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Abstract. As long as a square nonnegative matrix A contains sufficient nonzero elements, then the

matrix can be balanced, that is we can find a diagonal scaling of A that is doubly stochastic. A num-

ber of algorithms have been proposed to achieve the balancing, the most well known of these being

the Sinkhorn-Knopp algorithm. In this paper we derive new algorithms based on inner-outer iteration

schemes. We show that the Sinkhorn-Knopp algorithm belongs to this family, but other members can

converge much more quickly. In particular, we show that while stationary iterative methods offer little or

no improvement in many cases, a scheme using a preconditioned conjugate gradient method as the inner

iteration can give quadratic convergence at low cost.
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1. Introduction. For at least 70 years, scientists in a wide variety of disciplines

have attempted to transform square nonnegative matrices into doubly stochastic

form by applying diagonal scalings. That is, given A ∈ Rn×n, A ≥ 0, find di-

agonal matrices D1 and D2 so that P = D1 AD2 is doubly stochastic. Motivation

for achieving this balance include interpreting economic data [2], preconditioning

sparse matrices [13], understanding traffic circulation [11] and ordering nodes in a

graph [9]. In all of these applications, one of the main methods considered is the

Sinkhorn-Knopp algorithm1. This is an iterative process that attempts to find D1

and D2 by alternately normalising columns and rows in a sequence of matrices start-

ing with A. Convergence conditions for this algorithm are well known: if A has full

support2 then the algorithm will converge linearly with asymptotic rate equal to the

square of the subdominant singular value of P [18, 19, 9].

Clearly, in some cases the convergence will be painfully slow. The principal aim

of this paper is to derive some new algorithms for the matrix balancing problem

with an eye on speed, especially for large systems. First we look at a simple Newton

method for symmetric matrices, closely related to a method proposed by Khachiyan

and Kalantari [8] for positive definite (but not necessarily nonnegative) matrices. We
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will show that as long as Newton’s method produces a sequence of positive iterates,

the Jacobians we generate will be positive semi-definite.

To apply Newton’s method exactly we require a linear system solve at each step,

and this is usually prohibitively expensive. We therefore look at iterative techniques

for approximating the solution at each step. First we look at splitting methods and

we see that the Sinkhorn-Knopp algorithm is a member of this family of methods.

We give an asymptotic bound on the (linear) rate of convergence of these methods.

Next we look at a preconditioned conjugate gradient method for solving the inner

iteration. We discuss implementation details and show that asymptotically, super-

linear convergence is achievable. By implementing an Armijo-type rule we ensure

that our iterates retain positivity and we demonstrate the reliability and speed of our

method in tests.

A number of authors have presented alternative techniques for balancing ma-

trices that can converge faster than the Sinkhorn-Knopp algorithm. For example,

Parlett and Landis [16] look at some simple ways of trying to accelerate the con-

vergence by focusing on reducing statistics such as the standard deviation between

row sums of the iterates. In certain cases, they show great improvement is possible,

suggesting that the rate on convergence is not dependent on the singular values of

P; but they also give examples where their alternatives perform significantly worse.

We include a comparison of one of these algorithms against our proposed approach

in §6. Linial et al. [12] use a similar approach to [16] in the context of estimating

matrix permanents, although their upper bound on iteration counts (O(n7)) makes

them distinctly unappealing for large problems!

A completely different approach is to view matrix balancing as an optimisation

problem. There are many alternative formulations, perhaps the first being that of

Marshall and Olkhin [14] who show that balancing is equivalent to minimizing the

bilinear form xT Ay subject to the constraints Πxi = Πyi = 1. However, the exper-

imental results we have seen for optimisation techniques for balancing [14, 17, 3]

suggest that these methods are not particularly cheap to implement.

2. Newton’s method. Let D : Rn → Rn×n represent the operator that turns a

vector into a diagonal matrix, D(x) = diag(x), and let e represent a vector of ones.

Then to balance a nonnegative matrix, A, we need to find positive vectors r and c

such that

D(r)AD(c)e = D(r)Ac = e, D(c)ATr = e.(2.1)

Rearranging these identities gives

c = D(ATr)−1e, r = D(Ac)−1e,
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and one way of writing the Sinkhorn-Knopp algorithm [6, 9] is as

ck+1 = D(ATrk)−1e, rk+1 = D(Ack+1)−1e.(2.2)

If A is symmetric then (2.1) can be simplified. To achieve balancing we need a vector

x that satisfies

f (x) = D(x)Ax− e = 0.(2.3)

This leads to the iterative step

xk+1 = D(Axk)−1e.(2.4)

Exactly the same calculations are performed as for (2.2), one simply extracts rk and

ck from alternate iterates [9]. If A is nonsymmetric, one can use (2.4) on

S =

[
0 A

AT 0

]
.

An obvious alternative to the Sinkhorn-Knopp algorithm is to solve (2.3) with

Newton’s method. Differentiating f (x) gives

J(x) =
∂

∂x
(D(x)Ax− e) = D(x)A +D(Ax),

a result that is easily confirmed by componentwise calculation or with tensor algebra,

hence Newton’s method can be written

xk+1 = xk − (D(xk)A +D(Axk))−1(D(xk)Axk − e).

We can rearrange this equation to get

(D(xk)A +D(Axk))xk+1 = D(Axk)xk + e,

so,

(A +D(xk)−1D(Axk))xk+1 = D(xk)−1(D(Axk)xk + e)

= Axk +D(xk)−1e,(2.5)

and we can set up each Newton iteration by performing some simple vector opera-

tions and updating the diagonal on the left hand side. This matrix plays a key role

in our analysis and we introduce the notation

Ak = A +D(xk)−1D(Axk).

Note that the matrix on the lefthand side of (2.5) inherits the symmetry of A. This

algorithm can be implemented by applying one’s linear solver of choice. In practical
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applications, it makes sense to apply an inner-outer iteration scheme. In §4 and §5
we look at some efficient ways of doing this. In particular, we look at how to deal

with the nonsymmetric case. Here, we can use the same trick we used to derive (2.4)

but, as we’ll see, the resulting linear systems are singular.

The idea of using Newton’s method to solve the scaling problem is not new and

was first proposed by Khachiyan and Kalantari in [8]. Instead of (2.3), the equivalent

equation

Ax−D(x)−1e = 0(2.6)

is considered. The authors were interested in the problem of scaling symmetric posi-

tive definite (SPD) matrices, rather than nonnegative matrices. In this case, the scaled

matrix need not be doubly stochastic. While its row and column sums are 1, it may

contain negative entries. The authors did not consider the practical application of

their algorithm, although the methods we look at in this paper can be adapted to

work for their formulation. In §5 we explain why our approach leads to faster con-

vergence.

Newton’s method is also used as a method for solving the balancing problem for

symmetric matrices in [13]. Here the authors work with(
I − eeT

n

)
D(Ax)x = 0(2.7)

instead of (2.3). They then use a Gauss-Seidel Newton method to solve the problem

and show that this approach can give significant improvements over the Sinkhorn-

Knopp algorithm. We will develop this idea in §4.

Yet another formulation of (2.4) can be found in [5], where the author suggests

the resulting equation is solved by Newton’s method. However no attempt is made

to implement the suggested algorithm and the fact that only the righthand side

changes in the linear system that is solved at each step suggests that rapid conver-

gence is unlikely in general.

3. Properties ofAk. In order that we can solve the balancing problem efficiently,

in particular when A is large and sparse, we will use iterative methods to approxi-

mately solve the linear system in (2.5). There are a number of possibilities to choose

as Ak, the matrix on the lefthand side of the expression, is symmetric positive semi-

definite. This is a consequence of the following result (which doesn’t require sym-

metry).

THEOREM 3.1. Suppose that A ∈ Rn×n is nonnnegative and y ∈ Rn is positive. Let

D = D(Ay)D(y)−1. Then for all λ ∈ σ(A + D), Re(λ) ≥ 0.

Proof. Note that A + D is similar to

D(y)−1(A + D)D(y) = D(y)−1 AD(y) +D(y)−1D(Ay)
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= D(y)−1 AD(y) +D(D(y)−1 AD(y)e)

= B +D(Be),

where B = D(y)−1 AD(y). Now Be is simply the vector of row sums of B and so

adding this to the diagonal of B gives us a diagonally dominant matrix. Since the

diagonal is nonnegative, the result follows from Gershgorin’s theorem.

If A has a nonzero entry on its diagonal then at least one of the rows of B +D(Be)
will be strongly diagonally dominant and, by a theorem of Taussky [20], it will be

nonsingular. We can also ensure that Ak is nonsingular by imposing conditions on

the connectivity between the nonzeros in A. We can establish the following result.

THEOREM 3.2. Suppose that A ∈ Rn×n is nonnnegative. If A is fully indecomposable

then Ak is nonsingular.

Recall that a A is fully indecomposable if it is impossible to find permutation

matrices P and Q such that

PAQ =

[
A1 0

A2 A3

]

with A1 and A2 square (a generalisation of irreducibility).

The proof of Theorem 3.2 is postponed to the end of the section. However in

many cases we will not be able to satisfy its conditions. For example, if A is nonsym-

metric and we use Newton’s method to balance

S =

[
0 A

AT 0

]
,

then S is not fully indecomposable. In fact it is straightforward to show that in this

case the linear systems we have to solve are singular.

We’d also like to use our new algorithms on any nonnegative matrix for which

balancing is possible, namely any matrix which has total support (A ≥ 0 has total

support if A 6= 0 and all the nonzero elements lie on a positive diagonal). Matrices

that have total support but that aren’t fully indecomposable also lead to singular

systems in (2.5).

Singularity in these cases is not problematic as the systems are consistent. In fact,

as Theorem 3.5 shows, we can go further, and we can solve the systems whenever

A has support (A ≥ 0 has support if it has a positive diagonal). We will investigate

what happens when we use our algorithms on matrices without total support in §6.

We need some preliminary results.

LEMMA 3.3. Suppose that A ∈ Rn×n is a symmetric nonnegative matrix with support.

Then there is a permutation P such that PAP is a block diagonal matrix in which all the

diagonal blocks are irreducible.



6 PHILIP A. KNIGHT AND DANIEL RUIZ

Proof. We show this by induction on n. Clearly it is true if n = 1. Suppose

n > 1 and our hypothesis is true for all matrices of dimension smaller than n. If A

is irreducible there is nothing to prove, otherwise we can find a permutation Q such

that

QAQ =

[
A1 C

0 A2

]
=

[
A1 0

0 A2

]
,

where C = 0 by symmetry. Since A has support it follows that, QAQ has a posi-

tive diagonal, hence A1 and A2 must each have support, too and we can apply our

inductive hypothesis.

LEMMA 3.4. Suppose that A ≥ 0 has support and let B = A +D(Ae). If either A is

symmetric or it is irreducible, the null space of B is orthogonal to e.

Proof. If B is nonsingular we have nothing to prove, so we assume it is singular

(and hence by Taussky’s theorem, A has an empty main diagonal).

Suppose now that B is irreducible. It follows from the Perron-Frobenius theorem

that if B is irreducible then the null space is one dimensional and, since it is weakly

diagonally dominant, all components are of equal modulus (for a proof, see Theo-

rem 2.3 and Remark 2.9 in [10]). All that remains is to show that there are an equal

number of positive and negative components in elements from the null space.

We choose a permutation i1, i2, . . . , in of 1, . . . , n such that for 1 ≤ j ≤ n, bi ji j+1 6=
0, where in+1 = i1. Such a permutation exists because A has support and has an

empty main diagonal. Now suppose that x is in the null space of B. Since B is

diagonally dominant, the sign of xi must be opposite to that of x j whenever bi j 6= 0

(i 6= j). By construction, xi j = −xi j+1 for 1 ≤ j ≤ n. This is only possible if n is even,

in which case xTe = 0, as required.

If B is not irreducible but is symmetric then (by the previous lemma) PBP =
diag(B1, B2, . . . , Bk) where the Bi are irreducible. Since the null space of B is formed

from a direct sum of the null space of the diagonal blocks, it too must be orthogonal

to e.

THEOREM 3.5. Suppose that A ∈ Rn×n is a symmetric nonnegative matrix with

support and that y > 0. The system

(A +D(Ay)D(y)−1)z = Ay +D(y)−1e

is consistent.

Proof. Let Ay = D(y)AD(y). Since (Ay + D(Aye)) is symmetric, elements or-

thogonal to its null space must lie in its range, so as a consequence of the previous

lemma, we can find a vector c such that

(Ay +D(Aye))c = e.



FAST MATRIX BALANCING 7

Let z = y/2 +D(y)c. Then

(A +D(y)−1D(Ay))z =
1
2
(A +D(Ay)D(y)−1)y

+D(y)−1(D(y)AD(y)c +D(Ay)D(y)c)

= Ay +D(y)−1(Ay +D(Aye))c

= Ay +D(y)−1e.

While we have proved that Newton’s step will converge if xk > 0, we have not

shown that xk+1 > 0. In fact, it needn’t be, and this will be an important considera-

tion for us in developing balancing methods in the later sections.

To finish the section, we prove Theorem 3.2.

Proof. Let B = D(xk)−1 AD(xk) and consider B +D(Be). Suppose that this ma-

trix is singular and v lies in its null space. We can apply Lemma 3.4, and we know

that exactly half of its components are positive and half are negative. Suppose that P

permutes v so that the first half of the entries of Pv are positive. Then

P(B +D(Be))P =

[
D1 B1

B2 D2

]
,

where D1 and D2 are diagonal: otherwise, diagonal dominance would force some of

the entries of (B +D(Be))v to be nonzero. Hence

B =

[
0 B1

B2 0

]
.

But such a matrix is not fully indecomposable, contradicting our hypothesis.

4. Stationary iterative methods. If we only want to solve (2.5) approximately,

the simplest class of methods to consider is that of stationary iterative methods, in

particular splitting methods. As Ak is symmetric positive semi-definite we know

that many of the common splitting methods will converge.

This approach is used in [13] to solve the formulation of the balancing problem

given in (2.7). Here, the authors use Gauss-Seidel to solve the Newton step and

demonstrate that the rate of convergence is frequently faster than that of the SK al-

gorithm. Suppose that the symmetric matrix A can be balanced so that P = DAD is

doubly stochastic. Following the standard analysis for splitting methods, they give

a bound on the rate of convergence in the neighbourhood of the solution, relating

it to the modulus of the second largest eigenvalue of L−1U, where L is the lower

triangular part and U the strictly upper-triangular part of P + I − 2eeT/n.3

3The bound is not in terms of ρ(L−1U) as the matrix in the lefthand side of (2.7) is singular.
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In this section we extend the results in [13]. We use (2.5) rather than (2.7) as it

leads to particularly simple representations of the methods.

Suppose that Ak = M− N where M is nonsingular. A splitting method for (2.5)

can then be written

Mxk+1 = Nxk + Axk +D(xk)−1e

= (M−D(xk)−1D(Axk))xk +D(xk)−1e

= Mxk −D(Axk)e +D(xk)−1e

= Mxk − Axk +D(xk)−1e.

In other words, our iteration can be written

xk+1 = xk + M−1(D(xk)−1e− Axk).(4.1)

By fixing M for a number of steps, we get an inner-outer iteration for solving the bal-

ancing problem. Strictly speaking, the inner iteration is not stationary asD(xk)−1e−
Axk is updated at every step. However, we can update M at each step at minimal

cost—we only need to update its diagonal and the vectors we need for this are avail-

able to us. So for optimum performance we recommend performing the update at

every step.

Note that if we choose M = D(xk)−1D(Axk) in (4.1), then the resulting iteration

is

xk+1 = xk +D(xk)D(Axk)−1(D(xk)−1e− Axk)

= xk +D(Axk)−1e−D(xk)e

= D(Axk)−1e,

and we recover (2.4).

We can use an approach similar to that in [13] to bound the rate of conver-

gence for many standard splitting methods applied to (4.1). For example, the Jacobi

method and successive over relaxation are covered by the following result, where

X ◦Y represents the Hadamard product of two matrices.

THEOREM 4.1. Suppose that A, H ∈ Rn×n and D is a nonsingular diagonal matrix.

Let M = A ◦ H and N = M− A. Then the spectrum of M−1N is unchanged if we replace

A with DAD.

Proof. Notice that N = A ◦ G where G = eeT − H and so

(DAD ◦ H)−1(DAD ◦ G) = (D(A ◦ H)D)−1D(A ◦ G)D = D−1(A ◦ H)−1(A ◦ G)D.
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Similarity is not restricted to the splittings covered by this theorem, for example

we can show that the result also holds for SSOR. To apply the result, we let D =
D(xk) and look at the limit as k → ∞. We see that

D(xk)AkD(xk) = D(xk)(A +D(xk)−1D(Axk))D(xk) → P +D(xk)D(Axk) → P + I,

where P is doubly stochastic, and we can bound the asymptotic rate of convergence

of our methods by looking at the spectrum of splitting matrices of P + I (see Theo-

rem 10.3.1 in [15]). In particular, in the case of Gauss-Seidel, we get a bound compa-

rable with the formulation adopted in [13].

If A is symmetric, then it is possible to significantly improve convergence speed

over the SK algorithm with an appropriate choice of M. However, things are dif-

ferent if A is nonsymmetric. For example, consider the effect of using Gauss-Seidel

in (4.1) where A is replaced by

S =

[
0 A

AT 0

]

and xk =
[

rT
k cT

k

]T
. We have,

[
rk+1

ck+1

]
=

[
rk

ck

]
+

[
D(Ack)D(rk)−1 0

AT D(ATrk)D(ck)−1

]−1 [
D(rk)−1e− Ack

D(ck)−1e− ATrk

]
.

After some straightforward manipulation, this becomes[
rk+1

ck+1

]
=

[
D(Ack)−1e

D(ATrk)−1e + ck −D(ck)D(ATrk)−1 ATrk+1

]
.(4.2)

In the spirit of Gauss-Seidel, we can replace rk in the righthand side of (4.2) with rk+1,

giving [
rk+1

ck+1

]
=

[
D(Ack)−1e

D(ATrk+1)−1e

]
,

and this is precisely (2.2), the SK algorithm. In other words the Gauss-Seidel Newton

method offers no improvement over the SK algorithm for nonsymmetric matrices.

There are any number of choices for M in (4.1), but in tests we have not been able

to gain a consistent and significant improvement over the SK algorithm when A is

nonsymmetric.

5. Conjugate gradient method. Recall that if A is symmetric and nonnegative

the Newton step (2.5) can be written

Akxk+1 = Axk +D(xk)−1e,
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where Ak = A + D(xk)−1D(Axk). By Theorems 3.1 and 3.5, we know that Ak is

positive semi-definite and (2.5) is consistent whenever xk > 0 and we can solve the

Newton step with the conjugate gradient method. Essentially, all we need to do is to

find an approximate solution (2.5) and iterate, ensuring that we never let components

of our iterates become negative. We now look in more detail at how we implement

the method efficiently.

First, motivated by the proof of Theorem 3.1, we note that we can apply a diago-

nal scaling to (2.5) to give a symmetric diagonally dominant system. Premultiplying

each side of the equation by D(xk) and writing yk+1 = D(xk)−1xk+1 we get

(Bk +D(Bke))yk+1 = (Bk + I)e,(5.1)

where Bk = D(xk)AD(xk). We needn’t form Bk explicitly, as all our calculations can

be performed with A. The natural choice as initial iterate for every inner iteration4 is

e, for which the initial residual is

r = (Bk + I)e− (Bk +D(Bke))e = e− Bke = e− vk,

where vk = xk ◦ Axk. Inside the conjugate gradient iteration we need to perform a

matrix-vector product involving Bk +D(Bk). For a given vector p, we can perform

this efficiently using the identity

(Bk +D(Bk))p = xk ◦ (A(xk ◦ p)) + vk ◦ p.

Since the rest of the conjugate gradient algorithm can be implemented in a standard

way, this matrix-vector product is the dominant factor in the cost of the algorithm as

a whole.

As a stopping criterion for the algorithm we use the residual measure

‖e−D(xk)Axk‖2 = ‖e− vk‖2.

In contrast to our experience with stationary iterative methods, it pays to run the in-

ner iteration for a number of steps, and so we need a stopping criterion for the inner

iteration, too. As is standard with inexact Newton methods, we don’t need a pre-

cise solution while we are a long way from the solution and we adopt the approach

outlined in [7, Chap. 3].

While we know that BkD(Bk) is SPD if xk > 0, we cannot guarantee that (5.1)

will have a positive solution. Furthermore, we do not know that our Newton method

will converge if our initial guess is a long way from the solution. We therefore apply

an Armijo-type rule [1] inside the inner iteration. We introduce a parameter δ which

4We also use e as the default choice to start the algorithm.
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determines how much closer to the edge of the positive cone we are willing to let our

current iterate move. By rewriting (2.5) in the form (5.1) we ensure that all coordinate

directions are treated equally. Before we move along a search direction in the conju-

gate gradient algorithm, we check whether this would move our iterate closer to the

edge than we are willing to go. If it does, we can either reject the step or only move

part of the way along it and then restart the inner iteration. In our experience, it pays

not to reject the step completely and instead we move along it until the minimum

element of yk+1 equals δ. In general the choice δ = 0.1 seems to work well.

We report the results of our tests of the method in the next section. Our expe-

rience is that it is robust and can converge significantly quicker than the Sinkhorn-

Knopp algorithm.

If A is nonsymmetric we can apply the same algorithm to

S =

[
0 A

AT 0

]
.

From the results in §3 we know that the Jacobian will be singular at each step, but

that the linear systems we solve will be consistent. As Bk is singular, we cannot apply

standard convergence theory. However our tests show our method is also robust in

these cases, although the residual may not decrease monotonically, suggesting that

the algorithm may be moving between local minima of the function D(x)Sx− e.

Rather than working with S, we can unravel the method and work directly with

A and AT . This is particularly useful in solving the large scale balancing problems

discussed in [9], where a rank one correction is applied implicitly to A.

As we mentioned early, although Khachiyan and Kalantari did not discuss the

practical application of their algorithm in [8]. However it too can be implemented

using the conjugate gradient method. For this formulation, (5.1) is replaced with

(Bk + I)yk+1 = 2e.

While this is straightforward to implement, we can no longer guarantee that our

systems will be semi-definite unless A is, too. In experiments, we have found that

the Khachiyan-Kalantari approach is significantly slower than the one we propose.

6. Results. We now compared the performance of the conjugate gradient ap-

proach against a number of other algorithms. The algorithms considered are as fol-

lows. BNEWT is our implementation of an inexact Newton iteration with conjugate

gradients; SK is the Sinkhorn-Knopp algorithm and EQ is the ”equalize” algorithm

from [16]; GS is a Gauss-Seidel implementation of (4.1). We use this in preference to

the method outlined in [13], as for large matrices it is much easier to implement in

MATLAB. In terms of rate of convergence, the algorithms are similar.
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We have tested the algorithm against both symmetric and nonsymmetric matri-

ces, and also on matrices without total support. All our tests were carried out in

MATLAB. We measure the cost in terms of the number of matrix-vector products

taken to achieve the desired level of convergence. In our tests on nonsymmetric

matrices, we have counted the number of products involving A or AT (double the

number for the symmetrised matrix S). We ran our algorithms until an appropriate

residual norm fell below a certain tolerance. For the conjugate gradient algorithm,

and other algorithms for symmetric matrices, we measured ‖D(xk)Axk − e‖2 (re-

placing A with S if A was nonsymmetric). For the Sinkhorn-Knopp algorithm we

measured ‖D(ck)ATrk − e‖2, where ck and rk are defined in (2.2). In all cases, our

initial iterate is a vector of ones and our default tolerance is 10−6.

In the conjugate gradient algorithm there are a number of parameters we can

tune to improve performance connected to the convergence criterion of the inner

step and the line search. Unless otherwise stated, we have just used the default

values for these in an attempt to make our comparisons as fair as possible.

Our first test was on a selection of random sparse symmetric matrices, generated

using the command A=abs(sprandsym(n,a/n))+speye(n)*.05; for various values

of n and a. We added on a multiple of the identity matrix to ensure that our matri-

ces were fully indecomposable. Our results are given in Table 6.1. The value of a

is given in the first column, the value of n in the second row. Each entry represents

the average cost for five different matrices: the cost varied considerably from ma-

trix to matrix for both SK and GS, whereas BNEWT showed little variation. ”Fail”

represents an average cost of over 10000 matrix-vector products.

BNEWT SK GS

100 103 104 100 103 104 100 103 104

20 25 26 27 28 32 36 15 15 16

10 31 33 36 47 69 261 21 26 29

5 38 43 51 294 575 5195 35 56 72

2 45 61 66 1588 8878 Fail 76 130 161

1 47 56 70 1854 Fail Fail 83 155 172
TABLE 6.1

Rate of convergence for sparse symmetric matrices.

The results show clearly the need to improve on SK as a balancing algorithm.

The Gauss-Seidel approach works well in many examples, but eventually the su-

periority of BNEWT is evident. By tightening the tolerance condition we can im-

prove the relative performance of BNEWT still further as it can take full advantage

of super-linear convergence.
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Our next batch of test matrices were used by Parlett and Landis [16] to compare

their balancing algorithms to the Sinkhorn-Knopp algorithm. These are all 10 × 10

upper Hessenberg matrices defined as follows. H = (hi j) where

hi j =

{
0, j < i− 1

1, otherwise,

H2 differs from H in only that h12 is replaced by 100 and H3 = H + 99I. Our results

are given in Table 6.2. In this experiment, the tolerance changed to 10−5 as this was

the choice in [16]. The cost for EQ is the ratio of SK operations to EQ operations, as

reported in [16] (numbers less than one indicate SK is quicker.

BNEWT SK EQ GS

H 76 110 0.6 114

H2 90 144 0.8 150

H3 94 2008 8.9 2012
TABLE 6.2

Rate of convergence for Parlett and Landis test matrices.

We see again the consistent performance of BNEWT, outperforming the other

choices. The results for GS confirm our analysis in § 4, showing it is virtually identical

to SK.

We next tested BNEWT on the n × n version of H3. For large values of n, this

becomes very challenging to balance as the ratio between the smallest and largest

elements of the balancing factors grows extremely large (the matrix becomes very

close in a relative sense to a matrix without total support). The cost of convergence

is given in Table 6.3, along with the ratio rn = (maxi xi)/(mini xi).

n = 10 25 50 100

BNEWT 124 300 660 1792

SK 3070 16258 61458 235478

rn 217 7× 106 2× 1014 2× 1029

TABLE 6.3

Rate of convergence for Hn.

BNEWT still copes in extremely trying circumstances, although the convergence

of the residual is far from monotonic (we illustrate the progress after each inexact

Newton step for n = 50 in Figure 6.1. Recall that for nonsymmetric matrices, the

Jacobian is singular and while our systems are consistent, it appears that the method

is drawn towards local minima before finding an approximate solution.
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FIG. 6.1. Convergence graph of BNEWT for H50.

The oscillatory behaviour is undesirable, and it can be ameliorated somewhat

by varying the parameters in BNEWT. This is illustrated in Figure 6.2 (ηmax is the

maximum allowable tolerance for the inner iteration). In terms of cost, the choice

ηmax = 10−2, δ = 0.25 proved best reducing the matrix-vector product count to 568.

FIG. 6.2. Smoothing convergence of BNEWT for H50.

Finally we look at three matrices from the Harwell-Boeing collection [4], namely

GRE185, GRE343 and GRE1107 (the number representing the dimension). The small-

est of these was considered in [13] as a candidate for preconditioning, but conver-

gence was slow. We illustrate the progress of BNEWT in Figure 6.3. The cost in

matrix vector products (in ascending order of n) was 198, 112 and 320. Again, the

method proves robust and we avoid the oscillatory behaviour we saw for our previ-
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ous more extreme example.

FIG. 6.3. Convergence of BNEWT for sparse nonsymmetric matrices.
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Appendix. The Symmetric Algorithm.

function [x,res] = bnewt(A,tol,x0,delta,fl)

% BNEWT A balancing algorithm for symmetric matrices

%

% X = BNEWT(A) attempts to find a vector X such that

% diag(X)*A*diag(X) is close to doubly stochastic. A must

% be symmetric and nonnegative.

%

% X0: initial guess. TOL: error tolerance.

% DEL: how close balancing vectors can get to the edge of the

% positive cone. We use a relative measure on the size of elements.

% FL: intermediate convergence statistics on/off.

% RES: residual error, measured by norm(diag(x)*A*x - e).

% Initialise

[n,n]=size(A); e = ones(n,1); res=[];

if nargin < 5, fl = 0; end

if nargin < 4, delta = 0.1; end

if nargin < 3, x0 = e; end

if nargin < 2, tol = 1e-6; end

g=0.9; etamax = 0.1; % Parameters used in inner stopping criterion.

eta = etamax;

x = x0; rt = tol^2; v = x.*(A*x); rk = 1 - v;

rho_km1 = rk’*rk; rout = rho_km1; rold = rout;

MVP = 0; % We’ll count matrix vector products.

i = 0; % Outer iteration count.

if fl == 1, fprintf(’it in. it res\n’), end

while rout > rt % Outer iteration

i = i + 1; k = 0; y = e;

innertol = max([eta^2*rout,rt]);

while rho_km1 > innertol %Inner iteration by CG

k = k + 1;

if k == 1

Z = rk./v; p=Z; rho_km1 = rk’*Z;

else
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beta=rho_km1/rho_km2;

p=Z + beta*p;

end

% Update search direction efficiently.

w = x.*(A*(x.*p)) + v.*p;

alpha = rho_km1/(p’*w);

ap = alpha*p;

% Test distance to boundary of cone.

ynew = y + ap;

if min(ynew) <= delta

if delta == 0, break, end

ind = find(ap < 0);

gamma = min((delta - y(ind))./ap(ind));

y = y + gamma*ap;

break

end

y = ynew;

rk = rk - alpha*w; rho_km2 = rho_km1;

Z = rk./v; rho_km1 = rk’*Z;

end

x = x.*y; v = x.*(A*x);

rk = 1 - v; rho_km1 = rk’*rk; rout = rho_km1;

MVP = MVP + k + 1;

% Update inner iteration stopping criterion.

rat = rout/rold; rold = rout; r_norm = sqrt(rout);

eta_o = eta; eta = g*rat;

if g*eta_o^2 > 0.1

eta = max([eta,g*eta_o^2]);

end

eta = max([min([eta,etamax]),0.5*tol/r_norm]);

if fl == 1

fprintf(’%3d %6d %.3e %.3e %.3e \n’, i,k, r_norm,min(y),min(x));

res=[res; r_norm];

end

end

fprintf(’Matrix-vector products = %6d\n’, MVP)


