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The idea for this note arose during the “Web Information Retrieval and Linear
Algebra Algorithms” held at Schloss Dagstuhl in February 2007. Many brilliant
people working on either side (numerical analysis and web search) had a chance
to meet and talk for one week about mathematical and practical aspects of linear
methods for ranking, and in particular (not surprisingly) PageRank and HITS.1

There were many scientific aspects that were surprising for both sides and that were
(finally, one might say) stated clearly at the workshop. First of all, PageRank is not
the most important factor in Google’s scoring, or in any search engine scoring. It is
part of literally hundreds of features that are somehow combined (e.g., by a standard
machine-learning framework), and its importance has decreased in time (people in
the so-called “search engine optimisation” industry claim that the importance of
PageRank dropped drastically around 2003, but this claim is based just on reverse
engineering). Yet papers are published every day starting with claims such as
“PageRank is the most important ranking. . . ” and so on. Such statements give a
distorted view of reality, but clearly work very well for publishing papers.
On the other hand, it is also clear that PageRank (and, more generally, link-based
ranking) is useful in other areas, such as deciding which pages to crawl and which
not.
Moreover, when one attacks the real PageRank computation problem suddenly
many sophisticated methods devised by the numerical analysis community are
pretty useless because of the very large size of the matrix. This problem actu-
ally had the very positive effect of stimulating a lot of new research in numerical
analysis methods that could be applied to large, sparse, irregular stochastic matri-
ces of dimension 1010 and beyond. Much of the classical work on such large systems
involved matrices with considerable structure from ODEs, PDEs, queuing theory,
etc. Actually, many of the more promising approaches for PageRank computation
use some kind of graph structural analysis (usually related to strongly connected
components) that is rather meaningless in the classical problems mentioned above.
These considerations bring us to the point of this note. The problem of computing
PageRank is interesting from a practical viewpoint only if the size of the matrix is
large and if the type of the matrix is a web graph.
What do we mean by “large”? Currently, search engines claim to index a number
of pages in the order of 1010. We cannot expect, as scientists, to replicate exactly
what an infrastructure with a billion-dollars budget does, but let’s say that we can
be indulgent with ourselves and reduce our problem by three orders of magnitude.

1This note contains intentionally no references. After some reckoning, this was the only sensible
choice, as this note is intended to promote critical discussion instead of providing information for
citation-based importance measures. No claim in this note is new—the facts I report are easily
found in the literature.
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Defining the type of a web-graph matrix is a much more subtle issue. However,
if claiming that a matrix is like a real web graph might be difficult, claiming that
is definitely not like a real web graph is much easier—just look for a significant
divergence in basic statistical facts known for web graphs.
The so-called Stanford web matrix is a very small crawl of the Stanford (and maybe
surrounding) sites freely available on the web. The matrix is easily available in a
sparse format that is immediately usable on off-the-shelf commercial computational
tools, so it has become somehow a benchmark, and often the matrix of choice
for testing algorithms or statistical hypotheses about the web. A considerable set
of papers in the literature use this matrix to perform experiments and to derive
conclusions from.
That matrix has less then 300 000 nodes, and it is thus five orders of magnitude
smaller than real-world web snapshots. There are freely available tools and datasets
that make it possible to compute PageRank on a laptop for snapshots with 100
million nodes in few hours: there is no excuse for using such a poor sample.
But size is not the only problem: when we look at absolutely elementary statistics,
the Stanford matrix is a complete outlier. As a comparison, I have used a small (one
million nodes) crawl of the .eu domain, a slightly larger crawl (7.4 million nodes)
of Indochina countries, and, finally, two significantly larger crawls of 40 million and
100 million nodes of the .uk domain (all these snapshots are publicly available).
As a first comparison, let’s look at the density. The most sensible measure we can
use is the average outdegree (proper density is ludicrously small in web graphs). It
is in the range 22-32 for all involved graphs, except for the Stanford Matrix, which
has average outdegree 8.2.
A fundamental issue in web crawling is that nobody can crawl the whole web, so the
successors of a significant fraction of pages are not visited. This causes a significant
percentage of the nodes to be dangling (i.e., to have no outlinks). Patching dangling
nodes to make the matrix stochastic is a subtle issue, and there are unfortunately
at least two distinct versions of PageRank around with different solutions. One
can even forget about the Markov chain and just compute PageRank by solving the
associated linear system as if there were not dangling nodes: the result changes only
by a scale factor, but the factor depends on how many dangling nodes there are, so
threshold on the norm of the vector used to stop approximations has a completely
different meaning in this case.
The percentage of dangling nodes is in the range 8-17 in all our examples, except
for the Stanford matrix, where it is 0.06 [sic]. The resulting linear system will have
a radically different behaviour than any real snapshot.
Another relevant class of nodes is that of buckets. A bucket component is a compo-
nent that is terminal, but not dangling, in the component DAG. A bucket (node)
is a node whose component is a bucket component. When the damping factor α
appearing in the definition of PageRank goes to one, all rank concentrates in the
buckets, and the remaining nodes go to rank zero. This phenomenon is very impor-
tant, as it implies that when α → 1 PageRank is essentially meaningless (e.g., the
entire core component will get rank zero): variants of PageRank suited for α → 1
should be computed instead (but you can actually find many papers trying to com-
pute PageRank in the α ≈ 1 region). The graphs under examination have about
3-12% of buckets, except for the Stanford matrix, with a whopping 41% buckets.
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All these measures confirm that statistically the Stanford matrix does not look at all
as a web graph. But let’s go further: real web graphs have a kind of self-similarity
that is exploited by all approaches to web-graph compression. In particular, several
nodes have similar successor lists, and a simple way to single out such nodes is to
permute the graph so to order lexicographically nodes by their URL. We cannot
perform such an experiment because URLs are not available for the Stanford matrix.
But we can do better: we can permute the nodes by their Gray codes—each row
is interpreted as a tuple of zeroes and ones, and the nodes are reordered following
a standard recursive Gray code. The resulting matrices exhibit similarity in a
coordinate-free way (i.e., without referring to URLs).
When we compress a graph using Gray codes and the WebGraph framework stan-
dard parameters, we obtain about 2-3 bits per link in all the samples discussed,
except for the .eu graph, which requires 4.9 bits per link. The Stanford matrix
requires 13.8 bits per link.
There is an interesting phenomenon going on: some typical properties (e.g., high
compressibility) arise in our examples only beyond a certain size (about 10 million
nodes). People invoking the “fractal nature” of the web as an excuse to use small
samples should thus be very careful (the .eu snapshot, for instance, is not a very
good candidate).
Note that I am not suggesting that all web graphs should look the same, or that
we should set up some standards to define a web graph: there is a healthy diversity
of structure in the real world due to culture, wealth, and available tools (content-
management systems, for instance, have steadily increased the average outdegree
of the web in the last 5 years). But there are criteria, based on common sense and
experience, that should delimit what we use in our experiments if we want to derive
sensible conclusions, and the Stanford matrix largely falls short of such criteria.
Post scriptum. David Gleich (whose most useful comments I’m happy to acknowl-
edge) made me notice that the computer science community is not providing data
and tools in a language and in a format that the numerical analysis community can
easily exploit, which makes using many realistic, available data sets very difficult.
We’re working on that.
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