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Abstract. The spectral and Jordan structures of the web hyperlink matrix G(c) = cG + (1 −
c)evT have been analyzed when G is the basic (stochastic) Google matrix, c is a real parameter such
that 0 < c < 1, v is a nonnegative probability vector, and e is the all-ones vector. Typical studies
have relied heavily on special properties of nonnegative, positive, and stochastic matrices. There is
a unique nonnegative vector y(c) such that yT G(c) = yT and y(c)T e = 1. This PageRank vector
y(c) can be computed effectively by the power method.

We consider a square complex matrix A and nonzero complex vectors x and v such that Ax = λx
and v∗x = 1. We use standard matrix analytic tools to determine the eigenvalues, the Jordan
blocks, and a distinguished left λ-eigenvector of A(c) = cA + (1− c)λxv∗ as a function of a complex
variable c. If λ is a semisimple eigenvalue of A, there is a uniquely determined projection N such
that lim

c→1
y(c) = Nv for all v; this limit may fail to exist for some v if λ is not semisimple. As a

special case of our results, we obtain a complex analog of PageRank for the web hyperlink matrix
G(c) with a complex parameter c. We study regularity, limits, expansions, and conditioning of y(c)
and we propose complex extrapolation algorithms that may provide an efficient way to compute
PageRank also with c close or equal to 1. An interpretation of the limit vector Nv and a related
critical discussion on the model, on its adherence to reality, and possible ways for its improvement,
are reported at the end of the paper.
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The paper is based for large part on a joint work with Roger Horn [21] and on [32]

1. Introduction. As customary in the literature (see e.g. [27]), the web can be
regarded as a huge directed graph whose n nodes are all the web pages and whose
edges are constituted by all the direct links between pages. If deg(i) indicates the
cardinality of the pages different from i which are reached by a direct link from page
i, the simplest Google matrix G is defined as Gi,j = 1/deg(i) if deg(i) > 0 and there
exists a link in the web from page i to a certain page j 6= i. In the case where
deg(i) = 0 (the so-called dangling nodes), we set Gi,j = 1/n where n is the size of
the matrix i.e. the cardinality of all the web pages. This definition is a model for the
behavior of a generic web user: if the user is visiting page i with deg(i) > 0, then
with probability 1/deg(i) he/she will move to one of the pages j 6= i linked by i; if i
is a dangling node i.e. it has no links, then the user will make just a random choice
with uniform distribution 1/n. The basic PageRank is a n sized vector which gives
a measure of the importance of every page in the web and this notion of importance
of a given page is measured according to the limit probability that a generic user
reaches that page asymptotically, i.e., after infinitely many clicks: this is the surfing
model. On the other hand, we would like to have a more intrinsic and intuitive notion
of importance or ranking of the web pages. Indeed, taking inspiration from social
sciences, the following ideas are quite natural:

• a page j is more important if there exists a page i referring to it,
• if i is a “very important page” and is referring j, then the importance of j is

increased,

∗Dipartimento di Fisica e Matematica, Università dell’Insubria - Sede di Como, Via Valleggio 11,
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• if i is referring to many pages including j 6= i, i.e. deg(i) is large, then this
adds little importance to j.

It is worth mentioning that the idea contained in the above itemized sentences is ex-
actly a quantification of the notion of VIP (very important people) appearing in social
sciences or, quite equivalently, according to a famous sentence of the PopArt master
Andy Warhol: citing freely, “no matter what they say about you, the important thing
is that they talk o refer to you”. By the way, this basic observation shows the large
potential of these researches in terms of the broad range of possible applications.

Now we translate in formulae these concepts. More in detail, after a reasonable
normalization, for every j = 1, . . . , n, the importance y[j] of page j is defined as
follows

y[j] =
∑

i→j

y[i]
deg(i)

, y[j] ≥ 0,

n∑

i=1

y[i] = 1.

The definition is nice in principle, but formally collapses in presence of a dangling node
i since deg(i) = 0. A possible remedy is to interpret the previous relations in matrix-
vector terms as yT Ĝ = yT , y[j] ≥ 0, for all j,

∑n
i=1 y[i] = 1, where Ĝi,j = Gi,j if there

exists in web a link from i to j and Ĝi,j = 0 otherwise: G and Ĝ are the same with the
exception of the management of dangling nodes. However, even by interpreting the
above relations as an eigenvector problem with respect to the eigenvalue 1, it can be
easily seen that 1 mail fail to belong to the spectrum of the resulting matrix. Explicit
and very simple examples can be constructed: take e.g. the matrix

[
0 1
0 0

]

associated to a toy web with only two nodes i, j with i < j and a unique link from i to
j; it is clear that the problem defined by yT Ĝ = yT , y[j] ≥ 0, for all j,

∑n
i=1 y[i] = 1

has no solution, since 1 is not in the spectrum of G. The reason is again the presence
of dangling nodes that in turn implies the existence of identically zero rows. Hence,
for giving a solution to the above mathematical incongruence, we define

deg∗(i) = deg(i), if deg(i) > 0, (1.1)
deg∗(i) = n, if deg(i) = 0,

and we correct accordingly the relations concerning y[j] in the following way:

y[j] =
∑

i→j

y[i]
deg∗(i)

, y[j] ≥ 0,

n∑

i=1

y[i] = 1.

Putting the above relations in matrix terms, and introducing the l1 norm of a real or
complex vector w as ‖w‖l1 =

∑n
j=1 |wj |, we have

yT G = yT , y ≥ 0, ‖y‖l1 = 1. (1.2)

Interestingly enough, it should be observed that any vector y solution to (1.2) rep-
resents also a solution in the sense of the surfing model and viceversa. Therefore, in
other words, with the above choice, there is an identification, which can be criticized
between the surfing model and the definition of importance: in fact the definition of
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G referred to the dangling nodes is perfectly coherent in the surfing model, while is
not justified at all when defining a notion of importance (see Section 11).

Now looking at (1.2), a basic PageRank is a nonnegative left eigenvector y of G
associated to the dominating eigenvalue 1 normalized so that ‖y‖l1 = yT e = 1, e
being the vector of all ones (see e.g. [30, 23]). Since the matrix G is nonnegative and
has row sum equal to 1 it is clear that a (canonical) right eigenvector related to 1 is
e and that all the other eigenvalues are in modulus at most equal to 1.

As a consequence, the good news is that a solution always exists; the bad news is
that there might be multiple independent nonnegative solutions. And even if there is
a unique solution, computing it by standard methods such as the power method [18]
may fail, because G has one or more eigenvalues different from 1 that have modulus
1. [19].

In fact, the structure of G is such that we have no guarantee for its aperiodicity
and for its irreducibility: therefore the gap between 1 and the modulus of the second
largest eigenvalue can be zero, see [19]. This means that the computation of the
PageRank by the application of the standard power method (see e.g. [18]) to the
matrix GT (or one of its variations for our specific problem) is not convergent in
general. A solution is found by considering a change in the model: given a value
c ∈ [0, 1), from the basic Google matrix G we define the parametric Google matrix
G(c) as cG + (1 − c)evT with vi ≥ 0, ‖v‖l1 = 1. This change corresponds to the
following user behavior: if the user is visiting page i, then the next move with be
with probability c according to the rule described by the basic Google matrix G
and with probability 1 − c according to the rule described by v. We notice that
this change is again meaningful in terms of the surfing model, but there is no clear
interpretation in terms of notion of importance. Generally a value of c as 0.85 is
considered in the literature (see e.g. [23]). For c ¿ 1, the good news is that the y(c),
i.e. the left dominating nonnegative eigenvector solution of (1.2) with G = G(c), is
unique and can be computed in a fast way since G(c) has second eigenvalue whose
modulus is dominated by c (see [27] and references therein): therefore the convergence
to y(c) is such that the error at step k decays in the generic case as ck. Of course
the computation becomes slow is c is chosen close to 1 and there is no guarantee
of convergence if c = 1. Notice that in Markov chain terms the uniqueness of the
solution y(c) for c < 1 is concluded, by Perron-Frobenius, only under the assumption
v > 0 since G(c) has row sum 1, is nonnegative, irreducible, and aperiodic. In matrix-
theoretic terms the same conclusion holds in the general case of nonnegative v, because
the eigenvalue 1 is strictly dominating all the others in modulus.

In this paper we have three main expository and research goals. First we would
like to understand the characteristics of the matrix G(c) as a function of the parameter
c (by completing the analysis in [32, 6]): we are interested in the eigenvalues and in
the eigenvector structure, so that the analysis of canonical forms (Jordan, Schur etc.)
is of prominent interest. Second we would like to understand the behavior (regularity,
expansions, limits, conditioning etc) of the PageRank vector y(c) as a function of
c also for c close or equal to 1, and third we are interested in using the analytical
characterization of y(c) for computational purposes. In particular, it is known that
for c = 1 the problem is ill-posed since there exist infinitely many solutions, forming
a convex set, satisfying relations (1.2). On the other hand, for c ∈ [0, 1), the solution
exists and is unique, but the known algorithms become very slow when c is close to
1. Our interest is to compute y(c) in these difficult cases, especially in the limit as c
tends to 1. Our results are the following:
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1. the eigenvalues of G(c), ∀c ∈ C;
2. the canonical forms of G(c), ∀c ∈ C such that |c| < 1 (in fact the condition
|c| < 1 can be replaced by the less restrictive (*): ∀c ∈ C such that cλj 6= 1,
j = 2, . . . , n, λ1 = 1, λ2, . . . , λn being the eigenvalues of G = G(1));

3. a rational expansion for y(c), ∀c ∈ C : |c| < 1 (in fact only (*) is required);
4. for c = 1 the problem (1.2) is ill-posed, but

lim
c → 1

(∗) holds

y(c) = lim
c→1

y(c) = ỹ

and ỹ is a solution of (1.2);
5. for this special solution ỹ we show that it coincides with Nv where v is the

personalization vector and NT is a nonnegative projector coinciding with the

Cesaro mean lim
r→∞

1
r + 1

r∑

j=0

Gj(1): the result is due to Lasserre, who calls N

the ergodic projector, in a context of probability theory [26], and is known in
the field of web searching engines thanks to [7];

6. if we set y(1) = ỹ, then y(c) is analytic in a proper neighborhood of 1 and its
conditioning κ(y(c), δ) = κc|cδ|(1 + O(δ)) with respect to a generic induced
norm ‖ · ‖ is such that, in a neighborhood of c = µ−1, µ belonging to the
spectrum of G = G(1), κc grows generically, up to a function independent of
c, as

max
µ6=1,µ∈Σ(G(1)),n(µ)∈S(µ)

F (µ, c), (1.3)

F (µ, c) =
∣∣∣z1(1− cµ)−n(µ) + z2(1− cµ)−n(µ)−1(1− c)

∣∣∣ |c|n(µ)−2, (1.4)

with z1 = (n(µ) − 1)(1 − c) − c, z2 = cµn(µ), Σ(W ) denoting the spectrum
of a given square matrix W and S(µ) denoting the set of all possible sizes of
the Jordan blocks related to the eigenvalue µ; for almost every choice of the
probability vector v, there exists a positive constant θ independent of c and
of the spectrum of G = G(1), such that

κc ≥ θ max
µ6=1,µ∈Σ(G(1)),n(µ)∈S(µ)

F (µ, c);

by choosing the personalization v carefully in the above zero measure set of
the unit l1 sphere, real examples of web matrices for which kc = 0 can be
constructed (perfect conditioning); on the other hand, there exists a positive
constant θ̃, independent of c and of the spectrum of G = G(1), such that

κc ≤ θ̃ max
µ6=1,µ∈Σ(G(1)),n(µ)∈S(µ)

F (µ, c);

the nice thing is that θ̃ ≤ κ(S)‖v‖Λ, κ(·) being the condition number of its
argument with respect ‖ · ‖, S being the left-most matrix in the Jordan form
of G(1) = SJS−1, and Λ being a universal positive constant independent of
c and of the spectrum of G(1);
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7. numerical procedures of extrapolation type, based on the third item, for the
computation of y(c), when c is close or equal to 1 (i.e. the limit Cesaro vector
ỹ of the fourth item and fifth item).

The results in 1) follows from Brauer’s Theorem. We discuss the proof and we provide
a short historical account both in Section 3 and 10. Findings 2)-7) are obtained in the
more general setting of a special type of rank one perturbations. More specifically,
instead of G(c) we consider A(c) := cA + (1− c)λxv∗ where Ax = λx, v ∈ Cn, c ∈ C,
and v∗x = 1. It is clear that our setting is a special instance of the latter: however
it is important to stress that this generality allows to clarify and even to simplify the
mathematical reasoning and the proofs of the results. Here we report some further
comments.

• The results in items 3)-4) were obtained in [32] with the constraint that c ∈
[0, 1). Moreover, item 4) shows that the parameter c acts like a regularization
parameter that stabilizes problem (for a general treatment of regularization
techniques see [17]): the nice thing is that, as c tends to 1, we obtain a limit
vector ỹ, one of the solutions of the original problem.

• The algorithms that we propose are new and are partly based on specialized
extrapolation procedures discussed in [13, 11]; moreover, we should benefit
from the choice of a complex parameter thanks to items 2)-4) with respect to
[12], especially in terms of stability.

A further important issue is how to interpret the computed vector y(c) when c is
equal or close to 1. Let us consider the following (extreme) example.

EXAMPLE:

176540123 276540123 376540123 . . . . . . 109?>=<89:;

A76540123

B76540123 C76540123

**&& ¾¾ ¤¤

À
·

­xx

­
Ä

ttt

®®
44tt

According to the classical algorithm in the ideal case (i.e. for c = 1, y(1) = ỹ) the
page A has zero PageRank (as the 109 pages in the first row) and the importance is
concentrated in B and C. In some sense the obtained ranking is against common sense
since, given the topology of the graph, it is clear that page A should have a significant
PageRank measure. This and other related pathologies need a further investigation:
at the end of Section 11, we will discuss these issues by suggesting a revision of the
PageRank model.

The paper is organized as follows. In Section 2, we set notation and terminology
for the basic matrix-theoretic concepts that we employ to analyze a generalization
of G(c): for a square complex matrix A, nonzero complex vectors x and v such that
Ax = λx and v∗x = 1, and a complex variable c, we study A(c) = cA+(1−c)λxv∗. In
Section 3 we explain how Alfred Brauer used the classical principle of biorthogonality
in 1952 to prove a theorem that reveals the eigenvalues of A(c). In Section 4 we
introduce the complete principle of biorthogonality and use it to obtain the Jordan
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blocks of A(c) under the assumption that there is a nonzero vector y such that y∗A =
λy and y∗x = 1. In particular, such a vector y exists if λ is a simple or semisimple
eigenvalue of A. In Section 5 we derive a representation for a distinguished left
λ-eigenvector y(c) of A(c); this representation is an explicit rational vector-valued
function of the complex variable c. In Section 6 we study lim

c→1
y(c), and in Section 7

we focus on the special case in which A is the basic Google matrix G, x = e, and v is
a nonnegative probability vector; in this respect Section 8 is devoted to a comparison
with the explicit formulae of y(c) and of the Jordan form in [32], to a detailed analysis
of the conditioning of y(c) also for c = 1, and of the eigenvector structure of G(c). In
Section 9, we propose some algorithmic ideas for computing PageRank that exploit
properties of G(c) as a function of the complex variable c, especially in the unit open
disk and in a proper disk centered at c = 1. Section 10 mentions some prior work
and Section 11 is devoted to interpret the limit vector ỹ, and to a critical view of the
basic Google model.

2. Terminology and notation. All the matrices and vectors that we consider
have real or complex entries. We denote the conjugate transpose of an m-by-n matrix
X = [xij ] by X∗ = [x̄ji]. For p ∈ [1,∞) for a vector w, its lp norm is given by

‖w‖lp =
[∑n

j=1 |wj |p
]1/p

while its l∞ norm is ‖w‖l∞ = maxj=1,...,n |wj |; for a square
matrix A and for p ∈ [1,∞], ‖A‖lp is the associated induced norm. If A is a square
matrix, its characteristic polynomial is pA(t) := det(tI −A); the (complex) zeroes of
pA(t) are the eigenvalues of A. A complex number λ is an eigenvalue of A if and only
if there are nonzero vectors x and y such that Ax = λx and y∗A = λy∗; x is said to
be an eigenvector (more specifically, a right eigenvector) of A associated with λ and
y is said to be a left eigenvector of A associated with λ. If λ is an eigenvalue of A, its
algebraic multiplicity is its multiplicity as a zero of pA(t); its geometric multiplicity
is the maximum number of linearly independent eigenvectors associated with it. The
geometric multiplicity of an eigenvalue is never greater than its algebraic multiplicity.
An eigenvalue whose algebraic multiplicity is one is said to be simple. An eigenvalue
whose algebraic and geometric multiplicities are equal is said to be semisimple; an
eigenvalue λ of A is semisimple if and only if rank(A− λI) =rank(A− λI)2.

We let e1 indicate the first column of the identity matrix I: e1 = [1 0 . . . 0]T .
We let e = [1 1 . . . 1]T denote the all-ones vector. Whenever it is useful to indicate
that an identity or zero matrix has a specific size, e.g., r-by-r, we write Ir or 0r.

Two vectors x and y of the same size are orthogonal if x∗y = 0. The orthogonal
complement of a given set of vectors is the set (actually, a vector space) of all vectors
that are orthogonal to every vector in the given set.

An n-by-r matrix X has orthonormal columns if X∗X = Ir. A square matrix U
is unitary if it has orthonormal columns, that is, if U∗ is the inverse of U .

A square matrix A is a projection if A2 = A.
A square matrix A is row-stochastic if it has real nonnegative entries and Ae = e,

which means that the sum of the entries in each row is 1; A is column-stochastic if
AT is row-stochastic. We say that A is stochastic if it is either row-stochastic or
column-stochastic.

The direct sum of k given square matrices X1, . . . , Xk is the block diagonal matrix



X1 · · · 0
...

. . .
...

0 · · · Xk


 = X1 ⊕ · · · ⊕Xk.
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The k-by-k Jordan block with eigenvalue λ is

Jk(λ) =




λ 1 0
. . . . . .

. . . 1
λ




, J1(λ) = [λ].

Each square complex matrix A is similar to a direct sum of Jordan blocks, which is
unique up to permutation of the blocks; this direct sum is the Jordan canonical form
of A. The algebraic multiplicity of λ as an eigenvalue of Jk(λ) is k; its geometric
multiplicity is 1. If λ is a semisimple eigenvalue of A with multiplicity m, then the
Jordan canonical form of A is λIm ⊕ J , in which J is a direct sum of Jordan blocks
with eigenvalues different from λ; if λ is a simple eigenvalue, then m = 1 and the
Jordan canonical form of A is [λ]⊕ J .

Suppose that a square matrix A is similar to the direct sum of a zero matrix and
a nonsingular matrix, that is,

A = S

[
0m 0
0 B

]
S−1, B is nonsingular. (2.1)

The matrix

AD = S

[
0m 0
0 B−1

]
S−1

is called the Drazin inverse of A; it does not depend on the choice of S or B in the
representation (2.1). [14, Chapter 7] Moreover, both AAD = ADA and I − AAD are
projections. If X and Y have m columns, S = [X S2], and (S−1)∗ = [Y Z2], then
AD = S2B

−1Z∗2 and I −AAD = XY ∗.
In a block matrix, the symbol F denotes a block whose entries are not required to

take particular values. For a systematic discussion of a broad range of matrix analysis
issues, see [20].

3. Basic biorthogonality and eigenvalues. The following observation about
left and right eigenvectors associated with different eigenvalues is the basic principle
of biorthogonality [20, Theorem 1.4.7].

Lemma 3.1. Let A be a square complex matrix and let x and y be nonzero complex
vectors such that Ax = λx and y∗A = µy∗. If λ 6= µ, then y∗x = 0 (that is, x and y
are orthogonal).

Proof. Compute y∗Ax in two ways: (i) as y∗(Ax) = y∗(λx) = λ(y∗x), and (ii)
as (y∗A)x = (µy∗)x = µ(y∗x). Since λ(y∗x) = µ(y∗x) and λ 6= µ, it follows that
y∗x = 0.

For a given vector v and a matrix A with eigenvalue λ and associated eigenvector
x, how are the eigenvalues of A + xv∗ related to those of A? This question was asked
and answered by Alfred Brauer in 1952 [9, Theorem 26]:

Theorem 3.2 (Brauer). Let A be an n-by-n complex matrix and let x be a
nonzero complex vector such that Ax = λx. Let

λ, λ2, . . . , λn

be the eigenvalues of A. Then for any complex n-vector v the eigenvalues of A + xv∗

are

λ + v∗x, λ2, . . . , λn.
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Brauer’s proof involved three steps: (i) Compute

(A + xv∗)x = Ax + xv∗x = λx + (v∗x)x = (λ + v∗x)x,

which shows that λ + v∗x is an eigenvalue of A + xv∗. (ii) If µ is an eigenvalue of
A that is different from λ, and if y is a left eigenvector of A associated with µ, then
Lemma 3.1 ensures that

y∗(A + xv∗) = y∗A + y∗xv∗ = µy + (y∗x)v = µy + 0 · v = µy.

Thus, the distinct eigenvalues of A that are different from λ are all eigenvalues of
A+xv∗, but perhaps not with the same multiplicities. (iii) Brauer completed his proof
with a continuity argument to show that the multiplicities of the common eigenvalues
of A and A + xv∗ (setting aside the respective eigenvalues λ and λ + v∗x) are the
same.

Brauer’s theorem tells us something interesting about the eigenvalues of A(c).
Corollary 3.3. Let A be an n-by-n complex matrix. Let λ be an eigenvalue of

A, let x and v be nonzero complex vectors such that Ax = λx and v∗x = 1, and let
A(c) = cA + (1− c)xv∗. Let

λ, λ2, . . . , λn

be the eigenvalues of A. Then for any complex number c, the eigenvalues of A(c) are

λ, cλ2, . . . , cλn.

Proof. In the statement of Brauer’s Theorem, replace A and v, respectively,
by cA and (1 − c̄)λ̄v, respectively. The eigenvalues of cA are cλ, cλ2, . . . , cλn, x is
an eigenvector of cA associated with the eigenvalue cλ, and Brauer’s Theorem tells
us that the eigenvalues of cA + x((1 − c̄)λ̄v)∗ = cA + (1 − c)λxv∗ are cλ + (1 −
c)λv∗x, cλ2, . . . , cλn, which are λ, cλ2, . . . , cλn since v∗x = 1.

Robert Reams [31, p. 368] revisited Brauer’s theorem in 1996. He observed that
the Schur triangularization theorem [20, Theorem 2.3.1] can be used to prove Brauer’s
Theorem without a continuity argument: Let S = [x S1] be any nonsingular matrix
that upper triangularizes A as

S−1AS =




λ F · · · F

λ2
. . .

...
. . . F

0 λn




and whose first column is an eigenvector x associated with the eigenvalue λ. Since
I = S−1S = [S−1x F], we see that S−1x = e1. Compute

S−1 (xv∗)S =
(
S−1x

)
(v∗S) =




1
0
...
0




[
v∗x F · · · F

]

=




v∗x F · · · F
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0


 .
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Therefore, the similarity

S−1 (A + xv∗)S =




λ + v∗x F · · · F

0 λ2
. . .

...
...

. . . . . . F
0 · · · 0 λn




,

reveals both the eigenvalues of A + xv∗ and their multiplicities.
A new alternative proof that the eigenvalues of A(c) are λ, cλ2, . . . , cλn, only

based on polynomial identities, is proposed below.
For any n-by-k complex matrices Z and W with n ≥ k, the n eigenvalues of ZW ∗

are the k eigenvalues of W ∗Z together with n−k zero eigenvalues. [20, Theorem 1.3.20]
In particular, for any vectors z, w ∈ Cn the n eigenvalues of zw∗ are w∗z, 0, . . . , 0, so
the n eigenvalues of I+zw∗ are 1+w∗z, 1, . . . , 1. It follows that det(I+zw∗) = 1+w∗z.

Since (tI − cA)x = (t− cλ)x, we have (tI − cA)−1x = (t− cλ)−1x for any t 6= cλ.
For any z ∈ Cn, compute

pcA+xz∗(t) = det(tI − (cA + xz∗))
= det((tI − cA)− xz∗)

= det(tI − cA)det(I − (tI − cA)−1xz∗)

= pcA(t)det(I − (t− cλ)−1xz∗)

= pcA(t)
(
1− (t− cλ)−1z∗x

)

=
pcA(t) (t− cλ− z∗x)

t− cλ
, if t 6= cλ.

Thus, for any z ∈ Cn we have the polynomial identity

(t− cλ)pcA+xz∗(t) = (t− (cλ + z∗x))pcA(t), (3.1)

where it is again legal to have t = cλ by continuity arguments. The zeroes of the
left-hand side are cλ together with the eigenvalues of cA+xz∗; the zeroes of the right-
hand side are cλ + z∗x, cλ, cλ2, . . . , cλn. It follows that the eigenvalues of cA + xz∗

are cλ + z∗x, cλ2, . . . , cλn.
Now set z = (1 − c)λv, use the condition v∗x = 1, and conclude that the eigen-

values of A(c) are λ, cλ2, . . . , cλn for any c ∈ C.
Finally, it is worth mentioning a two-lines proof of Brauer’s theorem due to Ian-

nazzo (private communication 2007) which could be considered a special case of a proof
trick used in the functional formulation of the shift [4][Section 3.2], in a structured
Markov chains context. Based on the matrix-polynomial identity and Axv∗ = λxv∗

(A + xv∗ − µI)(µ− λ)I = (A− µI)((µ− λ)I − xv∗),

by taking the determinant of both members and using the formula for the character-
istic polynomial of a dyad, it holds that

pA+xv∗(µ)(µ− λ)n = (−1)npA(µ)px∗v(µ− λ)
= (−1)npA(µ)(µ− λ)n−1(µ− λ− v∗x).

The unique factorization theorem for polynomials achieves the proof.
It is worthwhile to remark that the interest of Iannazzo for Brauer’s theorem does

not come from the Google matrix, but from fast Markov chain computations, Riccati
matrix equations etc. See [3] and references reported therein.
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4. Complete biorthogonality and Jordan blocks. Brauer used the basic
principle of biorthogonality to analyze the eigenvalues of A + xv∗. We now want to
analyze the Jordan blocks of A + xv∗.

The basic principle of biorthogonality is silent about what happens when λ = µ.
In that event, there are three possibilities: (i) y∗x = 0 (we can normalize so that
x∗x = y∗y = 1); (ii) y∗x 6= 0 (we can normalize so that y∗x = 1); or (iii) x = αy
(we can normalize so that x = y and x∗x = 1). The following complete principle of
biorthogonality addresses all the possibilities and describes reduced forms for A that
can be achieved in each case.

Theorem 4.1. Let A be an n-by-n complex matrix and let x and y be nonzero
complex vectors such that Ax = λx and y∗A = µy∗.

(a) Suppose that λ 6= µ and x∗x = y∗y = 1. Then y∗x = 0. Let U = [x y U1], in which
the columns of U1 are any given orthonormal basis for the orthogonal complement of
x and y. Then U is unitary and

U∗AU =




λ F F
0 µ 0
0 F B


 , B = U∗

1 AU1 is (n− 2)-by-(n− 2).

(b) Suppose that λ = µ, y∗x = 0, and x∗x = y∗y = 1. Let U = [x y U1], in which
the columns of U1 are any given orthonormal basis for the orthogonal complement of
x and y. Then U is unitary, the algebraic multiplicity of λ is at least two, and

U∗AU =




λ F F
0 λ 0
0 F B


 , B = U∗

1 AU1 is (n− 2)-by-(n− 2).

(c) Suppose that λ = µ and y∗x = 1. Let S = [x S1], in which the columns of
S1 are any given basis for the orthogonal complement of y. Then S is nonsingular,
(S−1)∗ = [y Z1], the columns of Z1 are a basis for the orthogonal complement of x,
and

S−1AS =
[

λ 0
0 B

]
, B = Z∗1AS1 is (n− 1)-by-(n− 1). (4.1)

(d) Suppose that λ = µ, x = y, and x∗x = 1. Let U = [x U1], in which the columns
of U1 are any given orthonormal basis for the orthogonal complement of x. Then U
is unitary and

U∗AU =
[

λ 0
0 B

]
, B = U∗

1 AU1 is (n− 1)-by-(n− 1). (4.2)

Proof. (a) Lemma 3.1 ensures that x and y are orthogonal. Let U = [x y U1], in
which the columns of U1 are a given orthonormal basis for the orthogonal complement
of x and y. The n columns of U are an orthonormal set, so U is unitary. Compute
the unitary similarity

U∗AU =




x∗

y∗

U∗
1


 A[x y U1] =




x∗Ax x∗Ay x∗AU1

y∗Ax y∗Ay y∗AU1

U∗
1 Ax U∗

1 Ay U∗
1 AU1




=




λx∗x x∗Ay x∗AU1

λy∗x µy∗y µy∗U1

λU∗
1 x U∗

1 Ay U∗
1 AU1


 =




λ F F
0 µ 0
0 F U∗

1 AU1


 .
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(b) As in (a), construct a unitary matrix U = [x y U1], in which the columns of U1

are a given orthonormal basis for the orthogonal complement of x and y. The reduced
form of A under unitary similarity via U is the same as in (a), but with λ = µ. The
characteristic polynomial of A is

pA(t) = det(tI −A) = det




t− λ F F
0 t− λ 0
0 F tI −B




A Laplace expansion by minors down the first column gives

pA(t) = (t− λ) det
[

t− λ 0
F tI −B

]
.

Finally, a Laplace expansion by minors across the first row gives

pA(t) = (t− λ)2 det (tI −B) = (t− λ)2 pB(t),

so λ is a zero of pA(t) with multiplicity at least two.

(c) Let the columns of S1 be a given basis for the orthogonal complement of y and let
S = [x S1]. The columns of S1 are linearly independent, so S is singular only if x is
a linear combination of the columns of S1, that is, only if x = S1ξ for some vector ξ.
But then 1 = y∗x = y∗S1ξ = 0ξ = 0. This contradiction shows that S is nonsingular.
Partition (S−1)∗ = [η Z1] and compute

I = S−1S =
[

η∗

Z∗1

] [
x S1

]
=

[
η∗x η∗S1

Z∗1x Z∗1S1

]
=

[
1 0
0 In−1

]
. (4.3)

Thus, the n− 1 columns of Z1, necessarily linearly independent, are orthogonal to x,
so they are a basis for the orthogonal complement of x. Also, η∗S1 = 0 means that η
is orthogonal to the orthogonal complement of y, so η = αy. But 1 = η∗x = (αy)∗x =
ᾱy∗x = ᾱ, so α = 1 and η = y. Finally, compute the similarity

S−1AS =
[

y∗

Z∗1

]
A

[
x S1

]
=

[
y∗Ax y∗AS1

Z∗1Ax Z∗1AS1

]

=
[

λy∗x λy∗S1

λZ∗1x Z∗1AS1

]
=

[
λ 0
0 Z∗1AS1

]
.

(d) Let the columns of U1 be a given orthonormal basis for the orthogonal complement
of x. Then the n columns of U = [x U1] are an orthonormal set, so U is unitary.
Compute the unitary similarity

U∗AU =
[

x∗

U∗
1

]
A

[
x U1

]
=

[
x∗Ax x∗AU1

U∗
1 Ax U∗

1 AU1

]

=
[

λx∗x λx∗U1

λU∗
1 x U∗

1 AU1

]
=

[
λ 0
0 U∗

1 AU1

]
.

We now use the complete principle of biorthogonality to establish an analog of
Brauer’s Theorem 3.2 for Jordan blocks.
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Theorem 4.2. Let A be an n-by-n complex matrix. Let λ, λ2, . . . , λn be the
eigenvalues of A, and let x and y be nonzero complex vectors such that Ax = λx and
y∗A = λy∗. Assume that y∗x = 1. Then the Jordan canonical form of A is

[λ]⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk)

for some positive integers k, n1, . . . , nk and some set of eigenvalues {ν1, . . . , νk} ⊂
{λ2, . . . , λn}. For any complex vector v such that λ + v∗x 6= λj for each j = 2, . . . , n,
the Jordan canonical form of A + xv∗ is

[λ + v∗x]⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk). (4.4)

Proof. The hypotheses and Theorem 4.1(c) ensure that

S−1AS =
[

λ 0
0 B

]
(4.5)

for some nonsingular S of the form S = [x S1], so that S−1x = e1. The eigenvalues
of B are λ2, . . . , λn; let

Jn1(ν1)⊕ · · · ⊕ Jnk
(νk)

be the Jordan canonical form of B. Just as in Reams’s proof of Brauer’s Theorem,
we have

S−1 (xv∗)S =
(
S−1x

)
(v∗S) = e1

[
v∗x v∗S1

]
=

[
v∗x w∗

0 0

]
, (4.6)

in which we set w∗ := v∗S1. Combining the similarities (4.5) and (4.6), we see that

S−1(A + xv∗)S =
[

λ + v∗x w∗

0 B

]
.

Now let ξ be any given (n− 1)-vector, verify that
[

1 ξ∗

0 I

]−1

=
[

1 −ξ∗

0 I

]
,

and compute the similarity
[

1 −ξ∗

0 I

] [
λ + v∗x w∗

0 B

] [
1 ξ∗

0 I

]
=

[
λ + v∗x w∗ + ξ∗((λ + v∗x)I −B)

0 B

]
.

We have assumed that λ + v∗x is not an eigenvalue of B, so we may take

ξ∗ := −w∗((λ + v∗x)I −B)−1,

in which case w∗ + ξ∗((λ + v∗x)I −B) = 0 and A + xv∗ is revealed to be similar to
[

λ + v∗x 0
0 B

]
.

Thus, the Jordan canonical form of A + xv∗ is (4.4): the direct sum of [λ + v∗x] and
the Jordan canonical form of B.
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The following result strengthens the conclusion of Corollary 3.3 to describe not
only the eigenvalues of A(c), but also its Jordan blocks.

Corollary 4.3. Let A be an n-by-n complex matrix. Let λ, λ2, . . . , λn be the
eigenvalues of A; let x, y, and v be nonzero complex vectors such that Ax = λx,
y∗A = λy∗, and v∗x = 1; and let A(c) = cA + (1− c)xv∗. Assume that y∗x = 1. Let
the Jordan canonical form of A be

[λ]⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk).

Then for any nonzero complex number c such that

cλj 6= λ for each j = 2, . . . , n, (4.7)

the Jordan canonical form of A(c) is

[λ]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk).

Proof. We proceed as in the proof of Corollary 3.3. In the statement of Theorem
4.2, replace A and v, respectively, by cA and (1− c̄)λ̄v, respectively. For any c, cA is
similar to

[cλ]⊕ cJn1(ν1)⊕ · · · ⊕ cJnk
(νk),

but if c 6= 0, we can say more: this direct sum is similar to

[cλ]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk).

Moreover, x is an eigenvector of cA associated with the eigenvalue cλ, the remaining
eigenvalues of cA are cλ2, . . . , cλn, and

cλ + ((1− c̄)λ̄v)∗x = cλ + (1− c)λv∗x = cλ + (1− c)λ = λ.

Thus, our assumption (4.7) and Theorem 4.2 ensure that the Jordan canonical form
of

cA + x((1− c̄)λ̄v)∗ = cA + (1− c)λxv∗ = A(c)

is

[λ]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk).

In the above analysis, often the matrix B is determined only up to similarity. If
convenient, we can take B to be a Jordan canonical form, upper triangular, a real
Jordan form (if A is real), a Schur canonical form, etc. Perhaps this flexibility can be
exploited to achieve a computational advantage.

Finally we stress a pleasant contrast between Corollary 3.3 and Corollary 4.3.
In Corollary 3.3 the hypothesis is weaker than that of Corollary 4.3, and of course
a weaker conclusion is obtained. However, Corollary 3.3 is of independent interest,
since it gives a broader context for the famous eigenvalue properties of the Google
matrix perturbation: for instance, similar problems appear and Corollary 3.3 is useful
in the context of iterative solvers for algebraic Riccati equation, for accelerating the
convergence of cyclic reduction based algorithms (see [5, 3] and references therein and
[24] for further applications of mathematical physics).
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5. The normalized left λ-eigenvector of A(c). If λ 6= 0, Corollary 3.3 ensures
that it is a simple eigenvalue of A(c) for all but finitely many values of c. We would
like to have an explicit expression for its associated left eigenvector y(c), normalized
so that y(c)∗x = 1.

Theorem 5.1. Let A be an n-by-n complex matrix. Let λ, λ2, . . . , λn be the
eigenvalues of A; let µ1, . . . , µd be the nonzero eigenvalues of A that are different
from λ; let x and v be nonzero complex vectors such that Ax = λx and v∗x = 1; and
let A(c) = cA + (1− c)xv∗. Assume that λ 6= 0.
(i) Suppose that there is a complex vector y such that y∗A = λy∗ and y∗x = 1. Assume
that cλj 6= λ for each j = 2, . . . , n. Let S1, Z1, and B be defined as in Theorem 4.1(c).
Then λ is not an eigenvalue of cB. Define the vector y(c) by

y(c)∗ = y∗ + (1− c)λv∗S1(λIn−1 − cB)−1Z∗1 . (5.1)

Then y(c) satisfies the conditions

y(c)∗A(c) = λy(c)∗ and y(c)∗x = 1. (5.2)

If, in addition, c 6= 1, then y(c) is the only vector that satisfies the conditions (5.2).
If λ is a simple eigenvalue of A, then it is not an eigenvalue of B.
(ii) Suppose that λ is a semisimple eigenvalue of A with multiplicity m ≥ 2 and
suppose that

cµj 6= λ for each j = 1, . . . , d. (5.3)

Let S = [X S2] be any nonsingular matrix such that X has m columns and

S−1AS =
[

λIm 0
0 E

]
, E is (n−m)-by-(n−m). (5.4)

Then λ is not an eigenvalue of cE or E. Partition (S−1)∗ = [Y Z2], in which Y has
m columns. Then AX = λX, Y ∗A = λY ∗, and Y ∗X = Im. Moreover, the columns
of X may be chosen to be any m linearly independent right λ-eigenvectors of A, and

XY ∗ = I − (λI −A)(λI −A)D (5.5)

is a projection that is determined uniquely by A and λ, regardless of the choice of
columns of X. Define the vector y(c) by

y(c)∗ = v∗XY ∗ + (1− c)λv∗S2(λIn−m − cE)−1Z∗2 . (5.6)

Then y(c) satisfies the conditions (5.2); if, in addition, c 6= 1, then y(c) is the only
vector that satisfies these conditions. If both A and λ are real, then XY ∗ is a real
projection.
(iii) Suppose that λ is a semisimple eigenvalue of A with multiplicity m. Let K be a
given compact complex set that does not contain any of the points µ−1

1 , . . . , µ−1
d . Let

c̃ and c be distinct points in K. If m ≥ 2, let y(·) be defined by (5.6). Then

y(c̃)∗ − y(c)∗

c̃− c
= λv∗S2(c̃E − λI)−1(E − λI)(cE − λI)−1Z∗2 ; (5.7)

the derivative of y(c) is

y′(c)∗ = λv∗S2(cE − λI)−2(E − λI)Z∗2 ; (5.8)
14



the derivative of y(c)∗ at c = 0 is

y′(0)∗ = λ−1v∗S2(E − λI)Z∗2 = λ−1v∗(A− λI); (5.9)

and the derivative of y(c) at c = 1 is

y′(1)∗ = λv∗S2(E − λI)−1Z∗2 = λv∗(A− λI)D. (5.10)

If m = 1 and y(·) is defined by (5.1), then the four preceding identities are correct if
we replace E with B, S2 with S1, and Z2 with Z1. Finally, independently of m ≥ 1,
for each given vector norm ‖ · ‖ there is a positive constant M (depending on A, λ,
v, and K) such that

‖y(c̃)− y(c)‖ ≤ M |c̃− c| for all c̃, c ∈ K. (5.11)

Proof. (i) The similarity (4.1) shows that the eigenvalues of B are λ2, . . . , λn, so
our assumption that λ 6= cλj for all j = 1, . . . , n ensures that λ is not an eigenvalue of
cB. If λ is an eigenvalue of B it must have multiplicity at least two as an eigenvalue
of A, so if it is a simple eigenvalue of A it is not an eigenvalue of B. The vector y(c)
defined by (5.1) satisfies the condition y(c)∗x = 1 because y∗x = 1 and Z∗1x = 0. To
show that it is a left λ-eigenvector of A(c), we begin by combining (4.5) and (4.6):

S−1(cA + (1− c)λxv∗)S =
[

λ (1− c)λv∗S1

0 cB

]
. (5.12)

A calculation verifies that the vector η(c) defined by

η(c)∗ = [1 (1− c)λv∗S1(λIn−1 − cB)−1]

is a left λ-eigenvector of the matrix in (5.12) and η(c)∗e1 = 1; if c 6= 1, it is the only
such vector. Therefore, the vector y(c) defined by

y(c)∗ = η(c)∗S−1 = [1 (1− c)λv∗S1(λIn−1 − cB)−1]
[

y∗

Z∗1

]

= y∗ + (1− c)λv∗S1(λIn−1 − cB)−1Z∗1

is a normalized left λ-eigenvector of A(c), and if c 6= 1 it is the only vector that
satisfies the conditions (5.2).
(ii) Let D denote the block diagonal matrix in (5.4), and let S be any nonsingular
matrix such that S−1AS = D. Partition S = [X S2] and (S−1)∗ = [Y Z2], in which
X and Y have m columns. Then

[AX AS2] = AS = SD = [λX S2D],

and
[

Y ∗A
Z∗2A

]
= S−1A = DS−1 =

[
λY ∗

EZ∗2

]
,

which tells us that the columns of X are a linearly independent set of right λ-
eigenvectors of A and the columns of Y are a linearly independent set of left λ-
eigenvectors of A. The identity S−1S = I tells us that Y ∗X = Im and hence that
X∗Y = (Y ∗X)∗ = I∗m = Im.
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Now let R be any given nonsingular m-by-m matrix, let Ŝ = [XR S2] := [X̂ S2],
partition (Ŝ−1)∗ = [Ŷ Ẑ2], compute (Ŝ−1)∗ = [Y (R−1)∗ Z2], and notice that Ŷ X̂∗ =
Y X∗. We draw two conclusions from these observations: (1) We are free to let
the columns of X be any linearly independent set of right λ-eigenvectors of A; and
(2) Regardless of the choice of columns of X, the product Y X∗ remains the same.
Moreover, (Y X∗)2 = Y (X∗Y )X∗ = Y ImX∗ = Y X∗, so Y X∗ (and hence also XY ∗)
is a projection.

This second conclusion also follows from a useful representation for XY ∗. We
have

λI −A = S

[
0 0
0 λI − E

]
S−1 and (λI −A)D = S

[
0 0
0 (λI − E)−1

]
S−1,

and hence

I−(λI−A)(λI−A)D = I−S

[
0 0
0 In−m

]
S−1 = [X S2]

[
Im 0
0 0

] [
Y ∗

Z∗2

]
= XY ∗.

Let the first column of X be the given λ-eigenvector x such that v∗x = 1, and
write X = [x X̃]. Then x is the first column of S, so S−1x = e1 and

v∗S = [v∗X v∗S2] = [v∗x v∗X̃ v∗S2] = [1 v∗X̃ v∗S2].

Thus,

S−1(xv∗)S = (S−1x)(v∗S) =




1
0
0


 [

1 v∗X̃ v∗S2

]
=




1 v∗X̃ v∗S2

0 0 0
0 0 0


 ,

(5.13)
and so

S−1 (cA + (1− c)λxv∗)S =




λ (1− c)λv∗X̃ (1− c)λv∗S2

0 cλIm−1 0
0 0 cE


 . (5.14)

The assumption (5.3) (which is satisfied for c = 1) ensures that λ is not an eigenvalue
of cE, and a calculation verifies that η(c) defined by

η(c)∗ = [1 v∗X̃ (1− c)λv∗S2(λI − cE)−1]
= [v∗X (1− c)λv∗S2(λI − cE)−1]

is a left λ-eigenvector of the matrix in (5.14) and η(c)∗e1 = 1; if c 6= 1 it is the unique
such vector. Therefore, y(c) defined by

y(c)∗ = η(c)∗S−1 =
[

v∗X (1− c)λv∗S2 (λI − cE)−1
] [

Y ∗

Z∗2

]

= v∗XY ∗ + (1− c)λv∗S2(λI − cE)−1Z∗2

satisfies the conditions (5.2); if c 6= 1 it is the only vector that satisfies these conditions.
If A and λ are real, the matrix S = [X S2] that gives the reduced form (5.4)

may be taken to be real (one may reduce to the real Jordan form, for example [20,
Theorem 3.4.5]). Then (S−1)∗ = [Y Z2] is real, so the uniquely determined product
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XY ∗ must always be real, regardless of the choice of X.

(iii) Using the identity αR−1 − βT−1 = R−1(αT − βR)T−1, we compute

y(c̃)∗ − y(c)∗ = λv∗S2((1− c̃)(λI − c̃E)−1 − (1− c)(λI − cE)−1)Z∗2
= (c̃− c)λv∗S2(c̃E − λI)−1(E − λI)(cE − λI)−1Z∗2 .

This identify verifies (5.7). One obtains (5.8) by letting c̃ → c; (5.9) and (5.10) follow
by setting c = 1 and c = 0, respectively. The bound (5.11) follows from taking the
norm of both sides of (5.7) and observing that the right-hand side is a continuous
function on a compact set, so it is bounded.

The vector function y(c) defined by (5.6) is a complex analytic function at all but
finitely many points in the complex plane, provided that λ is a nonzero semisimple
eigenvalue of A. The points c = 0 and c = 1 are of special interest.

• The condition (5.3) is satisfied for all c such that |c| < min{|λµ−1
j | : j =

1, . . . , d}. Thus, y(c) is analytic in an open neighborhood of c = 0 and can
be represented there by a Maclaurin series obtained from (5.6) by expanding
(λIn−m − cE)−1 as a power series in c:

y(c)∗ = v∗
(

I + λ−1 (S2(E − λI)Z∗2 ) c +
∞∑

k=2

λ−k
(
S2(E − λI)Ek−1Z∗2

)
ck

)

= v∗
(

I + λ−1 (A− λI) c +
∞∑

k=2

λ−k
(
(A− λI)Ak−1

)
ck

)
. (5.15)

This representation reveals all of the derivatives of y(c) at c = 0.

• The condition (5.3) is also satisfied for all c such that |c−1| < min{|λµ−1
j −1| :

j = 1, . . . , d}. Thus, y(c) is analytic in an open neighborhood of c = 1. If we
let γ = c− 1, use (5.6), and expand

(λI − cE)−1 = (λI − E)−1(I − γE(λI − E)−1)−1

as a power series in γ, we obtain

y(γ + 1)∗ = v∗(XY ∗ − λS2(λI − E)−1Z∗2γ −

λ

∞∑

k=2

(
S2(λI − E)−kEk−1Z∗2

)
γk). (5.16)

This series reveals all the derivatives of y(c) at c = 1. We can use the Drazin
inverse to write this series as

y(γ + 1)∗ = v∗(XY ∗ − λ(λI −A)Dγ −

λ

∞∑

k=2

(
((λI −A)D)kAk−1

)
γk). (5.17)

In particular, the first derivative is

y′(1)∗ = λv∗S2(E − λI)−1Z∗2 = λv∗(A− λI)D. (5.18)
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6. The behavior of y(c) as c → 1. We are interested in the behavior of the left
eigenvector y(c) defined by (5.1) as c → 1 in the complex plane, and to understand it
better we consider two examples.

Example 1. Consider

A =




1 0 0
0 1 0
0 0 2


 , λ = 1, x = y = e1, v∗ =

[
1 α β

]
.

The hypotheses of Theorem 5.1 are satisfied for all complex c /∈ {1, 1/2}, and the
vector y(c) defined by

y(c)∗ =
[

1 α (c−1)β
2c−1

]

is the normalized left eigenvector of

cA + (1− c)λxv∗ =




1 (1− c)α (1− c)β
0 c 0
0 0 2c




associated with the eigenvalue λ = 1. Moreover,

lim
c→1

y(c)∗ =
[

1 α 0
]
.

Although λ = 1 is not a simple eigenvalue of A, it is semisimple.
Example 2. Consider

A =




1 0 0
0 1 1
0 0 1


 , λ = 1, x = y = e1, v∗ =

[
1 α β

]
.

The hypotheses of Theorem 5.1 are satisfied for all complex c 6= 1, and the vector y(c)
defined by

y(c)∗ =
[

1 α β + cα
1−c

]

is the normalized left eigenvector of

cA + (1− c)λxv∗ =




1 (1− c)α (1− c)β
0 c c
0 0 c




associated with the eigenvalue λ = 1. However, lim
c→1

y(c)∗ does not exist unless α = 0.
In this case, λ = 1 is not semisimple.

These two examples are not exceptional: when λ 6= 0, the essential hypothesis
required to ensure that lim

c→1
y(c) exists for all choices of v is that λ is semisimple. The

following theorem verifies this assertion and gives an explicit formula for the limit.
Theorem 6.1. Let A be an n-by-n complex matrix with eigenvalues λ, λ2, . . . , λn.

Suppose that λ is a nonzero semisimple eigenvalue of A with multiplicity m ≥ 1; let
x and v be given nonzero complex vectors such that Ax = λx and v∗x = 1; and let
A(c) = cA + (1− c)xv∗. If m = 1, let y be the unique vector such that y∗A = λy and
y∗x = 1. If m > 1, let XY ∗ = I − (λI − A)(λI − A)D be the projection defined in
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Theorem 5.1(ii). Then
(i) For some ε > 0 and all complex c such that 0 < |c− 1| < ε, as well as for all
complex c such that λ 6= cλj for all j = 2, . . . , n, the vector y(c) defined by (5.1) when
λ is simple, or by (5.6) when it is not, is the unique vector that satisfies y(c)∗A(c) =
λy(c)∗ and y(c)∗x = 1.
(ii) If λ is a simple eigenvalue of A, then lim

c→1
y(c) = yx∗v = y.

(iii) If m > 1, then

lim
c→1

y(c) = Y X∗v = (XY ∗)∗v. (6.1)

Proof. (i) If λ and 0 are the only eigenvalues of A, then any positive value of ε
will do. If the nonzero eigenvalues of A that are different from λ are µ1, . . . , µd, let

ε = min{|1− λµ−1
1 |, . . . , |1− λµ−1

d |}.

Then the hypothesis (4.7) is satisfied and the assertion follows from Theorem 5.1.
Since y(c) is defined in a punctured open complex neighborhood of the point c = 1,
it is reasonable to ask about the limit of y(c) (as a function of the complex variable
c) as c → 1.
(ii) The assertion follows from (5.1) since λ is not an eigenvalue of B:

lim
c→1

y∗(c) = y∗ + lim
c→1

(
(1− c)λv∗S1(λI − cB)−1Z∗1

)

= y∗ + lim
c→1

(1− c) · λv∗S1 · lim
c→1

(λI − cB)−1Z∗1

= y∗ +
(
0 · λv∗S1(λI −B)−1Z∗1

)
= y∗ = v∗xy∗.

(iii) This assertion follows in the same way from (5.6):

lim
c→1

y(c)∗ = v∗XY ∗ + lim
c→1

(
(1− c)λv∗S2(λIn−m − cE)−1Z∗2

)

= v∗XY ∗ + lim
c→1

(1− c) · λv∗S2 · lim
c→1

(λIn−m − cE)−1Z∗2

= v∗XY ∗ + 0 · λv∗S2 · (λIn−m − E)−1Z∗2 = v∗XY ∗.

7. A special case: The general parametric Google matrix. We begin
with a summary of the properties of a row-stochastic matrix that are relevant to our
analysis of the general parametric Google matrix.

Lemma 7.1. Let A be a row-stochastic matrix. Then
(i) λ = 1 is an eigenvalue of A associated with the right eigenvector x = e.
(ii) Every entry of A is in the real interval [0, 1].
(iii) For each k = 1, 2, . . ., Ak is row-stochastic, so its entries remain bounded as
k →∞.
(iv) Every eigenvalue of A has modulus at most 1.
(v) Every eigenvalue of A that has modulus 1 is semisimple.
(vi) If the eigenvalue 1 has multiplicity m, then the Jordan canonical form of A is

Im ⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk),
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in which each νj 6= 1, each |νj | ≤ 1, and nj = 1 if |νj | = 1.
(vii) If 1 is a simple eigenvalue of A, then there is a unique vector y with nonnegative
entries such that yT A = yT and yT e = 1.

Proof. (i) Ae = e.
(ii) The sum of the (nonnegative) entries in each row of A is 1, so no entry can be
greater than 1.
(iii) A2e = A(Ae) = Ae = e, and one can proceed by induction to show that Ak is
row-stochastic for all k = 1, 2, . . .. Then (i) ensures that the entries of each Ak are in
[0, 1].
(iv), (v), and (vi): Suppose that

J = Jn1(λ1)⊕ · · · ⊕ Jnr
(λr)

is the Jordan canonical form of A and that A = SJS−1. It follows from (iii) that
the entries of Jk = S−1AkS remain bounded as k → ∞. Each main diagonal entry
of Jni

(λi)k is λk
i , which remains bounded as k → ∞ only if |λi| ≤ 1. If ni > 1,

one checks that each of the ni − 1 super-diagonal entries of Jni
(λi)k is kλk−1

i , which
is unbounded as k → ∞ if |λi| = 1. Thus, every Jordan block associated with any
eigenvalue with modulus 1 must be 1-by-1, that is, every eigenvalue with modulus 1
is semisimple. For a different proof, see [29, p. 696]
(vii) The Perron-Frobenius Theorem [20, Theorem 8.3.1] ensures that there is a unique
nonnegative (and by definition nonzero) left eigenvector y associated with the eigen-
value 1 that is normalized so that yT e = 1.

Since the basic Google matrix G has all the properties stated in the preceding
lemma, and since these properties are special cases of the key hypotheses in our
analyses in the preceding sections, specialization of our general results permits us to
identify several pleasant and useful properties of the general parametric Google matrix
G(c) = cG + (1− c)xv∗ with complex c and v.

Theorem 7.2. Let G be an n-by-n row stochastic matrix, and let its eigenvalue
λ = 1 (necessarily semisimple) have multiplicity m ≥ 1. If m = 1, let y be the unique
vector with nonnegative entries such that yT G = yT and yT e = 1. If m > 1, let the
m columns of X be any linearly independent set of right 1-eigenvectors of G, and let
Y be the matrix defined in Theorem 5.1(ii); its columns are an independent set of left
1-eigenvectors of G. Let v be a given complex vector such that v∗e = 1, let c be a
complex number, and let G(c) = cG + (1− c)ev∗. Let 1, λ2, . . . , λn be the eigenvalues
of G, let µ1, . . . , µd be the nonzero eigenvalues of G that are different from 1, let

ε = min{|1− µ−1
1 |, . . . , |1− µ−1

d |},
and let

Im ⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk), each νj 6= 1 (7.1)

be the Jordan canonical form of G, with {µ1, . . . , µd} ⊂ {ν1, . . . , νk} ⊂ {λ2, . . . , λn}.
Then
(i) The eigenvalues of G(c) are 1, cλ2, . . . , cλn, and |cλj | ≤ |c| for each j = 2, . . . , n.
(ii) In the Jordan canonical form (7.1), nj = 1 for each j such that |νj | = 1.
(iii) If 0 < |c| < 1 (or, more generally, if c 6= 0 and 1 6= cνj for each j = 1, . . . , d),
then the Jordan canonical form of G(c) is

[1]⊕ cIm−1 ⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk)
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if m > 1; it is

[1]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk)

if m = 1.

(iv) Suppose either that |c| < 1 or that 0 < |1− c| < ε. Then 1 is a simple eigenvalue
of G(c).

(v) Suppose either that |c| < 1 or that 0 < |1 − c| < ε. If m > 1, the unique left
1-eigenvector y(c) of G(c) such that y(c)∗e = 1 is defined by

y(c)∗ = v∗XY ∗ + (1− c)v∗S2(In−m − cE)−1Z∗2 , (7.2)

and

lim
c→1

y(c) = Y X∗v. (7.3)

The matrices S2, E, and Z2 are defined in Theorem 5.1(ii); 1 is not an eigenvalue of
E. The matrix

Y X∗ = I − (I −GT )(I −GT )D (7.4)

is a real projection with nonnegative entries.

(vi) Suppose either that |c| < 1 or that 0 < |1 − c| < ε. If m = 1, the unique left
1-eigenvector y(c) of G(c) such that y(c)∗e = 1 is defined by

y(c)∗ = y∗ + (1− c)v∗S1(In−1 − cB)−1Z∗1 , (7.5)

and

lim
c→1

y(c) = y. (7.6)

The matrices S1, Z1, and B are defined in Theorem 5.1(i); 1 is not an eigenvalue of
B.

(vii) The vector function y(c) defined by (7.2) if m > 1, and by (7.5) if m = 1, is
analytic in the unit disk {c : |c| < 1} and is represented there by the Maclaurin series

y(c)∗ = v∗
(

I + (G− I) c +
∞∑

k=2

(
(G− I)Gk−1

)
ck

)
. (7.7)

(viii) Let γ = c− 1. The vector function y(c) defined by (7.2) if m > 1, and by (7.5)
if m = 1, is analytic in the disk {c : |1− c| < ε} and is represented there by the power
series

y(c)∗ = y(γ + 1)∗ = v∗
(

XY ∗ − (I −G)Dγ −
∞∑

k=2

(
((I −G)D)kGk−1

)
γk

)
. (7.8)

In particular, the first derivative at c = 1 is

y′(1)∗ = v∗(G− I)D. (7.9)
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(ix) Let K be a given compact complex set that does not contain any of the points
µ−1

1 , . . . , µ−1
d . Define y(c) on K by (7.2) if m > 1 and by (7.5) if m = 1. Then

‖y(c)‖l1 ≥ 1 for all c ∈ K and there is a positive constant M such that

‖y(c̃)− y(c)‖l1

‖y(c)‖l1
≤ ‖y(c̃)− y(c)‖l1 ≤ M |c̃− c| for all c̃, c ∈ K.

The assertions in (vii) and (viii) of the preceding theorem follow from (5.15),
(5.17), and (5.18). The assertion (ix) follows from Theorem 5.1(iii) and the observa-
tion that 1 = |y(c)∗e| ≤ ‖y(c)∗‖l1 .

We emphasize that the representations (7.2) and (7.5) for the unique normalized
left 1-eigenvector of G(c) are valid not only for all real c ∈ (0, 1), but also for all
complex c in the open unit disk, as well as for all c in a punctured open neighborhood
of the point 1 in the complex plane. The limits (7.3) and (7.6) are to be understood
as limits of functions of a complex variable; the existence of these limits ensures that
they may be computed via any sequence of values of c that tends to 1.

The preceding comments have an important consequence. Suppose the vector v
has positive real entries and satisfies yT e = 1. Then for all real c such that 0 < c < 1,
G(c) has positive entries. The Perron-Frobenius Theorem ensures that each such G(c)
has a unique left 1-eigenvector y(c) that has positive entries and satisfies y(c)T e = 1.
Theorem 7.2 ensures that lim

c→1
y(c) = ỹ exists, so if we take this limit with c ∈ (0, 1)

we know that ỹ has real nonnegative entries. However, we can also take this limit
with c tending to 1 along some non-real path in the complex plane. Regardless of the
path taken, and even though y(c) can be non-real on that path, nevertheless the limit
obtained is always the nonnegative vector ỹ.

We can draw one more conclusion from the preceding discussion, which is the last
statement in Theorem 7.2(v). For each given positive vector v, we have argued that
the vector

ỹ = lim
c→1

y(c) = Y X∗v

has nonnegative entries. But a matrix N has the property that the entries of Nv are
nonnegative whenever the entries of v are positive if and only if all the entries of N
are nonnegative. Thus, the projection

Y X∗ = [η1 . . . ηn] = I − (I −GT )(I −GT )D

is both real and nonnegative. Its columns η1, . . . , ηn are a uniquely determined set of
nonnegative left 1-eigenvectors of G such that, for any given nonnegative probability
vector v, lim

c→1
y(c) = v1η1 + · · ·+ vnηn is a convex combination of them.

It has been said that the “PageRank problem is closely related to Markov chains.”
[11, p. 553] However, framing the PageRank problem in the general setting of standard
matrix-analytic properties of complex matrices can liberate one’s imagination and
stimulate novel approaches that might not be considered in the context of Markov
chains.

8. Comparison with an explicit prior expression of Google Jordan form.
We now consider two results from [32] and we ask ourselves how one can obtain,
extend, and interpret them, by employing our findings in the previous sections and
by allowing the parameter c in the complex field.
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Theorem 8.1. Let G be a row stochastic matrix of size n, let c ∈ [0, 1), suppose
that v has nonnegative entries, and eT v = 1. Consider the matrix G(c) = cG +
(1− c)evT and assume that G is diagonalizable. If G = Sdiag(1, λ2, . . . , λn)S−1 with
S = [e x2 . . . xn] and [S−1]T = [y y2 . . . yn], then

G(c) = Zdiag(1, cλ2, . . . , cλn)Z−1, Z = XR(c)−1,

in which

R(c) = In + e1w
T , wT = [0 w2 . . . wn],

and

wj =
(1− c)vT xj

1− cλj
, j = 2, . . . , n.

Now consider the general case, in which G is not necessarily diagonalizable. The
conclusions are formally identical, but the rational expression R(c) is a bit more
complicated. In the general case we have G = SJS−1, in which

J =




1 0 · · · · · · 0
0 λ2 ¨
...

. . . . . .
... λn−1 ¨
0 · · · · · · 0 λn




(8.1)

is the Jordan Canonical Form of G and ¨ denotes a value that can be either 0 or 1.
Theorem 8.2. Let G be a row stochastic matrix of size n, let c ∈ [0, 1), and

suppose that v is a nonnegative n-vector whose entries add to 1. Consider the matrix
G(c) = cG + (1 − c)evT and let G = SJ(1)S−1, S = [e x2 . . . xn], [S−1]T =
[y y2 . . . yn], and

J(c) =




1 0 0 · · · 0

0 cλ2 c · ¨ . . .
...

...
. . . . . . 0

... cλn−1 c · ¨
0 · · · · · · 0 cλn




,

in which D = diag(1, c, . . . , cn−1),

J(c) = D−1




1 0 0 · · · 0

0 cλ2 ¨ . . .
...

...
. . . . . . 0

... cλn−1 ¨
0 · · · · · · 0 cλn




D, (8.2)

and ¨ denotes a value that can be 0 or 1. Then

G(c) = ZJ(c)Z−1,
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in which

Z = SR−1,

R = In + e1w
T , wT = [0 w2 . . . wn],

w2 = (1− c)vT x2/(1− cλ2), (8.3)

wj = [(1− c)vT xj + [J(c)]j−1,jwj−1]/(1− cλj), j = 3, . . . , n. (8.4)

In particular

y(c) = y +
n∑

j=2

wjyj (8.5)

where y = y(1) if the eigenvalue 1 of G(1) is simple, is one of the basic PageRank
vectors when the eigenvalue 1 of G(1) is semisimple, and where the quantities wj are
expressed as in (8.3)-(8.4).

Notice that in the original paper [32], there is a typo since D and D−1 are ex-
changed in (8.2): we thank Gang Wu and Yimin Wei for pointing this out to our
attention.

8.1. Matching old and new representations. Here we make a critical anal-
ysis of the above results in the light of the conclusions in Section 7. From Lemma
7.1(vi) and Theorem 7.2 we know that the eigenvalue 1 in the matrix G = G(1)
is semisimple with multiplicity m. Therefore [J(c)]j−1,j = 0 and 1 − cλj = 1 − c,
j = 2, . . . , m. Hence, as already acknowledged in Section of [32][Section 3], the coef-
ficient wj , j = 2, . . . , m, is equal to vT xj = xT

j v and then

y(c) = y +
m∑

j=2

yj(xT
j v) +

n∑

j=m+1

wjyj .

Therefore the Cesaro averaging projector N already discussed in the previous sections
has the form N = Y X∗ = [y y2 · · · ym][e x2 · · · xm]T and hence y(c) = Nv +∑n

j=m+1 wjyj . Moreover the eigenvalue λj , j ≥ m + 1, is different from 1, is in
modulus bounded by 1, and if unimodular then it is semisimple. As a consequence,
by (8.3)–(8.4), we obtain lim

c→1
wj = 0, j = m + 1, . . . , n, so that

lim
c→1

y(c) = Nv

which agrees with (6.1), (7.3), and (7.4): moreover, by the general reasoning at the
end of Section 7, we deduce that N is entry-wise nonnegative.

Now, by taking account the notations in (7.1) considered in Theorem 7.2, and by
looking carefully at the expression of coefficients wj , j = m + 1, . . . , n, in (8.3)–(8.4),
we can rewrite the vector y(c) as

y(c) = Nv+
n∑

j=m+1

wjyj = Nv+(1−c)
k∑

j=1

nj∑
s=1

nj+1−s∑
t=1

ct−1(1−cνj)−t(xT
j,sv) yj,t, (8.6)

where the vectors xj , yj , j = m + 1, . . . , n, in the former representation, have been
reorganized according to the Jordan structure as xj,s, yj,s, j = 1, . . . , k, s = 1, . . . , nj .
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If we compare the latter equation with the Toeplitz matrices (Toeplitz i.e. constant
along diagonals, see e.g. [8]) of size nj

Jnj (νj) =




νj 1 0 · · · 0

0 νj 1
. . .

...
...

. . . . . . 0
... νj 1
0 · · · · · · 0 νj




,

Tnj (c) =




1− cνj −c 0 · · · 0

0 1− cνj −c
. . .

...
...

. . . . . . 0
... 1− cνj −c
0 · · · · · · 0 1− cνj




−1

=

=
1

1− cνj




1 c
1−cνj

c2

(1−cνj)2
· · · cnj−1

(1−cνj)
nj−1

0 1 c
1−cνj

· · · cnj−2

(1−cνj)
nj−2

...
. . . . . .

...
... 1 c

1−cνj

0 · · · · · · 0 1




,

we observe Tnj (c) = (Inj − cJnj (νj))−1 and therefore

nj∑
s=1

nj+1−s∑
t=1

ct−1(1− cνj)−t(xT
j,sv) yj,t = [yj,1 · · · yj,nj ]T

T
nj

(c)[xj,1 · · · xj,nj ]
T v.

Hence, taking into account (8.6), we can write

y(c) = Nv + (1− c)
k∑

j=1

nj∑
s=1

[yj,1 · · · yj,nj ](Inj − cJT
nj

(νj))−1[xj,1 · · · xj,nj ]
T v (8.7)

which coincides with the general representation (5.6), where X = [e x2 · · · xm],
Y = [y y2 · · · ym], N = Y XT , E = Jn1(ν1)⊕· · ·⊕Jnk

(νk), as in the expression (7.1),
and S2 = [X1 · · · Xk], Z2 = [Y1 · · · Yk], Xj = [xj,1 · · · xj,nj ], Yj = [yj,1 · · · yj,nj ],
j = 1, . . . , k.

8.2. Eigenvector structure of G(c), discontinuity points in its Jordan
form. When writing the Jordan form in Theorem 8.2, the matrix D is chosen as

diag(1, c, . . . , cn−1).

However, that matrix is not unique: for instance the matrix

D̂ = Im ⊕ diag(1, c, . . . , cn−m−1)
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is also a feasible choice, since the Jordan structure of G(c) is equally obtained as
DJ(c)D−1 = D̂J(c)D̂−1. Indeed, following the Jordan blocks structure in (5.6),
we can define a new optimal diagonal matrix D̃ of minimal conditioning with the
constraint that DJ(c)D−1 = D̃J(c)D̃−1. This optimal matrix takes the form

D̃ = Im ⊕ diag(1, c, . . . , cn1−1)⊕ diag(1, c, . . . , cn2−1)⊕ · · · ⊕ diag(1, c, . . . , cnk−1).

Therefore, switching from G = G(1) to G(c), while the eigenvalues change in a smooth
way since 1 → 1 with the same multiplicity m, νj → cνj , j = 1, . . . , k, the left and
right vectors change as follows

xj,t → c1−t[xj,t − (1− c) ct

1−cνj
e], yj,t → ct−1yj,t, t = 1, . . . , nj ,

xt → xt − e, yt → yt, t = 2, . . . , m,
x1 ≡ e → e, y1 ≡ y → y(c) = Nv.

Therefore, in the given representation, the Jordan canonical form has a (surprising?)
discontinuity when c tends to zero, while it is perfect at c = 1. In fact, lim

c→0
G(c) =

evT is not normal in general but it is diagonalizable, while G(c) with c 6= 0 is not
diagonalizable in general: in fact G(c) has the same Jordan pattern as G(1) for c 6= 0
while it is diagonalizable for c = 0. Hence, as emphasized in the previous displayed
equations, it is clear that the discontinuity/degeneracy is located in the left and right
vectors associated to nontrivial Jordan blocks. As a consequence the matrix G(c) is
continuous at c = 0, but it is not so for its Jordan representation. On the other hand
the other discontinuities at c = ν−1

j , for every j = 1, . . . , k, are essential not only in
the representations, but also in the matrix G(c), and at the point c = 1 every involved
quantity is analytic.

Finally it should be noted the following ’surprising’ fact: not only nothing bad
happens at c = 1, but indeed nothing bad happens for c > 1 (at least, a little bit
bigger than 1) and this is not seen by the power series representations of y(c) described
in the literature, which diverge for c > 1 (see [6]).

8.3. Condition number of y(c): general derivation. Given its relevance
for numerical stability, we consider in some detail the conditioning of y(c) in several
norms and especially in the more natural l1 norm. More precisely, we are interested
in estimating

κ(y(c), δ) =
‖y(c̃)− y(c)‖
‖(y(c)‖ ,

with c̃ = c(1 + δ), δ complex parameter of small modulus, K compact set in the
complex field nonintersecting {ν−1

j : j = 1, . . . , k} = Σ(G)\{1}, and c, c̃ ∈ K. Since
y(c) is analytic in its domain, it is clear that

κ(y(c), δ) = κc
|cδ|

‖(y(c)‖ (1 + O(δ))

with κc = ‖y′(c)‖. Our next task is the differentiation of y(c) in the light of (8.7),
and especially its norm evaluation. We have

y′(c) = −
k∑

j=1

nj∑
s=1

[yj,1 · · · yj,nj ](Inj − cJT
nj

(νj))−1[xj,1 · · · xj,nj ]
T v + (8.8)

+(1− c)
k∑

j=1

nj∑
s=1

[yj,1 · · · yj,nj ](Inj − cJT
nj

(νj))−2JT
nj

(νj)[xj,1 · · · xj,nj ]
T v,
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which of course agrees with the differentiation of (8.6), after observing that

(Inj
− cJnj

(νj))−2Jnj
(νj) =

1
1− cνj




t0 t1 t2 · · · tnj−1

0 t0 t1 · · · tnj−2

...
. . . . . .

...
... t0 t1
0 · · · · · · 0 t0




with ts = scs−1

(1−cνj)s + (s+1)νjcs

(1−cνj)s+1 , s = 0, . . . , nj − 1. In fact, upper triangular Toeplitz
matrices form a commutative algebra and the generic coefficient on the diagonal in
the result is a simple convolution of the coefficients of the factors. Therefore, putting
the two terms of (8.8) together, we find

y′(c) =
k∑

j=1

nj∑
s=1

[yj,1 · · · yj,nj
]T̃T

nj
(c)[xj,1 · · · xj,nj

]T v

=
k∑

j=1

Yj T̃
T
nj

(c)XT
j v (8.9)

= Z2

[
⊕k

j=1T̃
T
nj

(c)
]
ST

2 v,

with

T̃nj (c) =
1

1− cνj




t̃0 t̃1 t̃2 · · · t̃nj−1

0 t̃0 t̃1 · · · t̃nj−2

...
. . . . . .

...
... t̃0 t̃1
0 · · · · · · 0 t̃0




,

t̃s = − cs

(1−cνj)s + (1 − c)
[

scs−1

(1−cνj)s + (s+1)νjcs

(1−cνj)s+1

]
, s = 0, . . . , nj − 1, and with S2 =

[X1 · · · Xk], Z2 = [Y1 · · · Yk].
Therefore looking at the dependence with respect to the parameter c we find that

κc grows generically, in a neighborhood of 1, ν−1
j , j = 1, . . . , k, as

max
j=1,...,k

∣∣∣∣∣
t̃nj−1

(1− cνj)

∣∣∣∣∣ ,
t̃nj−1

(1− cνj)
= z1(1−cνj)−nj +z2(1−cνj)−nj−1(1−c)cnj−2, (8.10)

z1 = (nj−1)(1−c)−c, z2 = cνjnj , which agrees with the estimate in the introduction
(see (1.3)-(1.4)). More precisely, for almost every v nonnegative and with unit l1 norm,
there exists a positive constant θ = θ(S, v), independent of c, such that

κc ≥ θ max
j=1,...,k

∣∣z1(1− cνj)−nj + z2(1− cνj)−nj−1(1− c)
∣∣ |c|nj−2. (8.11)

In fact by elementary measure theory argument, the set of all possible v such that
xT

j,sv = 0 for at least one index j = 1, . . . , k and one index s = 1, . . . , nj has zero
Lebesgue measure. On the other hand, taking into account (8.9), a direct majorization
of the quantity κc leads to

κc ≤
k∑

j=1

‖Yj‖‖T̃T
nj

(c)‖‖XT
j v‖
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and to the more appealing

κc ≤ ‖Z2‖ · ‖ ⊕k
j=1 T̃T

nj
(c)‖ · ‖ST

2 v‖. (8.12)

If we take reasonable norms as the lp norms with p ∈ [1,∞], then by recalling G =
G(1) = SJS−1 and since S2, Z2 are submatrices of S, S−1 respectively, the bound in
(8.12) directly implies the following

κc ≤ κ(S) max
j=1,...,k

∥∥∥T̃T
nj

(c)
∥∥∥ ‖v‖. (8.13)

In other words, the first part which does not depend on c, tells us that the conditioning
of y(c) can be associated with the (lack of) orthogonality of the left and right vectors in
the Jordan form of G not associated to the eigenvalue 1, while the second part carries
the information on the parameter c. Notice that the generic, lower, and upper bounds
in (8.10)–(8.13) are all well defined and also at c = 1, and indeed the latter improves
the estimates known in the literature, where, for 0 ≤ c < 1, the amplification factor
upper-bound grows as (1− c)−1 and blows up at c = 1: see [25] and references there
reported. However in these estimates based on the fact that G = G(1) is stochastic,
for c in the unit disk and far away from c = 1, the amplification factor is simpler and
more useful i.e. (1−|c|)−1+ |1−c|(1−|c|)−2 which reduces to 2(1−c)−1 for 0 ≤ c < 1:
therefore our more detailed analysis is of interest essentially in the vicinity of critical
points c = ν−1

j , j = 1, . . . , k, c = 1, all outside or on the frontiers of the unity disk.

8.4. Condition number of y(c): norm analysis of T̃T
nj

(c). A critical analysis
of (8.13) shows that the quantities κ(S) and ‖v‖ are fixed data of the problem (G =
G(1) and v); in particular, since ‖v‖l1 = 1 and ‖·‖lp ≤ ‖·‖l1 , p ∈ [1,∞], we uniformly
have ‖v‖lp ≤ 1. Hence we should focus our attention on

∥∥∥T̃T
nj

(c)
∥∥∥, j = 1, . . . , k.

For instance, by considering the l1 and the l∞ norms, we have

∥∥∥T̃T
nj

(c)
∥∥∥

l1
=

∥∥∥T̃T
nj

(c)
∥∥∥

l∞
=

nj−1∑
s=0

∣∣∣∣
t̃s

(1− cνj)

∣∣∣∣ ,

which grows as
t̃nj−1

(1−cνj)
, for c in a neighborhood of ν−1

j . However, |ν−1
j | ≥ 1 while,

especially for computational purposes, we are more interested in the behavior of the
conditioning for c of modulus at most 1.

In such a case, independently of the chosen norm among l1, l2, l∞, we observe the
following: for c such that |1−cνj | < |c|, the conditioning of T̃T

nj
(c) grows exponentially

with the size nj of the Jordan blocks; of course, also for Jordan blocks of moderate
size, the conditioning can become very high. For |1 − cνj | = |c|, it is clear that the
conditioning grows as n2

j which can become large only for quite high-dimensional Jor-
dan blocks. For |1− cνj | > |c| the situation is very interesting because, irrespectively
of the size nj the conditioning is bounded. Indeed, by looking at the induced l2 (the
spectral norm), classical results on Toeplitz operators (see the Szegö distribution re-
sult in the classical Böttcher, Silbermann book [8]) tell us that there exists a proper
function gj,c(t) defined on [0, 2π)

∥∥∥T̃T
nj

(c)
∥∥∥

l2
≤ ‖gj,c(t)‖∞, lim

nj→∞

∥∥∥T̃T
nj

(c)
∥∥∥

l2
= ‖gj,c(t)‖∞.

That function gj,c(t) called symbol are obtained through the coefficients of T̃nj (c)
in the sense that these coefficients are Fourier coefficients of gj,c(t). In our specific
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setting a straightforward computation shows that the symbol gj,c(t) is

∂

∂c
(1−c)(1−c[νj+exp(−it))−1 = (νj−1+exp(−it))(1−c[νj+exp(−it)])−2, i2 = −1.

Therefore the quantity

max
t∈[0,2π)

∣∣(νj − 1 + exp(−it))(1− c[νj + exp(−it)])−2
∣∣

represents a tight measure, irrespectively of nj , of the contribution of T̃T
nj

(c) to the
conditioning of y(c) in l2 norm.

8.5. Condition number of y(c): extremal examples. Here we are interested
in showing two extremal examples taken from very structured web graphs. The web
graph is the one produced by a unique huge loop: page i links only to page i + 1,
i = 1, . . . , n− 1, page n links only to page 1; since the set of dangling nodes is empty
the matrix G = G(1) is a special cyclic permutation matrix which generates the
algebra of circulants. Circulant matrices are normal and diagonalized by the discrete
Fourier transform so that in the Jordan form we have xj = fj , yj = f̄j with

fj =
1√
n

(
exp(−i2πjk

n)

)n−1

k=0

, j = 0, . . . , n− 1.

The eigenvalues of G = G(1), accordingly to the same ordering of the Fourier eigen-
vectors, are ωj = exp

(
− i2πj

n

)
, j = 0, . . . , n − 1 (the n roots of unity). We notice

that e, the used vector of all ones, coincides with
√

nf0. Therefore if the rank-one
correction is chosen with v = e/n = f0/

√
n, then evT is also a circulant matrix. In

this specific example the computed vector y(c) coincides with v independently of c
and therefore kc = 0. Therefore for this given graph, the chosen vector v lies in the
zero measure set excluded when deriving (8.11). In fact, for this graph and for this
vector v we have that the vectors xj , j = m + 1, . . . , n, m = 1, are all orthogonal to
v and then the whole expression in (8.8) trivially vanishes.

More delicate is to try to satisfy (8.13) with equality. For important examples
the estimate is not tight, but it is not too bad at least in a neighborhood of c = 1.
Take the above graph, consider v = e1 with c = 1. In such a case the estimate (8.13)
of κ1 gives

|1− ω1|−1 =
[|1− cos(2π(n)|2 + sin2(2π/n)

]−1/2 ∼ n/2π.

A direct computation of y′(c) at c = 1 gives the expression

y′(1) = −
n−1∑

j=1

f̄j(1− ωj)−1(fT
j e1)

Since f̄j , j = 1, . . . , n− 1, are orthonormal and since |fT
j e1| = 1/

√
n it easily follows

that

‖y′(1)‖l2 =

√√√√
n−1∑

j=1

(
√

n|1− ωj |)−2 ∼ √
n

√√√√
n−1∑

j=1

(2πj)−2

so that the real l2 norm of y′(c) differs, asymptotically, from the bound (8.13) by a
factor

√
n.
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9. Computational suggestions. The spectral structure of G(c) was first com-
prehended in the context of sophisticated results about Markov chains, which required
that c ∈ [0, 1) and v ≥ 0. We now know that the spectral (indeed, the Jordan, Schur
etc.) structure of G(c) follows from basic matrix analytic facts that permit both c
and v to be complex. This new freedom in the Google perturbation is exploited to
compute the PageRank more efficiently, especially when c is close to 1 or even equal
to 1.

The algorithms that we propose have to regarded as a preliminary step that, in
our opinion, merits further research.

We choose p small integer number (let us say p = 10) and we compute y(cj),
j = 0, . . . , p − 1, at equally-spaced points cj , j = 0, . . . , p − 1, on the complex circle
of radius (let us say) 0.5 or 0.25. The computations are extremely fast since the
standard power method at the k-th iteration converges with a relative reduction error
of at least |c|k (see [18, Chapter 7, p. 330]); indeed, the nature of our data permits
us to use a vector-valued FFT procedure, whose numerical stability is excellent. We
employ these p vectors as a starting point for a specific extrapolation algorithm at
c = 0.85 or c = 0.99, whose details are given in [13, 11]. The idea is to use the
expansion of y(c) around c = 1 as in (7.8) with γ = c + 1 or as in (7.2) or as in
(8.3)-(8.5), and to employ linear combinations in order to cancel out certain terms
in the remainder y(c) − ỹ, ỹ = y(1) = Nv, and to increase the accuracy; see [10,
Chapter 4] for details. The vector ŷ(c), computed by extrapolation, will be corrupted
by errors of approximation and due to roundoff: therefore, since we know in advance
that y(c) has to be nonnegative and normalized, we set to zero the real part whenever
negative and the imaginary part, and we normalize the resulting nonnegative vector,
by dividing by its l1 norm (in this case the sum of all the coefficients). Finally we
can use a standard iterative procedure (the power method or iterative techniques for
an equivalent linear system [23, 28, 15, 22]) as an iterative refinement to increase the
precision. We remind that computing the PageRank with c = 0.99 or 1 is very difficult
by straightforward techniques, due to slow convergence or even to lack of convergence
for c = 1; see [15] and references therein, and [27, Section 6.1] for a specific discussion
on the case c = 0.99.

All this comprises a new scheme to compute the PageRank with c equal to 1 or
very close to it:

• Step 1: Compute y(cj), cj = 0.25∗exp(i2jπ/p), i2 = −1, j = 0, . . . , p − 1
(Evaluation via vector FFT ).

• Step 2: Vector Extrapolation at the desired (difficult) c ≈ 1 (e.g., c = 0.85,
c = 0.99, c = 1) to obtain ŷ(c).

• Step 3: Project ŷ(c) into the nonnegative cone and do l1 normalization.
• Step 4: Apply Iterative Refinement by classical procedures. Since c ≈ 1, it is

advisable to use preconditioning and Krylov techniques, see [15].
We finally remark that the complex Google setting implicit in Sections 3-7 is

useful not only for matrix theoretic purposes, but also for computation; all the needed
formulae (also those in Theorems 8.1 and 8.2, see also [32]) are well defined for c in the
open unit disk and in a proper disk around c = 1. In fact it will be interesting to see
whether an algorithm that exploits complex parameters will work well in practice and
will enhance the numerical stability as expected. The results of numerical experiments
for n of moderate size have been promising. See also [12] for a successful numerical
experimentation with real parameters.

A second simpler and maybe more promising possibility comes from looking at
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the power series in (7.8). The idea is the following: we can zero out the first-order
term by forming y(+γ) + y(−γ). We can zero out the first and second order terms
by forming this sum with γ replaced by ±iγ, and so on. This looks appealing, but
the practical problem is that is requires solution of some large linear systems in a
parameter range where the power method diverges. The equations certainly have
solutions (and can be computed by Krylov techniques, see [15]), but they cannot be
obtained by the power method.

10. Some comments about prior work. The eigenvalues of the standard real
parametric Google matrix G(c) were analyzed by Haveliwala and Kamvar [19] (only
the second eigenvalue), Eldén [16], and Langville and Meyer [27] (their proof is the
same as that of Reams). A different approach via the characteristic polynomial is
suggested in [29, Problem 7.1.17, p. 502]. These authors were apparently unaware of
the prior work of Brauer [9] and Reams [31].

Relying on sophisticated results about Markov chains, [32] gives an analysis of
the Jordan canonical form of the standard real G(c); it also gives a rational represen-
tation for y(c) and computes its limit as c → 1, again in the standard real case only.
The Maclaurin series for y(c) was studied in [6], where the partial sums of (7.7) for
nonnegative real v and 0 < c < 1 were identified as the iterates obtained in solving
yT G(c) = yT with the power method starting at v. Finally, comparing our findings
with the results in [6, 25], one important messages of the present paper is that the
point c = 1 is not a singularity point for y(c), and hence limits and conditioning of
y(c) can be derived and safely handled, both in theory and in practical computations.

11. Further comments on ỹ and on the model, and conclusions. First
we look at the PageRank problem as an ill-posed problem and we draw some analo-
gies with another famous case of ill-posedness i.e. the image restoration problem [2,
Chapter 1]. Then we make some observations and we provide an interpretation on the
vector ỹ, the limit as c tends to 1 of our regularized solutions y(c). Finally its analysis
and some observations already given in the introduction lead to a critical view on the
actual model for the PageRanking.

When one considers the pure Google matrix with c = 1, i.e. problem (1.2), finding
the PageRank (that is, a nonnegative left λ-eigenvector whose entries sum to one) is
an ill-posed problem (according to Hadamard [17, Section 2, p. 31]): infinitely many
solutions exist and they can all be described as convex combinations of basic nonzero,
nonnegative vectors Z[i], i = 1, . . . , m [32, Section 4], where m is the multiplicity
of the eigenvalue 1 of G i.e. the number of irreducible components of the Markov
chain represented by G (see e.g. [19]). These basic vectors are somehow local or
sparse in the sense that they have a huge number of zero entries: in fact, the reason
of such a locality relies on the fact that any Z[i], i = 1, . . . , m, is associated to a
single irreducible component of G. On the other hand, when we consider instead
G(c) with a parameter c ∈ [0, 1) (or c in the complex open unit disk), we make a
sort of regularization that forces stability of the associated numerical problem and
uniqueness of the solution. Furthermore, just as in the image restoration problem,
our ill-posed problem requires nonnegativity of the solution: in this direction, we may
ask if classical procedures used to solve the image restoration problem can be adapted
to the PageRank computational problem. Indeed, concerning the algorithm sketched
in the Section 9, we already exploited this similarity in the regularization Step 1 and
in the limit process in Step 2, while we borrowed Step 3 again from standard image
restoration techniques. Pushing further this reasoning, we may ask in addition if the
SPAM pages [27, Section 9.2] can be considered as a noise disturbance, whose effect
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has to be diminished or eliminated.
Now we come back to discuss some features of the vector ỹ. Indeed, in the limit

as c tends to 1, we obtain a special convex combination of nonnegative solutions, but
it is much less local: it has a larger support (i.e. the set of indices related to nonzero
entries), which clearly depends on the personalization vector v, since ỹ = Nv with N
being the Cesaro averaging projector. For the modeler, this is a good thing, since all
of the web is taken into account, not just a smaller irreducible subset as in the local
vectors Z[i], i = 1, . . . , m. The nature of the dependence of the support on v is not yet
completely understood and deserves further investigation. However, even the vector ỹ
in the real web shows still a huge number of components with zero ranking; not only
this, but many of these pages with zero PageRank are quite important according to
common sense, see [6]. Let us consider these issues in detail and, for this purpose, let
us consider again the example given in the introduction.

As already mentioned, according to the classical algorithm in the “ideal case”,
page A has zero ranking (as the 109 pages in the first row) and the importance is
concentrated in B and C. This ranking is highly counter-intuitive and indeed wrong
(if you are a leader of 109 people, you are really powerful no matter if any of your
followers has low ranking i.e. he/she is not important...). Now suppose that C is
deleted, i.e., the considered web page is deleted. Then the ranking of B goes down
dramatically and A becomes really the most important. Again this sharp modification
of the ranking is highly counter-intuitive and indeed wrong. At least, one would expect
that the cumulative ranking of B and C, before deletion of C, and the ranking of B
alone after deletion of C should remain roughly speaking equal: a sort of monotonicity
which is substantially violated by the actual model, which, on the other hand, induces
an unmotivated discontinuous behavior in the solutions. In this respect, the original
reason of such a pathology relies on the opposite extremal behavior of functions deg(·)
and deg∗(·).

A strong and macroscopic evidence of the problems in the actual model is that
for most of the nodes in real web examples (what is called “core” in the literature)
the ranking is zero. Indeed, only the use of values of the teleportation parameter c
far away from 1 (e.g. 0, 85) partly alleviates the problem (in Latin “ex falso quod
libet” . . ., is an expression capturing the fact that from something wrong anything
can derive and, by coincidence, also good things. . .). In actuality, a basic error is
the confusion between the notion of “importance” (PageRanking) and the stochastic
model for surfing on the web. We can identify two critical points.

We have a somehow unnatural (wrong) treatment of dangling nodes: with the
actual model, there is no monotonicity as the example of deletion of node C in the
above graph shows. In a new model, the management of dangling nodes should be
changed for insuring a sort of monotonicity.

The other substantial problem is that the transient effects are not taken into
account. A user is on the web for a finite number of clicks, at every visit. This implies
that looking at the stationary vector, as the number of clicks tends to infinity, is just
theoretical and far from reality. A new model has to incorporate the transient behavior
(see also the functional approach in [1]), which would give the right importance to a
node as A in our example.

As a final remark, we stress that the analysis of our matrix-theoretic oriented
approach is also valid for the modified enhanced models proposed e.g. in [1, 33]
etc. Indeed the interest in the general matrix-theoretic analysis relies on its level
of adaptability. In fact the results and the conclusions of Sections 3–8 are virtually
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unchanged if one considers a different way of handling nodes of if one allows self-links
giving raise to a different definition of G(1). Moreover, in this context we must no
forget that there exist completely different applications [4, 24], where the idea and the
computational suggestions in Section 9 have a lot of potential to be further developed
and studied.
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