
 

 1 

End-User Software Engineering Position Paper 
Henry Lieberman 

MIT Media Laboratory 
20 Ames St. 384A 

Cambridge, MA 02139 USA 
lieber@media.mit.edu 

 
PERSONAL WORK 
My goal is to make the process of programming easier, 
especially for people who are not necessarily specialists in 
computer science.  Why is it so much harder to program a 
computer than simply to use a computer application? I can’t 
think of any good reason why this is so; we just happen to 
have a tradition of arcane programming languages and 
mystically complex software development techniques. We 
can do much better. 

My background is in Human-Computer Interface and 
Artificial Intelligence, and my methodology is to use ideas 
from these fields to improve the situation. HCI has amassed 
an enormous body of knowledge about what makes 
interfaces easy to use, and this has been applied widely to 
many computer applications for end users. Oddly, little of 
this has been applied to making interfaces for programming 
easier to use. Non-experts tend to believe that programmers 
practice a kind of voodoo, perceived to be naturally arcane 
and mysterious. Since they can handle it so well, 
programmers aren’t perceived as needing ease of use. But 
we all pay the price for this misconception.  

Programming is the art of teaching new behavior to a 
computer.  It’s really the same problem as machine 
learning, which is where AI comes in. I believe the route to 
making programming easier is to make the computer 
smarter, make it capable of learning, and capable of 
accepting direction in the way that users feel most 
comfortable expressing it.  

To that end, I’ve been exploring the following topics, 
among others: 

Programming in Natural Language 
Programming languages are a stumbling block for most 
beginning programmers. Why not just express what you 
want in English? Many believe this goal to be infeasible, 
but natural language understanding has made vast progress 
in recent years. We can use partial understanding, mixed 
initiative dialog models, and Commonsense reasoning to, at 
least partially, express procedural ideas in natural language 
[5].  I’ve also explored several ideas in Visual 
Programming, since some things are best expressed in 
pictures rather than words. 

Programming by Example 
People learn and teach best by example. But conventional 
programming languages require you to express procedures 
in the abstract, rather than through examples. I’d like to see 
the ability to demonstrate examples in concrete situations, 
have the system record them, and generalize them to yield a 
procedure capable of working on analogous examples. I’ve 
made several systems in this area, and edited a book [2].  

 
Figure 1: Metafor Natural Language Programming system 

Debugging 
I think the most pressing need in software development is 
not programming per se, but debugging. Programmers 
spend roughly half their time debugging, but debugging 
tools have hardly improved since the earliest days of 
computing. I’ve worked on several innovative reversible, 
graphical debuggers, based on ideas from diagnostic 
reasoning in AI. [1] 

I’ve been exploring the idea of end-user debugging [3], 
what one might call “debugging without programming”. 
The idea is that even when ordinary application use fails to 
meet the expectations of users, they could fruitfully use 
debugging techniques to discover what went wrong.   

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1092



 

 

END-USER DEVELOPMENT AND SOFTWARE 
ENGINEERING 
My book [4], edited with Fabio Paterno and Volker Wulf, I 
think, provides a comprehensive, and up-to-date survey of 
the state of the art and future directions in this area. One of 
the big successes of the book, I believe, was to bring 
together the community of people who are working to make 
programming easier for beginners, such as children, with 
people from Software Engineering who are trying to move 
some of their techniques into the realm of less expert users. 
This workshop, of course, continues that interdisciplinary 
effort.   

For the book, we chose the title End-User Development, 
rather than “Software Engineering”, though the concerns 
were pretty much the same as this workshop. Software 
Engineering has a lot to contribute in terms of bringing 
design methodology, collaborative programming, testing, 
maintenance, and other larger concerns to programming for 
less expert users. But I think we still have a problem 
positioning this effort with respect to conventional Software 
Engineering. For the book, I was worried that a too-close 
association would scare off beginning and casual users.  

I commend the bravery of the workshop organizers for 
reaching out to the SE community. Traditional Software 
Engineering is really largely about the management and 
organization of large software projects in industry. 
Sometimes they are not so sympathetic to efforts to make 
programming easier, because you don’t want to make it too 
easy to modify a large software project. The risk of errors 
or miscoordination is too great. Reliability and efficiency 
sometimes trump ease of development, for applications like 
banks and airline reservations. The approaches advocated 
by SE are much too heavyweight for beginning users – 
bureaucratic design methodologies, abstract formal 
verification – at least, without some radical rethinking.  

I think the ideal to shoot for, first, is to maximize ease of 
getting started in the beginning. Program development 
should be as informal, flexible, lightweight, agile, and 
dynamic as we can possibly make it.  Formal 
methodologies be damned. If we can do this, we can make 
programming accessible to millions of people who are now 
scared to death of it.  

But as programs (or their developers) mature, some of the 
legitimate concerns of Software Engineering do indeed 
come into play, even for nonprofessional users. Programs 
may then need to be maintained, tested, extended, shared 
with others, etc., in which case Software Engineering 
techniques could potentially yield benefits.  But we 
shouldn’t just, as conventional SE does, wag our fingers at 
the users, “Ya shoulda done it right in the first place”. 

I think our challenge is to figure out how to smoothly go 
from the initial conception of a project, vague and 
imprecise at it must necessarily be, to only gradually 

introduce more structured representations and abstract 
tools, all the while without placing undue burdens on the 
user. To do this, I think we have to give up the idea of a 
single representation for programs, be it a programming 
language or something else.  

I also think that this process of solidifying a program should 
be reversible, so that any point, one can return to the more 
informal forms without needless loss of effort. This will 
encourage the user to learn new insights from the process of 
software development without feeling like they get stuck by 
their sunk investment in an initial approach.  

Finally, as much as is possible, we should make this process 
as automatic as we can, though the use of program 
transformation, dependency maintenance, automated 
reasoning, mixed-initiative interfaces, visualization, and 
machine learning. Otherwise, I think it will be too much 
overhead for a non-expert user themselves to keep track of 
the myriad facets that software development entails.  If we 
succeed in this, people will become End-User Software 
Engineers without their even realizing it. 

REFERENCES 
Most of these references can be found at: 

http://www.media.mit.edu/~lieber/Publications/Publications

.html  

1. H. Lieberman, ed. Special Issue on The Debugging 

Scandal, Communications of the ACM, April 

1997.  

2. H. Lieberman, ed., Your Wish is My Command: 

Programming by Example, Morgan Kaufmann, 

2001.  

3. E. Wagner and H. Lieberman, End User 

Debugging for Electronic Commerce, ACM 

Conference on Intelligent User Interfaces, Miami 

Beach, January 2003. 

4. H. Lieberman, F. Paterno and V. Wulf, eds. End-

User Development, Springer Academic Publishers, 

2006. 

5. H. Lieberman and H. Liu, Metafor: Visualizing 

Stories as Code, ACM Conference on Intelligent 

User Interfaces (IUI-2005), San Diego, January 

2005

 


