Expressing and Verifying Business Contracts with
Abductive Logic Programming

Marco Alberti Federico Chesani Marco Gavanelli
Evelina Lamma Paola Mello Marco Montali
Paolo Torroni

February 10, 2007

Abstract

In this article, we propose to adopt the SCIFF abductive logic lan-
guage to specify business contracts, and show how its proof procedures are
useful to verify contract execution and fulfilment. SCIFF is a declarative
language based on abductive logic programming, which accommodates
forward rules, predicate definitions, and constraints over finite domain
variables. Its declarative semantics is abductive, and can be related to
that of deontic operators; its operational specification is the sound and
complete SCIFF proof procedure, defined as a set of transition rules,
which has been implemented and integrated into a reasoning and verifi-
cation tool. A variation of the SCIFF proof-procedure (g-SCIFF) can be
used for static verification of contract properties.

We demonstrate the use of the SCIFF language for business contract
specification and verification, in a concrete scenario. In order to accom-
modate integration of SCIFF with architectures for business contract, we
also propose an encoding of SCIFF contract rules in RuleML.

Authors’ current affiliations

Marco Alberti, Marco Gavanelli, Evelina Lamma: ENDIF, University of Ferrara,
Via Saragat 1, 44100 Ferrara, Italy.

Email: {marco.alberti|marco.gavanellilevelina.lamma}@unife.it

Federico Chesani, Paola Mello, Marco Montali, Paolo Torroni: DEIS, Uni-
versity of Bologna, Viale del Risorgimento 2, 40123 Bologna, Italy.

Email: {fchesani|pmello|mmontalil|ptorroni}@deis.unibo.it

1 Introduction

Business contracts are an important conceptual abstraction and a practical guid-
ing and governance mechanism for cross-organizational collaboration. Contracts

Dagstuhl Seminar Proceedings 07122
Normative Multi-agent Systems
http://drops.dagstuhl.de/opus/volltexte/2007,/901

can be in fact considered as the main coordination mechanism for the extended
enterprise [MGL"04]. A business contract architecture [Mil95] is therefore an
important part of the extended enterprise which aims to provide functionalities
such as contract management and monitoring. Natural requirements for a con-
tract management framework are a language with clear semantics for contract
specification, and operational procedures for (7) verifying contract properties at
design time, and (i%) verifying the conformance of parties to contracts at run
time.

From a high-level, functional viewpoint, a contract management system is
a component that is fed with the “what” of the problem, by domain expert
users, and takes care of the “how,” through a suitable execution model. Com-
putational logics offer a broad range of languages and mechanisms that couple
declarative (“what is”) specification languages with sound operational (“how
t0”) execution models that need not be disclosed to the user of the specification
language. For this reason, we strongly believe that computational logic-based
frameworks, adequately extended to support event-based monitoring of business
activities associated with contracts, should play a key role in contract manage-
ment systems.

Among the most influential computational logic frameworks for business con-
tract representation and reasoning we find Courteous Logic Programming (CLP,
[GLC99]) and Defeasible Logic (DL, [Gov05]), the former being in fact a variant
of the latter [AMBO00]. These are languages for nonmonotonic reasoning, mainly
used in the context of business contracts to enable normative reasoning and to
identify and resolve conflicts arising by events and contract rules, reason about
violations, specify and enforce reparational obligations, and so on. In this arti-
cle, in context of contract management systems, we are mailny concerned with
the aspect of runtime monitoring and verification of contracts, rather than on
the ontological and semantic aspects of contract specification. We focus primar-
ily on the problem of runtime evaluation of contract policies, i.e., expressions
consisting of behaviour constraints, event patterns and states [MGLT04], to de-
termine whether parties’ obligations have been satisfied or whether there are
violations to the contract.

We base our work on SCIFF, the computational logic-based language and
framework conceived within the context of the SOCS EU project [SOCO05] to
specify agent interaction protocols. SCIFF consists of a logic language based on
abductive logic programming, a sound and complete proof procedure [AGLT05],
and a software tool which implements it, based on an efficient inference engine
and constraints solving technology [ACGT06b]. First class entities in the SCIFF
language are events, which represent entities such as actions being taken, time-
outs associated with deadlines, and external events such as messages being sent
or services being requested, and expectations, which describe a desired behaviour
in terms of events. Expectations are related with each other and with events
by logical epxressions called Integrity Contraints (ICs). ICs express in fact
behaviour contraints, and are the main building blocks in the specification of
policies. Expectations are modeled in SCIFF as abducible predicates, since they
model event that may happen (but we do not know whether that will be the

case). Thus the abductive nature of the framework. Expectations are related
to deontic operators such as obligation, prohibition and permission [AGL™06].

In this paper, we propose SCIFF as a language and operational framework
to specify and reason upon business contracts. The deontic reading of SCIFF
specifications arising from such a relationship is one of the elements that make
the SCIFF language, we believe, a good candidate as a contract specification
and reasoning language. Reasoning upon contract specifications (and events)
can be done at two different stages of contract design and enactment: at run-
time, for example in the way that we propose, and at design time, as it is the
case with DL and CLP. We consider it important to enable these two kinds of
verification within the same framework and, if possible, using the same speci-
fication language, in order to minimize translation errors and the unavoidable
unaccuracy caused by different languages. To this end, an extension of SCIFF,
called g-SCIFF, has been defined to verify protocol properties at design time
[ACGT06¢], and we show here how it can be used to enable design-time reason-
ing on contracts.

Declarative knowledge:
Knowledge Base

Specification:
SCIFF language
Rules:
Integrity Constraints
Run-time:
SCIFF
Verification:

proof procedures

Design-time:
g-SCIFF

Figure 1: Contract specification and verification in the SCIFF framework.

Fig. 1 summarizes the components of the SCIFF framework that can be
used in contract specification and verification.

The paper is structured as follows. Sect. 2 is devoted to the specification
of contract in the SCIFF language: we first give the necessary background, by
presenting the syntax (Sect. 2.1) and declarative semantics (Sect. 2.2) of the
SCIFF language, then we show how SCIFF expectations are related to deontic
operators (Sect. 2.3) and finally we demonstrate SCIFF in a concrete scenario,
by proposing a possible specification of contract clauses (Sect. 2.4). In Sect. 3,
we investigate the verification issues: first run-time verification (Sect. 3.1), and

then design-time verification (Sect. 3.2), recalling, in each case, the relevant
proof procedure (SCIFF and g-SCIFF, respectively).

The integration of SCIFF with architectures for business contract is facili-
tated by a suitable encoding of SCIFF contract rules in RuleML, summarized
in Sect. 4. A discussion of related work follows.

2 Contract specification

A contract in the SCIFF language is basically specified by means of two compo-
nents: a knowledge base, which defines declaratively domain-specific knowledge
(such as deadlines) and a set of integrity constraints, which describe contract
clauses and can be seen as forward rules that generate expectations about the
behaviour of the parties involved in the contract. A declarative semantics based
on abductive logic programming determines whether the parties have complied
to the contract. A useful feature of the SCIFF language is its integration of
Constraint Logic Programming [JM94], which makes deadlines easy to specify
and efficient to verify.

2.1 Syntax of the SCIFF language
The SCIFF language is composed of entities for expressing:

e events and expectations about events;

e relationships between events and expectations.

2.1.1 Representation of the behaviour of parties
Events Fuvents are the abstractions used to represent the actual behaviour.
Definition 2.1. An event is an atom:

e with predicate symbol H;

e whose first argument is a ground term; and

e whose second argument is an integer.

Intuitively, the first argument is meant to represent the description of the hap-
pened event, according to application-specific conventions, and the second ar-
gument is meant to represent the time at which the event has happened.

In this paper, we map all events to communicative events, identified by the
functor tell. In particular, the description of happened events is of the format

tell(Sender, Receiver, Content], Dialog]),

where the optional Dialog parameter is an identifier of the interaction being
described and the other arguments have the obvious meaning.

Example 2.2.
H(tell(telco, ¢, phone_bill(390512093086, 145886, 205), 19). (1)

says that telco sent to ¢ a phone_bill (for the phone number 390512093086, whose
identifier is 145886 and whose amount is 205) at time 19.

A negated event is a negative literal not H(...,...). We will call history a
set of happened events, and denote it with the symbol HAP.

Expectations Faxpectations are the abstractions used to represent the desired
events from an external viewpoint. They represent the ideal behaviour of the
system, i.e., the actions that, once performed, would make the system compliant
to its specifications. Our choice of the terminology “expectation” is intended
to stress that events cannot be enforced, but only expected, to be as we would
like them to be.

Expectations are of two types:

e positive: representing some event that is expected to happen;

e negative: representing some event that is expected not to happen.
Definition 2.3. A positive expectation is an atom:

e with predicate symbol E;

e whose first argument is a term; and

e whose second argument is a variable or an integer.

Intuitively, the first argument is meant to represent an event description, and
the second argument is meant to tell for what time the event is expected (which
should not be confused with the time at which the expectation is generated,
which is not modeled by SCIFF’s declarative semantics). Expectations may
contain variables, which leaves the expected event not completely specified.
Variables in positive expectations are always existentially quantified: if the time
argument is a variable, for example, this means that the event is expected to
happen at any time. We do not associate a specific semantics to time; we
rather treat an expectation’s time argument as any other variable. This choice
simplifies the SCIFF language’s declarative and operational semantics.

Example 2.4. The atom
E(tell(telco, ¢, phone_bill(390512093086, Id, Amount),T). (2)

says that telco is expected to send to ¢ a phone_bill (for the number 390512093086,
whose identifier is Id and whose amount is Amount) at time T.

A negated positive expectation is a positive expectation with the explicit negation
operator — applied to it. As explained in Sect. 2.1.2, variables in negated
positive expectations are quantified as those in positive expectations.

Definition 2.5. A negative expectation is an atom:
o with predicate symbol EN;
e whose first argument is a term; and
e whose second argument is a variable or an integer.

Intuitively, the first argument is meant to represent an event description, and
the second argument is meant to tell in which time points the event is expected
not to happen. As well as positive expectations, negative expectations may
contain variables, which are typically universally quantified!: for example, if
the time argument is a variable, then the event is expected not to happen at all
times.

Example 2.6. The atom
E(tell(telco, ¢, phone_bill(390512093086, Id, Amount),T). (3)

means says that telco is expected not to send to ¢ a phone_bill (for the number
390512093086, with any Id and for any Amount) at any time T.

A negated negative expectation is a negative expectation with the explicit nega-
tion operator — applied to it. As explained in Sect. 2.1.2, variables in negated
negative expectations are quantified as those in negative expectations.

Note that —E(tell(bob, alice, refuse(phone_number), dialog_id), T is different
from EN(tell(bob, alice, refuse(phone_number), dialog_id), T,.). The intuitive mean-
ing of the former is: no refuse is expected by Bob (if he does, we simply did
not expect him to), whereas the latter has a different, stronger meaning: it is
expected that Bob does not utter refuse (by doing so, he would frustrate our
expectations).

The syntax of events and expectations is summarised in Tab. 2.1, and it will
be used as such by the subsequent Tab. 2.2 and 2.3. The syntactical entities
EzistLiteral and NbfLiteral will also be used in the subsequent Tab. 2.2 and 2.3.

2.1.2 Contract specifications

A contract specification, i.e, a specification of the interaction in the SCIFF
framework, is composed of two elements:

e A Knowledge Base;

o A set of Integrity Constraints.

1For a complete treatment of quantification in the SCIFF language, we refer the interested
reader to [ACGT06d].

Table 2.1 Syntax of events and expectations

EventLiteral ::= [not]Event
Event := H(GroundTerm, Integer)
EzpLiteral ::= PosExpLiteral | NegExpLiteral
PosEzpLiteral ::= [-]|PosExp
NegEzpLiteral := [-]|NegExp
PosEzp = E(Term, Variable | Integer)
NegExp = EN(Term, Variable | Integer)
EuzistLiteral = PosExpLiteral | Literal
NbfLiteral = not Atom
Literal ::= [not]Atom

Knowledge Base The Knowledge Base (K Bg) is a set of Clauses in which the
body can contain (besides defined literals) expectation literals and restrictions.
2

Intuitively, the K Bg is used to express declarative knowledge about the
specific application domain.

Table 2.2 Syntax of the Knowledge Base

KBg == [Clause]*
Clause := Head «— Body
Head == Atom
Body := FEuxtLiteral [A ExtLiteral |* [: Restriction [, Restriction]*] | true
ExtLiteral ::= Literal | ExzpLiteral

The syntax of the Knowledge Base is given in Tab. 2.2, and it will be used
as such also in Tab. 2.3.

Goal In the SCIFF framework, the role of the goal is the same as in the logic
programming literature, i.e., a predicate that should be entailed. Therefore, the
term “goal” does not necessarily have the typical connotation (of “common” or
“social” goal) found in multi-agent systems literature, though it can be used for
such a purpose.

The syntax of the goal is the same as the Body of a clause (Tab. 2.2). The
quantification rules are the following:

2In the SCIFF language, restrictions can be considered as CLP constraints [JM94], that
can also be applied to universally quantified variables with the semantics defined by Biirckert
[Biir94].

e All variables that occur in an EwistLiteral are existentially quantified.

e All remaining variables are universally quantified.

Integrity Constraints Integrity Constraints (also ICs, for short, in the fol-
lowing) are implications that, operationally, are used as forward rules, as will be
explained in Sect. 3. Declaratively, they relate the various entities in the SCIFF
framework, i.e., expectations, events, and constraints/restrictions, together with
the predicates in the knowledge base.

Table 2.3 Syntax of Integrity Constraints (ICs)

ICs == [IC]*
IC := Body— Head
Body := (FEventLiteral | ExpLiteral) | A BodyLiteral |*
[Restriction [, Restriction |* |

BodyLiteral ::= FEventLiteral | ExtLiteral

Head := HeadDisjunct | V HeadDisjunct |* | false

HeadDisjunct ::= HeadLiteral [A HeadLiteral]* [: Restriction [, Restriction |*]

HeadLiteral ::= Literal | ExpLiteral

The syntax of ICs is given in Tab. 2.3: the Body of ICs can contain conjunc-
tions of all elements in the language (namely, H, E, and EN literals, defined
literals and restrictions), and their Head contains a disjunction of conjunctions
of any of the literals in the language, except for H literals.

Contract Specification Given a Knowledge Base KBg and a set ZCg of
Integrity Constraints, we call the pair (K Bg,ZCgs) a Contract Specification. In-
tuitively, a contract specification is a description of the acceptable, or desirable,
histories, as defined by its declarative semantics, given formally in Sect. 2.2.

2.2 Declarative Semantics

In the following, we describe the (abductive) declarative semantics of the SCIFF
framework, which is inspired by other abductive frameworks such as the IFF
by Fung and Kowalski [FK97], but introduces the concept of fulfilment, used
to express a correspondence between the expected and the actual events. The
declarative semantics of a contract specification is given for each specific history
(see Sect. 2.1.1). We call a specification grounded on a history an instance of
the contract.

Definition 2.7. Contract instance Given a contract specification S = (KBg,ZCg)
and a history HAP, Sgap represents the pair (S,HAP), called the HAP-
instance of S (or simply an instance of S).

In this way, Sgyapi, Smaps Will denote different instances of the same con-
tract specification S, based on two different histories: HAP? and HAP/.

We adopt an abductive semantics for the contract instance. Declaratively, a
ground set EXP of hypotheses should entail the goal and satisfy the integrity
constraints. In our case the set EXP of hypotheses is, in particular, a set of
ground expectations, positive and negative, possibly negated by explicit nega-
tion. Notice that, by virtue of explicit negation, all of such expectations are
positive abducible literals in ALP terminology.

Definition 2.8. Abductive explanation Given a contract specification S = (KBg,ZCg),
an instance Sgap of S, and a goal G, EXP is an abductive explanation of Syap

for goal G if:

Comp(KBs UHAPUEXP)UCET UTr [ICg 4)
Comp(KBs UEXP)UCET UTy = G (5)

where Comp represents the three-valued completion of a theory [Kun87], CET
is Clark [Cla78] Equational Theory, and Tx is the constraint theory [JM94).

The symbol [is interpreted in three valued logics. In particular, if we interpret
expectations as abducible predicates, we can rely upon a three-valued model-
theoretic semantics as intended meaning, as done, for instance, in a different
context, by Fung and Kowalski [FK97], Denecker and De Schreye [DS98].

We also require consistency with respect to explicit negation [AB94] and
between positive and negative expectations.

Definition 2.9. —-consistency A set EXP of expectations is —-consistent if
and only if for each (ground) term p and integer t:

{E(p,t), "E(p,t)} £ EXP and {EN(p,t), ~"EN(p,t)} £ EXP.
(6)
Definition 2.10. E-consistency A set EXP of expectations is E-consistent
if and only if for each (ground) term p and integer t:

{E(p,t), EN(p,t)} £ EXP (7)

The following definition establishes a link between happened events and
expectations, by requiring positive expectations to be matched by events, and
negative expectations not to be matched by events.

Definition 2.11. Fulfillment Given a history HAP, a set EXP of expecta-
tions is HAP-fulfilled if and only if

VE(p,t) € EXP = JH(p,t) € HAP and VEN(p,t) € EXP = AH(p,t) € HAP

(8)
Otherwise, EXP is HAP-violated.

When all the given conditions (4-8) are met for at least one set of expecta-
tions EXP, we say that the goal is achieved and HAP is compliant to S with
respect to G and EXP, and we write Suap Fexp G. In particular:

Operator Abducibile

Forb A EN(A)
Obl A E(A)
Perm A -EN(A)

Perm NONA -E(A)

Table 1: Deontic notions as expectations

Definition 2.12. Goal achievement Given an instance Suap of a contract
specification S = (KBg,ZCg) and a goal G, iff there exists an EXP that is
an abductive explanation of Spap for G, and it is —-consistent, E-consistent
and HAP-fulfilled, we say that G is achieved w.r.t. EXP (and we write
Suapr Frxp G). Given an instance Suap and a goal G, we say that G is
achieved if JEXP such that G is achieved w.r.t. EXP.

In the remainder of this article, when we simply say that a history HAP is
compliant to a contract specification S, we will mean that HAP is compliant
to & with respect to the goal true. We will say that a history HAP wiolates
a specification § to mean that HAP is not compliant to S. When HAP is
apparent from the context, we will often omit mentioning it.

2.3 Expectations and deontic operators

In this section, we recall the mapping from deontic operators (obligation, per-
mission, prohibition) to the expectations of the SCIFF framework, proposed in
[AGLT06].

Such a mapping can be used to attribute a deontic meaning to SCIFF-based
contract specifications.

The mapping is shown in Tab. 1.

The first line of the table proposes a correspondence between the notion of
prohibition (which requires an action not to be performed) and ours of negative
expectation (which requires an event not to belong to the history).

In fact, the correspondence is more apparent looking at Def. 2.11, which
requires, for a set of expectation to be fulfilled, the absence, in the history of
events, of any event matching a negative expectation. This definition resembles
closely the reduction of the prohibition operator proposed by [Mey88], where
“it is forbidden to perform (an action) « in (a state) o iff one performs « in o
one gets into trouble” (in that paper, “trouble” means an “undesirable state of
affairs”; which is a goode description of our state of violation).

Reasoning in a similar way, it is possible to notice a correspondence between
the notion of obligation (which requires an action to be performed) and ours
of positive expectation (which requires an event to belong to the history), as
shown in the second line in Tab. 1.

Moreover, since a negative expectation EN(A) has to be read as it is expected
not A (i.e., it is a shorthand for E(not A)), its (explicit) negation, “EN(A),
corresponds to permission of A. Finally, due to the logical relations among

10

obligation, prohibition and permission discussed in [Sar04], the fourth line of
Table 1 shows how to map permission of a negative action.

[AGL™06] provides a formal support of this mapping, based on a correspon-
dence between the Kripke semantics of deontic operators and the declarative
semantics of the SCIFF frameworks.

2.4 Sample contract specification

In this section, we intend to demonstrate how to specify, inside the SCIFF
framework, contracts that may result too intricate for a representation based on
other formalisms, such as finite state machines, coloured Petri nets, or AUML
diagrams. The example we give is a simplified version of a real life situation,
describing the activation of a telephone line (carrier) by a customer. We consider
the clauses of the contract a user must sign as the building blocks of a contract,
which makes use of expressive combinations of E, EN, and H predicates, CLP
constraints and predicates defined in the K Bg. With SCIFF we give a faithful
representation of such a contract, which makes it understandable, modular, and
verifiable. Despite all effort put by the telephone company into making things
as obscure as possible, at any time we (as customers) will be able to detect, via
SCIFF, whether the telephone company (telco in the following) has the right to
interrupt the service or to request a payment from us, and whether we have the
right to complain with telco, and not to pay part of the bill. Similarly, telco will
receive indications about when to send requests for payment, or when (not) to
activate or (not) to de-activate the carrier.

2.4.1 Description of the contract

The procedures that regulate the concession of a carrier to a customer are con-
tained in a contract, that the parties (telco and the customer) agree upon. The
contract is composed of several parts, stating what to do when the customer re-
quest a new carrier, the procedures for paying the bills, for handling complaints,
what obligations/penalties apply in case of late payments, and how to delegate
authority to the relevant bureaus, to make any necessary determination as to
whether the parties have complied with all requirements as set forth in the con-
tract. We enucleated a set of clauses in the contract, and gave a specifications
of them in the SCIFF framework. ICs are reported in Spec. 2.1, and the K Bg
is reported in Spec. 2.2. We chose a set of clauses about bill and complaint
handling:

1. After sending a phone bill to a customer, telco cannot send requests for
payment before a pre-defined amount of time (call it TWait has passed;

2. after TWait, either the customer has paid for the bill, or filed a complaint,
or telco is allowed to send a request for payment;

3. after receiving a legitimate request for payment, either the customer pays
for the bill, or telco is allowed to de-activate the carrier, after a further
TWait,

11

4. if, upon receiving a request for payment, the customer pays by TWait,
telco is not allowed to de-activate the carrier;

5. if a customer files, by TWait, an admissible complaint about a received
bill, the customer is no longer expected to pay for it, and telco is not
allowed to request a payment.

2.4.2 SCIFF specification of the contract

Spec. 2.1 contains five ICs: roughly speaking, the first three describe in general
what is the expected behaviour of telco, regarding bill handling, whereas the
last two are about the rights of the customer (C). The ICs state the following:

e by [IC1], after sending a bill at time T, telco may not send requests for
payments before time T1 + TWait, where TWait is the amount of time
defined by the default_wait predicate in the K Bg.

e by [IC2], after telco sends a bill at time T'1, one of the following expecta-
tions hold: either C pays the bill in full by 71+ TWait, or C complains
about (part of) the bill by T1+ TWait, or telco gains the right to send a re-
quest or payment at some time T later than T7+ TWait . We shall notice
that all complaints that C possibly sends after the deadline (T1+ T Wait)
will not have an impact on the state of affairs in these procedures, since
they will not match with any expectation;

e by [IC3], if telco sent a bill, and later a request for payment at a time in
which it was not expected not to do so, and if the request for payment
concerns the bill in full, then ether C pays the bill, or telco gains the right
to de-activate the carrier (although telco is not obliged to do so);

e by [IC4], if C has paid the bill by the deadline, then telco cannot de-
activate the carrier. Notice that [IC4] fires independently of telco actually
having the right to send a request for payments;

e by [IC5], after C complains about some part of the bill (Partl_Amnt), he
is no longer expected to pay the bill Bill_Ammnit.

In the KBg part of the SCIFF program, shown in Specs. 2.2, we spec-
ify deadlines, as in the previous example, and we define what an “admissible
complaint” is. To this end, we define a predicate is_admissible_complaint/2,
which relies upon a database of bills (“list of bills”). In this simplified example,
the database is mimicked by a predicate named list_of-bills/1. The predicate
member/2 used by is_admissible_complaint/2 is predefined in most Prolog distri-

butions; this example in particular uses the implementation that comes together
with [SICO06].

12

Specification 2.1 ZCg in the contract between telco (T) and a customer (C).

[IC1] H(tell(T, C, phone_bill(Phone_No, Bill_Id, Bill_Amnt), D), T1) A
default_wait(T Wait)
— EN(tell(T, C, request_payment(Phone_No, Bill_Id, Any_Amnt), D), T2),
T2 > T1, T2 < T1 + TWait.

[IC2] H(tell(T, C, phone_bill(Phone_No, Bill_1d, Bill_Amnt), D), T1) A
default_wait(T Wait)
— E(tell(C, T, pay(Phone_No, Bill_Id, Bill_Amnt, Paymt_Rcpt), D), T2),

T2 < T1 + TWait

V E(tell(C, T, complain(Phone_No, Bill_Id, Partl_Amnt), D), T3),
T8 < T1 + TWait

V =EN(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T4),
T4 > T1 + TWait.

[IC3] H(tell(T, C, phone_bill(Phone_No, Bill_I1d, Bill_Amnt), D), T1) A
H(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T2) A
—EN(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T2) A
default_wait(T Wait)

— =EN(tell(T, C, de_activate(Phone_No, reason(Bill_Id)), D), T3),
T3 > T2 + TWait
V E(tell(C, T, pay(Phone_No, Bill_Id, Bill_Amnt, Paymt_Rcpt), D), T4),
T4 < T2 4+ TWait.

[IC4] H(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_ Amnt), D), T1) A
H(tell(C, T, pay(Phone_No, Bill_Id, Bill_Amnt, Paymt_Rcpt), D), T2) A
default_wait(TWait) N T2 < T1 + TWaait

— EN(tell(T, C, de_activate(Phone_No, reason(Bill_Id)), D), T3).

[IC5] H(tell(T, C, phone_bill(Phone_No, Bill_1d, Bill_Amnt), D), T1) A
H(tell(C, T, complain(Phone_No, Bill_Id, Partl_Amnt), D), T2) A
default_wait(TWait) A T2 < T1 + TWait A
is_admissible_complaint(Bill_I1d, Partl_Amnt)

— —E(tell(C, T, pay(Phone_No, Bill_Id, Partl_Amnt, Paymt_Rcpt), D), T3),
T3 > TI,
EN(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T4).

13

Specification 2.2 K Bg in the contract between telco and a customer.

KBs:
society_goal.
de fault_wait(10).

is_admissible_complaint(Bill_Id, Partl_Amnt) —
list_of_bills(L1),
member((Bill_Id, Total_Amnt), L1),
Partl_Amnt < Total_Amnt.

list_of-bills([(145886, 205), (114477, 407), (168945, 126)]).

3 Contract verification

In the following, we describe two types of verification supported by the SCIFF
framework: in Sect. 3.1, a verification that the parties involved in a contract
are interacting according to it, and in Sect. 3.2, a formal verification of whether
a contract enjoys some properties.

3.1 Run-time verification

The run-time verification of contracts specified the SCIFF language is performed
by means of an abductive proof procedure, called itself SCIFF [AGLT05]. We
first recall the SCIFF proof procedure, and then show its behaviour on samples
interactions regulated by the contract described in Sect. 2.4.

3.1.1 The SCIFF proof procedure

Since the SCIFF language and its declarative semantics are closely related with
those of the IFF abductive framework [FK97], the SCIFF proof procedure has
also been inspired by the IFF proof procedure. SCIFF is a substantial extension
of IFF, and the main differences between the frameworks are, in a nutshell:

e SCIFF supports the dynamical happening of events, i.e., the insertion of
new facts in the knowledge base during the computation;

e SCIFF supports universally quantified variables in abducibles;
e SCIFF supports quantifier restrictions;
e SCIFF supports the concepts of fulfilment and violation (see Def. 2.11).

The SCIFF proof procedure is based on a rewriting system transforming
one node to another (or to others). In this way, starting from an initial node,

14

it defines a proof tree. A node can be either the special node false, or defined
by the tuple

T = (R,CS, PSIC,PEND, HAP, FULF, VIOL). (9)

We partition the set of expectations EXP into the fulfilled (FULF), violated
(VIOL), and pending (PEND) expectations. The other elements are:

e R is the resolvent: a conjunction, whose conjuncts can be literals or dis-
junctions of conjunctions of literals;

e (S is the constraint store: it contains CLP constraints and quantifier
restrictions;

e PSIC is a set of implications, called partially solved integrity constraints

e HAP is the history of happened events, represented by a set of events,
plus a closed(HAP) boolean attribute.

If one of the elements of the tuple is false, then the tuple is the special node
false, without successors.

Initial Node and Success A derivation D is a sequence of nodes
Ty—-T1— - —Th1— T,

Given a goal G, a set of integrity constraints ZCg, and an initial history
HAP*, we build the first node in the following way:

TO = <{g}7 Q)aICSa 07 HAPZa (2)7 (Z)>7

with closed(HAPi) = false. The other nodes are obtained by applying the
transitions defined in the next section, until no further transition can be applied.

Definition 3.1. Given an instance Syap: of a contract specification S = (K Bg,ZCs)
and a set HAPY D HAP? there exists a successful derivation for a goal G iff
the proof tree with root node ({G},0,ZCs,0, HAP' 0, 0) has at least one leaf
node

(0,CS, PSIC,PEND, HAP/ FULF, ()

where C'S' is consistent, and PEND contains only negations of expectations - E
and -“EN. In such a case, we write:

HAP/
Suapi Fexp -

From a non-failure leaf node N, answers (called expectation answers) can be ex-
tracted in a similar way to the IFF proof procedure. To compute an expectation
answer, a substitution ¢’ is computed such that

e o’ replaces all variables in N that are not universally quantified by a
ground term

15

e o' satisfies all the constraints in the store CSy.

If the constraint solver is (theory) complete [JM94] (i.e., for each set of con-
straints ¢, the solver always returns true or false, and never unknown), then
there will always exist a substitution o’ for each non-failure leaf node N. If the
solver is incomplete, o0/ may not exist. The non-existence of ¢’ is discovered
during the answer extraction phase. In such a case, the node N will be marked
as a failure node, and another non-failure node can be selected (if there is one).

Definition 3.2. Let 0 = 0'|,qr5(c) be the restriction of o’ to the variables
occurring in the initial goal G. Let Ay = (FULFy UPENDy)o’'. The pair
(AN, 0) is the expectation answer obtained from the node N.

3.1.2 SCIFF properties

In the following, we state the most significant formal properties of the SCIFF
proof procedure. For the proofs, the interested reader can refer to [ACGT06d].

Termination Termination is proven, as for SLD resolution [AB91], for acyclic
knowledge bases and bounded goals and implications. The notion of acyclicity of
an abductive logic program is an extension of the corresponding notion given for
SLD resolution. Intuitively, for SLD resolution a level mapping must be defined,
such that the head of each clause has a higher level than the body. For the IFF,
since it contains integrity constraints that are propagated forward, the level
mapping should also map atoms in the body of an IC to higher levels than the
atoms in the head; moreover, this should also hold considering possible unfold-
ings of literals in the body of an IC [Xan03]. Similar considerations hold also for
SCIFF. We extended the level mapping for considering also CLP constraints.
For definitions of boundedness and acyclicity for the contract specification, the
reader can refer to [Xan03].

Theorem 3.3 (Termination of SCIFF). Let G be a query to a contract S =
(KBg,ICgs), where KBg, ICs and G are acyclic w.r.t. some level mapping,
and G and all implications in ZCg are bounded w.r.t. the level-mapping. Then,
every SCIFF derivation for G for each instance of G is finite, assuming that
happening is not applied.

Moreover, under the following conditions:

e the number of happened events is finite,
e happening is applied only when no other transitions can be applied, and
e non-happening has higher priority than other transitions,

S CIFF terminates also with dynamically incoming events.

16

Soundness The SCIFF proof-procedure uses a constraint solver, so its sound-
ness depends on the solver. We proved soundness for a limited solver, containing
only the rules for equality and disequality of terms.

Theorem 3.4 (Soundness of SCIFF). Given a contract instance Sgaps, if

HAP/
Suapi FExp U

for some HAP! C HAPY | with expectation answer (EXP,0), then

Suap/ FExPs GO

Completeness Completeness states that if goal G is achieved under the ex-
pectation set EXP, then a successful derivation can be obtained for G, possibly
computing a set EXP’ of the expectations whose grounding (according to the
expectation answer) is a subset of EXP.

Theorem 3.5. Given a contract instance Sgyap, o (ground) goal G, for any
ground set EXP such that Suap FExp G then IEXP’ such that Sy l—g)%lf, G
with an expectation answer (EXP’, o) such that EXP'oc C EXP.

3.1.3 Runtime verification examples

Let us consider the following case: telco sends the bill, and C' does not pay. As
a consequence, after TWait time units telco sends C a request for payment.

H(tell(telco, ¢, phone_bill(390512093086, 145886, 205), 19).
H(tell(telco, ¢, request_payment(890512093086, 145886, 205), 33). (10)
H(tell(¢, telco, pay(390512093086, 145886, 205, 1674521), 37).

This sequence of events (10) generates a set of fulfilled expectations. What
happens is, after the first message at time 19 (the notification of the phone_bill),
[IC2] generates three alternative and equally plausible sets of expectations:
either C'is expected to pay before time 29, or C'is expected to complain before
time 29, or else telco has the right (=EN) to issue a request for payment after
time 29. In all cases telco does not have the right to send a request for payment
before time 29, because of [IC1]. At time 29 the first two alternatives become
invalid due to the expired deadline. The message request_payment at time 33
is indeed acceptable, according to the contract, and it gives telco explicit right
to de-activate the carrier any time later than 29. In particular, by [IC3], it
generates a new choice point in the tree of expectation sets: in one case telco
has the right to de-activate the carrier after time 39, in the other case C'is
expected to pay. Because of [IC4], the last message, in which C notifies his
payment to telco, has as a side effect that telco loses its right to de-activate the
carrier at any time in connection to the bill No. 145886.

As the second example shows (11), a violation can be generated if telco
de-activates the carrier. In that case, SCIFF detects a violation because the

17

fourth message violates the contract, and in particular [IC4], by which telco
is expected not to de-activate the carrier if C' pays within 10 time units after
receipt of telco’s request for payment.

H(tell(telco, ¢, phone_bill(390512093086, 145886, 205), 19).

H(tell(telco, ¢, request_payment(390512093086, 145886, 205), 33). | (10) (11)
H(tell(¢, telco, pay(390512093086, 145886, 205, 1674521), 37).

H(tell(telco, ¢, de_activate(390512093086, reason(145886)), 38).

Let us consider a third example, starting by telco sending C a bill, as in all
other examples. C complains, but he does it at time 33, which unfortunately is
after the deadline of 10 time units after the bill. This complaint, although not
specifically disallowed by the contract, does not change the state of expectations
in the system, since no IC fires. In particular, [IC5] says that if C' complains be-
fore the deadline, he is not expected any more to pay the amount he complained
about, and telco looses the right to send requests for payment concerning either
the amount C complained about or concerning the full amount of the bill. But
[IC5] (as well as the other ICs) does not say what happens in case of a late
complaint. telco therefore sends him a request to payment, since it is its right,
and the only options for C are either to pay, or to have the carrier de-activated.
C pays and telco has no more right to de-activate the line, which incidentally
makes that second option (have the carrier de-activated) inconsistent, besides
fulfilling all the expectations of the first branch (12).

(tell
(tell
(tell
(tell

telco, ¢, phone_bill(390512093086, 145886, 205), 19).

¢, telco, complain(390512093086, 145886, 150), 33).

telco, ¢, request_payment(390512093086, 145886, 205), 34).
¢, telco, pay(390512093086, 145886, 205, 1674521), 37).

H
H
H (12)

= = =

H

In the last example, telco as usual sends C'a bill. However, this time C'sends
his complaint before the deadline. C complains about an amount of €150 out
of €205. Moreover, the complaint is judged admissible (in our example, shown
with the is_admissible_complaint predicate). As a consequence, if telco sends C
a request for payment (13), it causes a contract violation. Due to [IC5], telco
can no longer issue a request for payment. Unfortunately, telco does so at time
34, and consequently SCIFF detects the violation of [IC5].

H(tell(telco, ¢, phone_bill(390512093086, 145886, 205), 19).
H(tell(¢, telco, complain(390512093086, 145886, 150), 24). (13)
H(tell(telco, ¢, request_payment(890512093086, 145886, 205), 34).

3.2 Design-time property verification

In order to verify contract properties, we have developed an extension of the
SCIFF proof-procedure, called g-SCIFF [ACGT06c|. In the following, we briefly

18

recall g-SCIFF, and then show how it can be used to refute a formal property
that the contract described in Sect. 2.4 does not enjoy.

3.2.1 The g-SCIFF proof procedure

Besides verifying whether a history is compliant to a contract, g-SCIFF is able
to generate a compliant history, given a contract. This is achieved by (%) consid-
ering H events as abducibles and (7i) adding a new transition to SCIFF, which,
when an expectation is added to the set of expectations, generates an event that
fulfills it. g-SCIFF has been proved sound [ACGT05], which means that the
histories that it generates (in case of success) are guaranteed to be compliant
to the interaction contracts while entailing the goal. Note that the histories
generated by g-SCIFF are in general not only a collection of ground events, like
the HAP sets given as an input to SCIFF. They can, in fact, contain variables,
which means that they represent classes of event histories.

In order to use g-SCIFF for verification, we express the property to be
verified as a conjunction of literals. If we want to verify if a formula f is a
property of a contract P, we express the contract in our language and —f as a
g-SCIFF goal. Then either:

e g-SCIFF returns success, generating a history HAP. Thanks to the
soundness of g-SCIFF, HAP entails —f while being compliant to P: f is
not a property of P, HAP being a counterexample; or

e g-SCIFF returns failure, suggesting that f is a property of P.3

3.2.2 Design-time property verification example

In this section, we show the refutation, by means of g-SCIFF, of a simple
property of the contract described in Sect. 2.4.2. For simplicity, we will not show
the details related to the management of restrictions and defined predicates.

The property is the following: if a phone bill is sent, then the customer
will pay for it. Using our formalism for events, the property can be written as
follows:

H(tell(T, C, phone_bill(N,I,A),D),Ty)

14
—H(tell(C, T, pay(N,I,A,R),D),T,) (14)

The negation of the property is:
H(tell(T, C, phone_bill(N,I,A),D),Ty) (15)

AN—H(tell(C, T, pay(N,I,A,R),D),T,)

3If we had a completeness result for g-SCIFF, this would indeed be a proof and not only
a suggestion.

19

Therefore, a history that entails Eq. (15) is a counterexample of the property
that we want to verify. To try and find such a history, we write the following
g-SCIFF goal:

E(tell(T, C, phonebillN,I,A),D),T})

16
AEN(tell(C, T, pay(N. 1, A, R), D).T,) (16)

and run g-SCIFF. A history that achieves the goal will necessarily include
events that are expected to happen, and not include events that are expected
not to happen, in the goal.

g-SCIFF imposes the first expectation of the goal,

E(tell(T, C, phone_bil(N,I,A),D),Ty),
which generates the following event:

H(tell(T, C, phone_bill(N,I,A),D),Ty)
which in turn, due to the first IC, generates the expectation

EN(tell(T, C, request_payment(N, I, A), D), T2)
and, due to the second, one of
E(tell(C, T,pay(N, I, A, PR), D), T2),
E(tell(C, T, complain(N, I, PA), D), T3),
—EN(tell(T, C, request_payment(N, I, A), D), T4).

The E-consistency requirement (Def. 2.10) rules out the first alternative,
because of the negative (EN) expectation imposed by the goal (see Eq. (16));
so the second branch is explored, and the event

H(tell(C, T, complain(N, I, PA), D), T3)

is generated.
Due to the fifth IC, the following expectations are generated:

-E(tell(C, T, pay(N, I, PA, PR), D), T3)
and
EN(tell(T, C, request_payment(N, I, Bill_Amnt), D), T4)

and finally g-SCIFF terminates and returns success, with the history

HAP = {H(tell(T, C, phone_bill(N, 1, A), D), Ty),
H(tell(C, T, complain(N, I, PA), D), T3)}
Thanks to the soundness of g-SCIFF, HAP is a counterexample of the
property that we wanted to prove, and it is also compliant to the contract.

Thus, it shows that the contract does not enjoy the property. In particular, it
shows that a customer can avoid being expected to pay by filing a complaint.

20

4 Rule Mark-Up

In [ACGT06a], we propose an architecture and a formal framework that enables
web services to reason on publicly available SCIFF-based specifications: in
particular, it is possible for a web service to verify whether it can interact
with another and achieve a goal. We believe that an interested party could
fruitfully perform such a step before agreeing with another party on a contract.
Obviously, this requires a formalism that makes it practical to exchange SCIFF-
based specifications.

RuleML [ASTO05] is the perfect mark-up language for exchanging rules on the
web, so our choice has been easy. RuleML 0.9 contains mark-ups for expressing
important concepts of the SCIFF proof-procedure. In particular, SCIFF is a
rule engine able to distinguish and use both backward and forward rules. Back-
ward rules are used to plan, reason upon events, perform proactive reasoning.
Forward rules are used for reactive reasoning, to quickly perform actions in re-
sponse to occurred events. Both are seamlessly integrated in SCIFF. RuleML
0.9 contains a direction attribute that can be attached to rules. Being based
on abduction, SCIFF can deal both with negation as failure and negation by
default, that have an appropriate tagging in RuleML. In this work, we only
used standard RuleML syntax; in future work we might be interested in dis-
tinguishing between defined and abducible predicates, or between expectations
and events.

SCIFF was implemented in SICStus Prolog: SICStus contains an imple-
mentation of the PiLLoW library [GHO1], which makes it easy to perform http
requests, as well as implementing services on the web. Finally, SICStus contains
an XML parser, which allowed us to easily implement the RuleML parser. The
RuleML parser is freely available on the SCIFF web site [SCI05].

5 Related work

The reduction of deontic concepts such as obligations and prohibitions has been
the subject of several past works: notably, by [And58] (according to which,
informally, A is obligatory iff its absence produces a state of violation) and by
[Mey88] (where, informally, an action A is prohibited iff its being performed
produces a state of violation). These two reductions strongly resemble our
definition of fulfillment (Def. 2.11), which requires positive (resp. negative)
expectations to have (resp. not to have) a corresponding event.

Several papers discuss “sub-ideal” situations, i.e., how to manage situations
in which some of the norms are not respected.

For instance, [vT99] shows the relation between diagnostic reasoning and
deontic logic, importing the principle of parsimony from diagnostic reasoning
into their deontic system, in the form of a requirement to minimize the number
of violations. In particular, given the specification of a normative system (as a
set of formulae which tell when a norm is violated) and a state of affairs, they
define a minimal (with respect to inclusion) set of norms such that the violation

21

of those norms is consistent with the specification and the state of affairs. The
SOCS social framework, currently, only distinguishes between empty and non-
empty sets of violations, and does not define minimal sets. However, it would
be possible to do so by taking the minimal, with respect to inclusions, among
the sets of expectations which are consistent with a social specification and a
history, but possibly not fulfilled by the history. This will probably be our
approach when we tackle the management of violations (by means of sanctions
and recovery procedures) in future work.

[PS96] propose a solution to the problem and paradoxes stemming from ear-
lier logical representations of contrary-to-duty obligations, i.e., obligations that
become active when other obligations are violated. They do so by introduc-
ing a new operator Og(A), meaning that A is obligatory given the sub-ideal
context B. The semantics of this operator is of Kripke type, but it differs to
the standard modal logic because of the accessibility relation: in that work,
the accessible worlds are the best alternatives, given the truth of B. In the
“main stream” of our research, we do not support contrary-to-duty obligations.
However, we proposed a modified version of our framework [ADG"04] , which
provides a simplified language and does support alternative obligations at dif-
ferent levels of priority; a further step could be to integrate priority levels in the
main SOCS social framework.

Deontic operators have been used not only at the social level, but also at the
agent level. Notably, in IMPACT ([AOR™99, ESP99]), agent programs may be
used to specify what an agent is obliged to do, what an agent may do, and what
an agent cannot do on the basis of deontic operators of Permission, Obligation
and Prohibition (whose semantics does not rely on a Deontic Logic semantics).
In this respect, the IMPACT and SOCS social models have similarities even if
their purpose and expressivity are different. The main difference is that the goal
of agent programs in IMPACT is to express and determine by its application the
behavior of a single agent, whereas the SOCS social model goal is to express rules
of interaction and norms, that instead cannot really determine and constrain
the behavior of the single agents participating to a society, since agents are
autonomous.

Governatori [Gov05] uses defeasible logics with deontic operators of Obligation
and Permission to define contracts. He proposes the introduction in RuleML
of new tags for identifying obligations and permission. In SCIFF, we usually
do not use explicit permission, because everything is allowed by default; we
typically state explicitly when an action is expected not to happen EN. There
are connections between EN and —P of deontic logics (studied in [AGL106]),
so we might use the same tags proposed by Governatori (e.g., we might use
<neg><Permission> to represent EN).

Governatori [Gov05] also introduces an operator ® to address recovery from
violation. For example, A = OB ® OC means that A implies that B is obliga-
tory; however in case OB is violated, C' becomes obligatory. In SCIFF, recovery
expectations can be inserted as an alternative in each of the rules: A = OB®0OC
could be written in SCIFF as H(A) — E(B)V E(C). Interestingly, Governatori
[Gov05] proposes also an inference rule that derives recovery rules from the other

22

rules of the contract (from A — OB and =B — OC derives A — OB ® OC);
this is an interesting line of research that we plan to apply in future work also
to SCIFF.

In cite [GMO05, GM06] Governatori and Milosevic discuss the need for con-
tract verification and contract monitoring to check how parties fulfil their poli-
cies. Both these issues are addressed by the adoption of a formal specification
language for contracts. The system they propose, and their Business Contract
Language (BCL) in particular, is based on the formalism for the representa-
tion of contrary-to-duty obligations (CTDs), i.e., obligations in force after some
other obligations have been violated. The formal representation for contracts
they adopt is based upon a propositional logic language, with the deontic oper-
ators of obligation, permission and contrary-to-duty. Each condition or policy
of a contract is represented by a rule where the antecedent is a literal or a modal
literal (built with the deontic operators of permission and obligation, possibly
negated) and the conclusion of the rule is a CTD expression. Contract analysis
is then done by reducing a contract to a normal form, where all the contract
conditions that can be generated/derived from the given specification have been
made explicit. The procedure to generate normal forms is expressed in terms
of inference rules, which merge two rules in a new clause through the violations
of conditions (e.g., when the former rule mentions an obligation O A in its
conclusion and the latter rule has the negation —A in its antecedent, then their
conclusions are composed in order to build a CDT formula for A). Normal forms
are then a sort of partial evaluation of specification rules, in the logic of viola-
tion, aiming at producing rules with CDT formulas in their conclusions which
summarize all the possible violations and recovery actions implicitly specified
by the original (logic) representation of a contract. On generated normal forms
they can therefore detect conflicts arising from, e.g., obligation of A and —A, or
occurrence of A and = A in conclusions without any CTD for A neither —A.

Although we do not have a language supporting CDTs, our language is
first-order, and supports the deontic operators of permission and obligation
(and their negation as discussed in [AGLT06]). In our approach, SCIFF is
exploited at run-time for contract monitoring (e.g., conflicts and contradictions
are detected at run-time by the notions of E-consistency and —-consistency),
and more general contract properties (beside the absence of conflicts) can be
also statically verified by g-SCIFF. g-SCIFF, in particular, generates all the
possible compliant histories which satisfy a given goal, and a contract specified
in the SCIFF language. Each generated history can be considered as a set of
obligations in the approach of Governatori and Milosevic [GMO06], since g-SCIFF
turns obligations into events.

An interesting extension would be to equip the SCIFF language with CTDs
expressions, to occur in the head of ICs. This is subject for future work.

[Bv03] discuss how a normative system can be seen as a normative agent,
equipped with mental attitudes, about which other agents can reason, choosing
either to fulfill their obligations, or to face the possible sanctions. Conceptually,
the social infrastructure in the SOCS model could be viewed as an agent, whose
knowledge base is the society specification, whose mental attitude is a set of

23

expectations, and whose reasoning process is the SCIFF proof procedure.

[BDDMO04] investigate the deontic logic of deadlines by introducing an oper-
ator O(p < §), which means, intuitively, that the action p ought to be brought
about before (or at the same time) another event § happens. They model time
by means of the CTL temporal logic. We can express a similar concept by means
of an integrity constraints H(6,T5) — E(p,T,) AT, < Ts, which says that, if
0 has happened, than p is expected to have happened before (or at the same
time).

The SCIFF framework can capture, in a computational setting, the concept
of (conditional) obligation with deadline presented by [DMDWO02], with an ex-
plicit mapping of time. Dignum et al. write: O0a(r<d|p) to state that if the
precondition p becomes valid, the obligation becomes active. The obligation
expresses the fact that a is expected to bring about the truth of r before a
certain condition d holds.

For instance, if we have:

p = H(tell(S, a, request(G), D, T))
r = H(tell(a, S, answer(G), D, T7")),T' > T
d=T >T+2

we can map Oa(r<d|p) into a IC:

H(tell(S, a, request(G), D), T) —
E(tell(a, S, answer(G), D), T"), T > T, 7' <T + 2.

There have been many works using the Event Calculus (EC) for the purpose
of reasoning over the effects of events, that are very close to this paper. In
particular, our work is very related to the work in [FSSB05]. In [FSSB05] the
authors have been principally concerned with the representation of contracts and
their normative state in particular, in terms of obligation, power and permission.
The effects of contract events on the normative state of a contract are specified
using an XML formalisation of the Event Calculus. This representation may be
used to track the state of the agreement, according to a narrative of contract
events similar to our concept of History.

Like in [FSSB05], SCIFF can be seen as a generic language for expressing
backward and forward rules and reasoning about (conformance) properties of a
specific where the representation of contracts is just one application.

Differently from [FSSB05] In this work we show that being able to describe
contracts as logical theories is extremely useful not only for tracking, but also
for for proving general or specific properties of the contracts by using the same
formalism . A similar approach is used in [ASP03] by using a formalization in
terms of transition systems and model checking techniques.

24

6 Conclusions

In this paper, we proposed the use of the SCIFF framework, originally devel-
oped for agent interaction protocols, to specify and verify business contracts.
We supported intuitively our proposal by showing a deontic reading of SCIFF
specifications. We gave the specification of sample business contract clauses in
the SCIFF language.

We also demonstrated how verification is performed in the SCIFF frame-
work: in particular, run-time verification by means of the SCIFF proof proce-
dure, and design-time property verification with the g-SCIFF proof procedure.
We also showed how SCIFF rules can be encoded in RuleML, in order to be
possibly exchanged to enable potential contract parties to reason on contracts
in advance.

Future work will be devoted to experiment with the SCIFF framework on
real-world contracts, to test both the expressiveness of the SCIFF language and
the effectiveness of the proof procedures used for verification. We are also work-
ing on a formal completeness result (possibly for restricted cases) for g-SCIFF.

Acknowledgments

This work has been partially supported by the MIUR PRIN 2005 projects Spec-
ification and verification of agent interaction protocols and Vincoli e preferenze
come formalismo unificante per 'analisi di sistemi informatici e la soluzione
di problemi reali, and by the MIUR FIRB project Tecnologie Orientate alla
Conoscenza per Aggregazioni di Imprese in Internet.

References

[AB91] Krzysztof R. Apt and Marc Bezem. Acyclic programs. New Gen-
eration Computing, 9(3/4):335-364, 1991.

[AB94] Krzysztof R. Apt and Roland N. Bol. Logic programming and
negation: A survey. Journal of Logic Programming, 19/20:9-71,
1994.

[ACGT05] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina
Lamma, Paola Mello, and Paolo Torroni. On the automatic veri-
fication of interaction protocols using ¢-SCIFF. Technical Report
DEIS-LIA-04-004, University of Bologna (Italy), 2005. LIA Series
no. 72.

[ACGT06a] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina
Lamma, Paola Mello, Marco Montali, and Paolo Torroni. Policy-
based reasoning for smart web service interaction. In Proceedings of
the 1st International Workshop on Applications of Logic Program-
ming in the Semantic Web and Semantic Web Services (ALPSWS

25

[ACG*06b]

[ACG+06c]

[ACG*06d]

[ADGT04]

[AGL*05]

[AGL*06]

[AMBO00]

[And58]

2006), volume 196 of CEUR Workshop Proceedings, pages 87-102,
Seattle, WA, USA, August 2006.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina
Lamma, Paola Mello, and Paolo Torroni. Compliance verification
of agent interaction: a logic-based tool. Applied Artificial Intelli-
gence, 20(2-4):133-157, February-April 2006.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina
Lamma, Paola Mello, and Paolo Torroni. Security protocols
verification in abductive logic programming: a case study. In
Ogus Dikenelli, Marie-Pierre Gleizes, and Alessandro Ricci, edi-
tors, ESAW 2005 Post-proceedings, number 3963 in LNAI, pages
106-124, Kusadasi, Aydin, Turkey, 2006. Springer-Verlag.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina
Lamma, Paola Mello, and Paolo Torroni. Verifiable agent interac-
tion in abductive logic programming: the SCIFF proof-procedure.
Technical Report DEIS-LIA-06-001, University of Bologna (Italy),
March 2006. LIA Series no. 75.

Marco Alberti, D. Daolio, Marco Gavanelli, Evelina Lamma, Paola
Mello, and Paolo Torroni. Specification and verification of agent in-
teraction protocols in a logic-based system. In Hisham M. Haddad,
Andrea Omicini, and Roger L. Wainwright, editors, Proceedings
of the 19th Annual ACM Symposium on Applied Computing (SAC
2004). Special Track on Agents, Interactions, Mobility, and Sys-
tems (AIMS), pages 72-78, Nicosia, Cyprus, March 14-17 2004.
ACM Press.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and
Paolo Torroni. The SCIFF abductive proof-procedure. In Proceed-
ings of the 9th National Congress on Artificial Intelligence, AT*IA
2005, volume 3673 of Lecture Notes in Artificial Intelligence, pages
135-147. Springer-Verlag, 2005.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, Gio-
vanni Sartor, and Paolo Torroni. Mapping deontic operators to
abductive expectations. Computational and Mathematical Organi-
zation Theory, 12(2-3):205 — 225, October 2006.

Grigoris Antoniou, Michael J. Maher, and David Billington. De-
feasible logic versus logic programming without negation as failure.
J. Log. Program., 42(1):47-57, 2000.

A. Anderson. A reduction of deontic logic to alethic modal logic.
Mind, 67:100-103, 1958.

26

[AOR*+99)

[ASP03)

[ASTO5]

[BDDMO4]

[Biir94]

[Bv03]

[ClaT8]

[DMDWO02]

[DS98]

[ESP99)]

[FK97]

K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and
S. Kraus. IMPACT: a Platform for Collaborating Agents. IEEE
Intelligent Systems, 14(2):64-72, March/April 1999.

Alexander Artikis, Marek J. Sergot, and Jeremy Pitt. An exe-
cutable specification of an argumentation protocol. In ICAIL, pages
1-11, 2003.

Asaf Adi, Suzette Stoutenburg, and Said Tabet, editors. Rules
and Rule Markup Languages for the Semantic Web, First Interna-
tional Conference, RuleML 2005, Galway, Ireland, November 10-
12, 2005, Proceedings, volume 3791 of Lecture Notes in Computer
Science. Springer Verlag, 2005.

Jan Broersen, Frank Dignum, Virginia Dignum, and John-Jules Ch.
Meyer. Designing a deontic logic of deadlines. In Alessio Lomuscio
and Donald Nute, editors, DEON, volume 3065 of Lecture Notes in
Computer Science, pages 43-56. Springer, 2004.

H.J. Biirckert. A resolution principle for constrained logics. Artifi-
cial Intelligence, 66:235-271, 1994.

Guido Boella and Leendert W. N. van der Torre. Attributing men-
tal attitudes to normative systems. In J. S. Rosenschein, T. Sand-
holm, M. Wooldridge, and M. Yokoo, editors, Proceedings of the
Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2003), pages 942-943, Melbourne,
Victoria, July 14-18 2003. ACM Press.

K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 293-322. Plenum Press, 1978.

V. Dignum, J. J. Meyer, F. Dignum, and H. Weigand. Formal
specification of interaction in agent societies. In Proceedings of the
Second Goddard Workshop on Formal Approaches to Agent-Based
Systems (FAABS), Maryland, October 2002.

M. Denecker and D. De Schreye. SLDNFA: an abductive proce-
dure for abductive logic programs. Journal of Logic Programming,
34(2):111-167, 1998.

T. Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous ac-
tive agents, I: Semantics. Artificial Intelligence, 108(1-2):179-255,
March 1999.

T. H. Fung and R. A. Kowalski. The IFF proof procedure for abduc-
tive logic programming. Journal of Logic Programming, 33(2):151—
165, November 1997.

27

[FSSBO5)

[GHO1]

[GLC99]

[GMO5]

[GMOG]

[Gov05]

[TMO4]

[Kun87]

[Mey88]

[MGL*04]

[Mil95]

[PS96]

[Sar04]

Andrew D. H. Farrell, Marek J. Sergot, Mathias Sallé, and Claudio
Bartolini. Using the event calculus for tracking the normative state
of contracts. Int. J. Cooperative Inf. Syst., 14(2-3):99-129, 2005.

Daniel Cabeza Gras and Manuel V. Hermenegildo. Distributed
WWW programming using (Ciao-)Prolog and the PiLLoW library.
Theory and Practice of Logic Progr., 1(3):251-282, 2001.

Benjamin N. Grosof, Yannis Labrou, and Hoi Y. Chan. A declar-
ative approach to business rules in contracts: courteous logic pro-
grams in xml. In ACM Conference on Electronic Commerce, pages
68-77, 1999.

Guido Governatori and Zoran Milosevic. Dealing with contract
violations: formalism and domain specific language. In EDOC,
pages 46-57. IEEE Computer Society, 2005.

Guido Governatori and Zoran Milosevic. A formal analysis of a
business contract language. International Journal of Cooperative
Information Systems, 15(4):659-685, 2006.

Guido Governatori. Representing business contracts in RuleML.
International Journal of Cooperative Information Systems, 14(2-
3):181-216, 2005.

J. Jaffar and M.J. Maher. Constraint logic programming: a survey.
Journal of Logic Programming, 19-20:503-582, 1994.

K. Kunen. Negation in logic programming. In Journal of Logic
Programming, volume 4, pages 289-308, 1987.

J. J. Ch. Meyer. A different approach to deontic logic: Deontic
logic viewed as a variant of dynamic logic. Notre Dame J. of Formal
Logic, 29(1):109-136, 1988.

Z. Milosevic, S. Gibson, P. F. Linington, J. Cole, and S. Kulkarni.
On design and implementation of a contract monitoring facility.
In Proceedings of the First International Workshop on Electronic
Commerce (WEC’04), pages 62-70, Los Alamitos, CA, USA, 2004.
IEEE Computer Society.

Zoran Milosevice. Enterprise aspects of open distributed systems.
PhD thesis, Computer Science Department, The University of
Queensland, October 1995.

Henry Prakken and Marek Sergot. Contrary-to-duty obligations.
Studia Logica, 57(1):91-115, 1996.

Giovanni Sartor. Legal Reasoning, volume 5 of Treatise. Kluwer,
Dordrecht, 2004.

28

[SCI05]

[SIC06]

[SOCO5]

[vT99]

[Xan03]

The SCIFF abductive proof procedure, 2005. http://lia.deis.
unibo.it/research/sciff/.

SICStus prolog user manual, release 3.12.7, October 2006. http:
//www.sics.se/isl/sicstus/.

Societies Of ComputeeS (SOCS): a computational logic model for
the description, analysis and verification of global and open so-
cieties of heterogeneous computees. IST-2001-32530, 2002-2005.
Home Page: http://lia.deis.unibo.it/research/socs/.

Leendert W. N. van der Torre and Yao-Hua Tan. Diagnosis and
decision making in normative reasoning. Artificial Intelligence and
Law, 7(1):51-67, 1999.

I. Xanthakos. Semantic Integration of Information by Abduction.
PhD thesis, Imperial College London, 2003. Available at http:
//www.doc.ic.ac.uk/~ix98/PhD.zip.

29

