ners, depending on the application.

Based on these results two different optimization strategies can be proposed.

1. In an iterative compile process a optimal pass selection is found. As cost
function different metrics such as standard deviation, mean power, total
energy or the number of peaks can be used.

2. A peak detection system identifies critical parts of the code. The compiler
then tries to modify these parts of the code. This can be achieved by selecting
or deselecting different compiler passes on a basic block or function level in
an iterative process. The resulting code is a trade-off between performance
and system stability.

At the moment we concentrate on the second strategy proposed.

5 Experimental Results

For a first evaluation of the optimizations on RTL level, six evaluation programs,
consisting mainly of algebraic and array functions were compiled. Table 2 shows
the changes in mean value, total energy consumption and standard deviation by
applying the instruction packing algorithm.

Table 2. Changes of the mean value, total energy consumption and standard
deviation when applying instruction packing algorithm.

Program Mean value Total Standard
energy deviation

Gain [%] Gain [%] Gain [%]

C1 0.96 0.96 4.7

C2 0.83 0.83 6.4

C3 0.17 0.17 5.9

C4 0.63 -2.57 7.2

C5 0.32 0.32 5.6

C6 0.92 0.92 5.1

While the mean value and the total energy consumption is only reduced by up
to 1 %, the standard deviation was reduced by up to 7%. It can be deduced, that
the instruction packing does not reduce the energy consumption, but it produces
a significantly smoother power profile. While the reduction of the mean value
corresponds in all programs to the reduction of the total energy consumption,
this is not the case in program “C4”. The reason is, that by reordering the
instruction, the execution time rose, probaly due to additional pipline stalls,
which also increase the total energy consumption.

Applying the instruction scheduling by CSO costs to the same programs
delivers almost the same results. When taking a closer look at the produced

8 M. Grumer, M. Wendt, C. Steger, R. Weiß, U. Neffe, A. Mühlberger

assembler files, it can be seen that both optimization algorithm produce quite the
same code. Obviously, if there is the possibility to schedule the same instruction
as the last scheduled, the scheduling by CSO behaves like the instruction packing,
because there are no CSO cost between equal instructions.

All six programs are quite small and each of them fits into the cache. Thus no
cache miss can occur. When concatenating the six programs and compiling them
to one executable cache misses will occur. The results of this evaluation show
only a reduction of the standard deviation of 3.4 % for the instruction packing
and 1.9 % for instruction scheduling by CSO costs. The high power consumption
of a memory access could be an explanation for this.

6 Conclusion

The minimization of power peaks in the power profile of mobile devices repre-
sents an important aspect for the system stability and system security. In this
paper we presented a new approach to flatten the power profile of an application
executed on a embedded processor. The results at the RTL-level have shown that
optimizations at the software level can produce a flattened power profile. More
promising is the optimization on the GIMPLE level of the GCC framework. We
will use iterative compiling to reduce the power peaks of an application.

7 Acknowledgments

This work was funded by the Austrian Federal Ministry for Transport, Innova-
tion, and Technology under the FFG contract FFG 810124

References

1. Haid, J., Kargl, W., Leutgeb, T., Scheiblhofer, D.: Power management for rf-
powered vs. battery-powered devices. In: Proceedings of Workshop on Wearable
and Pervasive Computing. (2005)

2. Rothbart, K., Neffe, U., Steger, C., Weiss, R., Rieger, E., Muehlberger, A.: Power
consumption profile analysis for security attack simulation in smart cards at high
abstraction level. In: Embedded Software (EMSOFT 2005), 5th ACM International
Conference on. (2005)

3. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: a first step
towards software power minimization. In: ICCAD ’94: Proceedings of the 1994
IEEE/ACM international conference on Computer-aided design, Los Alamitos,
CA, USA, IEEE Computer Society Press (1994) 384–390

4. Tiwari, V., Malik, S., Wolfe, A., Lee, M.T.C.: Instruction level power analysis and
optimization of software. J. VLSI Signal Process. Syst. 13 (1996) 223–238

5. Tiwari, V., Malik, S., Wolfe, A.: Compilation techniques for low energy: an
overview. In: IEEE Symposium on Low Power Electronics. (1994) 38–39

6. Fraser, C.W., Hanson, D.R., Proebsting, T.A.: Engineering a simple, efficient code-
generator generator. ACM Lett. Program. Lang. Syst. 1 (1992) 213–226

Compiler-based Software Power Peak Elimination on Smart Card Systems
9

7. Sinevriotis, G., Stouraitis, T.: A novel list-scheduling algorithm for the low energy
program execution. IEEE International Symposium on Circuits and Systems (2002)
97–100

8. Knijnenburg, P.M.W., Kisuki, T., O’Boyle, M.F.P.: Iterative compilation. (2002)
171–187

9. Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P.: Combined selection of tile
sizes and unroll factors using iterative compilation. In: PACT ’00: Proceedings
of the 2000 International Conference on Parallel Architectures and Compilation
Techniques, Washington, DC, USA, IEEE Computer Society (2000) 237

10. Gheorghita, S., Corporaal, H., Basten, T.: Using iterative compilation to reduce
energy consumption. In: ASCI 2004: Proceedings of the 10th Annual Conference
of the Advanced School for Computing and Imaging, Delft, the Netherlands (2004)
197–202

11. Neffe, U., Rothbart, K., Steger, C., Weiss, R., Rieger, E., Muehlberger, A.: A
flexible and accurate model of an instruction-set simulator for secure smart card
software design. Lecture Notes in Computer Science 3254/2004 (2004) 491–500

12. Stallman, R.M.: GNU Compiler Collection Internals (GCC). GCC Developer
Community, http://gcc.gnu.org. (2005)

13. Sami, M., Sciuto, D., Silvano, C., Zaccaria, V.: An instruction-level energy model
for embedded vliw architectures. Computer-Aided Design of Integrated Circuits
and Systems 21 (2002) 998–1010

14. Steinke, S., Knauer, M., Wehmeyer, L., Marwedel, P.: An accurate and fine grain
instruction-level energy model supporting software optimizations (2001) In Inter-
national Workshop on Power And Timing Modeling, Optimization and Simulation
(PATMOS), September 2001.

	Compiler-based Software Power Peak Elimination on Smart Card Systems
	Matthias Grumer, Manuel Wendt, Christian Steger, Reinhold Weiß, Ulrich Neffe and Andreas Mühlberger

