

Implementing Norms that Govern Non-Dialogical Actions

Viviane Torres da Silva*

Departamento de Sistemas Informáticos y Programación – UCM, Spain, Madrid

viviane@fdi.ucm.es

Abstract. The governance of open multi-agent systems is particular important

since those systems are composed by heterogeneous, autonomous and

independently designed agents. Such governance is usually provided by the

establishment of norms that regulate the actions of agents. Although there are

several approaches that formally describe norms, there are still few of them that

propose their implementation. In additions, only one that provides support for

implementing norms deals with non-dialogical actions since the others only

deal with dialogical actions, i.e., actions that provide the interchange of

messages between agents. In this paper we propose the implementation of

norms that govern non-dialogical actions by extending one of the approaches

that regulate dialogical ones. Non-dialogical actions are not related to the

interactions between agents but to tasks executed by agents that characterize,

for instance, the access to resources, their commitment to play roles or their

movement into environments and organizations.

Keywords: norm, governance of multi-agent system, non-dialogical action,

implementation of norm

1 Introduction

The governance of open multi-agent systems copes with the heterogeneity, autonomy

and diversity of interests among agents that can work towards similar or different

ends [8] by establishing norms. The set of system norms defines actions that agents

are prohibited, permitted or obligated to do [1,11].

Several works have been proposed in order to define the theoretical aspects of

norms [3,5], to formally define those norms [2,4], and to implement them [6,7,8,9,12].

In this paper we focus on the implementation of norms. Our goal is to present an

approach where dialogical and non-dialogical norms can be described and regulated.

Non-dialogical actions are not related to the interactions between agents but to tasks

executed by agents that characterize, for instance, the access to resources, their

commitment to play roles or their movement in environments and organizations.

From the set of analyzed proposals for implementing norms, the only approach that

considers non-dialogical actions is [12]. Although, it presents some issues on the

verification and enforcement of norms, it does no demonstrate how they should be

* Research supported by Comunidad de Madrid S-0505/TIC-407 and MEC-SP TIC2003-01000.

Dagstuhl Seminar Proceedings 07122
Normative Multi-agent Systems
http://drops.dagstuhl.de/opus/volltexte/2007/927

2 Viviane Torres da Silva*

implemented. Other approaches such as [6,7,8,9] deal with e-Institutions and, thus,

consider illocutions as the only action performed in such systems.

Our approach extends the work presented in [7] with the notion of non-dialogical

actions proposed in [12]. A normative language is presented in [7] to describe

illocutions (dialogical actions) that might be dependent on temporal constraints or the

occurrence of events. We have extended the normative language in order to be

possible to specify non-dialogical norms that state obligations, permissions or

prohibition over the execution of actions of agents’ plans (as proposed in [12]) and of

object methods. Similar to the approach presented in [7], we have also used Jess1 to

implement the governance mechanism that regulates the behavior of agents. The

mechanism activates norms and fires violations (Jess rules) according to the executed

(dialogical or non-dialogical) actions (Jess facts).

The paper is organized as follows. Section 2 describes the example we are using to

illustrate our approach. Section 3 intends to clearly present the difference between

dialogical and non-dialogical actions. Section 4 points out the main concepts of the

extended normative language and Section 5 describes the implementation of the

governance engine in Jess. Section 6 concludes our work.

2 Applied Example

In order to exemplify our approach, we have defined a set of six norms that govern a

simplified version of a soccer game. The soccer game is composed of agents playing

one of the three available roles: referee, coach and player (kicker or goalkeeper). The

responsibilities of a referee in a soccer game are: to start the game, stop it, check the

players’ equipments and punish the players. The available punishments are: to show a

yellow card, send off a player, and declare a penalty. The possible actions of a player

during a game are: kick the ball and get the ball with hands. The coach role is limited

to substitute players. Besides those actions, all agents are able to move and, therefore,

enter and leave the game filed. The six norms that regulate our simple soccer game

are the following:

Norm 1: The referee must check the players’ equipments before star the game.

Norm 2: A coach cannot substitute more than three players in the same game.

Norm 3: Players cannot leave the game field during the game.

Norm 4: The referee must send off a player after (s)he has done a second caution in

the same match. In this simplified version of the soccer game, there is only one

situation that characterizes a caution; a player leaving the game field before the

referee has stopped it. At the first caution, the agent receives a yellow card.

Norm 5: Kickers cannot get the ball.

Norm 6: The referee must declare a penalty if kicker gets the ball.

1 Jess is a rule-based system. http://www.jessrules.com/

Implementing Norms that Govern Non-Dialogical Actions 3

3 Dialogical x Non-Dialogical Actions

Non-dialogical actions are the ones not related to interactions between agents. Not all

actions executed by agents in multi-agent systems provide support for sending and

receiving messages between them [12]. There are actions that modify the environment

(for example, updating the state of a resource) that do not characterize a message

being sent to or received from another agent. In the soccer game example, the actions

of kicking the ball or getting it are non-dialogical actions. In addition, actions that

modify the position of an agent in an environment do not characterize a dialogical

action either. The actions of entering or leaving the game field are not dialogical ones.

Some actions can be defined as a dialogical or a non-dialogical one, depending on

how the problem is modeled. In the soccer game, to start a game and to stop it was

considered dialogical actions. Agents receive a message informing about the state of

the game. The dialogical actions of the soccer game example are: to start the game,

stop it, punish player, declare penalty and show the yellow card. The non-dialogical

ones are: enter in the game filed, leave it, get the ball, kick the ball, substitute a player

and check the player’s equipment.

4 Describing Norms

Since our intention is to contribute to the work presented in [6], we extend the BNF

normative language to represent non-dialogical actions and to describe conditions and

time situations that are defined by those non-dialogical actions. In addition, the

specification of dialogical actions already presented in the previous normative

language was extended in order to be possible to describe messages attributes stated

in the FIPA ACL language2.

4.1 Specifying Non-Dialogical Actions

The original BNF description of the normative language defines norms as the

composition of a deontic concept (characterizing obligation, prohibition or

permission) and an action followed by a temporal situation and a if condition, when

pertinent. In such definition, actions are limited to utterance of illocutions.

In our proposed extension, the action concept was generalized to also describe

non-dialogical ones. Non-dialogical actions define the entities whose behavior is

being restricted and the actions that are being regulated. Due to the way the entity

concept was defined, a non-dialogical norm can be applied to all agents in the system,

to a group of agents, to agents playing a given role or even to a unique agent.

<norm> ::= <deontic_concept> '(' <action> ')'

 | <deontic_concept> '(' <action><temporal_situation> ')'

 | <deontic_concept> '(' <action> IF <if_condition> ')'

 | <deontic_concept> '(' <action> <temporal_situation> IF <if_condition> ')'

<deontic_concept> ::= OBLIGED | FORBIDDEN | PEMITTED

2 http://www.fipa.org/repository/aclspecs.html

4 Viviane Torres da Silva*

<action>::= <non_dialogical_action> | <dialogical_action>

<non_dialogical_action> ::= <entity> 'EXECUTE' <exec>

<entity>::= <agent>':'<role> | <role> | <agent> | <group> | 'ALL'

In this paper we are limiting non-dialogical actions to the execution of an

object/class method or to the execution of the action of an agent plan [12]. Non-

dialogical norms that regulate the access to resources specify the entities that have

restricted access to execute the methods of the resource. Non-dialogical norms that

regulate (non-dialogical) actions not related to the access to resources describe entities

that have restricted access to the execution of an action of a plan.

<exec> ::= <objectORclass>'.'<method>'('<parameters>')''('<contract>')'

 | <plan>':'<action>'('<parameters>')''('<contract>')'

 |...!the parameters and the contract can be omitted

In [12], the authors affirm that non-dialogical actions can be described as abstract

actions that are not in the set of actions defined by the agents or in the set of methods

of the classes. Agents must translate the actions and methods to be executed into more

abstract ones. With the aim to help agents in such transformation, we propose the use

of contracts. A contract is used to formally describe the behavior of the

actions/methods while specifying its invariants, pre and post-conditions [10]. We do

not impose any language to be used to describe the terms of a contracts.

<contract> ::= <pre>';'<post>';'<inv>

 |... !pre, post and inv concepts can be omitted

<pre> ::= <expression> | <expression> <opl> <pre> | <expression> ',' <pre>

... !pre, post and inv are similarly defined

<opl> ::= 'AND' | 'OR' | 'XOR' | 'NOR' |...

Such extensions make possible to describe, for instance, norms that regulates the

execution of an action while describing the parameters required for its execution and

the contract that defines it. The extensions enable, for example, the definition of norm

2. The norm states that a coach cannot substitute more than three players in the same

game. The coach cannot execute an action that substitutes players if the number of

substitutions is already 3.

FORBIDDEN (coach EXECUTE managingTeam:SubstitutePlayer (outPlayer,inPlayer,team)

 (team.coach = coach; team.substitutions = team.substitutions@pre+1,

 team.playersInField->excludes(outPlayer),

 team.playersInField->includes(inPlayer);)

 IF team.substitutions >= 3)

The action governed by norm 1 is also a non-dialogical action and states that the

referee must check the players’ equipment before start the game. The action of

checking the equipment is a non-dialogical action since the referee needs not to

interact with the player but with its equipment. On the other hand, the action of

starting a game is a dialogical action modeled as a message from the referee to

everybody in the game (as presented in Section 4.4).

OBLIGED (referee EXECUTE managingGame:checkEquipment (players)

 BEFORE (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;]))))

Implementing Norms that Govern Non-Dialogical Actions 5

4.2 Extending the Temporal Situations

The temporal situation concept specified in the normative language is used to

describe the period of valid (or active) norms. Norms can be activated or deactivated

due to the execution of an (dialogical or non-dialogical) action, to the change in the

state of an object or an agent, to the occurrence of a deadline, and to the combination

of such possibilities. In the preview normative languages the authors only consider the

execution of dialogical actions and the occurrence of a deadline as temporal

situations. The normative language was extended to contemplate the activation and

deactivation of norms due to the execution of non-dialogical actions, to the change in

the state of an object or an agent (without specifying the action that was responsible

for that) and to the combination of the above mentioned factors (as specified in the

situation concept).

<temporal_situation> ::= BEFORE <situation> | AFTER <situation>

| BETWEEN '(' <situation> ',' <situation> ')'

The extensions enable, for example, the definition of norm 3 that states that players

cannot leave the game between its initial and its interruption, as shown below.

FORBIDDEN (player EXECUTE moving:LeaveField ()

 (agent.position@pre=inField; agent.position<>inField;)

 BETWEEN (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;])),

 UTTER(game; si; INFORM(;referee;;[;gameStopped;;;;;;]))))

Another norm that makes use of temporal situation is norm 4. It states that the

referee must send off a player after he receives a second caution in the same match. If

player leaves the field of play and it has already been shown a yellow card, the referee

must send him(her) off. Note that such norm 4 is conditioned to the execution of an

action governed by norm 3.

OBLIGED (UTTER(game;si;CAUTION(;referee;;kicker[;sentOff;;;;;;movingLeaveField]))

 AFTER (player EXECUTE moving:LeaveField()

 (agent.position@pre=inField;agent.position<>inField;)

 BETWEEN (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;])),

 UTTER(game; si; INFORM(;referee;;[;gameStopped;;;;;;]))))

 IF player.yellowCard = true)

4.3 Extending the IF Condition

The if condition defined in the original normative language is used to introduce

conditions over variables, agents' observable attributes or executed dialogical actions.

Therefore, by using such language it is not possible to describe nom 6 since it is

conditioned to the execution of a non-dialogical action. Our proposed extension

makes possible to specify a condition related to an executed non-dialogical action or

to a fired norm.

<if_condition> ::= <cond_expression> | NOT '(' <cond_expression> ')'

<cond_expression> ::= <condition> | NOT <condition>

 | <condition> ',' <if_condition> | NOT <condition> ',' <if_condition>

<condition> ::= <action> | <deontic_concept> '(' <action> ')' |...

6 Viviane Torres da Silva*

Norm 6 defines that the referee must declare a penalty if a kicker gets the ball. The

non-dialogical action of getting the ball is the if condition of norm 6 and can be

described as follows.

OBLIGED (UTTER(game; si; PENALTY(;referee;kickerTeam;

[;penalty;;;;;;ballTouch])) IF kicker EXECUTE play:getBall)

4.4 Extending Dialogical Actions

In [7], the authors represent the execution of dialogical actions by the identification of

the action (not carried out yet) of submitting an illocution. In their point of view, an

illocution is an information that caries a message to be sent by an agent playing a role

to another agent playing another role. The illocution concept was extended to be

possible to omit the agents that send and receive the messages. Not always will be

possible to specify the agents that will send and receive the messages while describing

the norms. Sometimes only the roles that those agents will be playing can be

identified. Moreover, the roles of the sender and receiver can also be omitted. It may

be the case that no mater the one is sending a message or no mater the one is

receiving it, the norm must be obeyed.

<dialogical_action> ::= 'UTTER(' <scene> ';' <state> ';' <illocution> ')'

| 'UTTERED(' <scene> ';' <state> ';' <illocution> ')'

<illocution> ::= <perf>'('<sender>';'<role>';'<receiver> ';'<role>'['<msg>'])'

|...!it is possible to omit the senders, receivers and also their roles

Since a message can be sent to several agents, the receiver concept was also

extended to make possible to describe the group of agents that will be the receivers of

the message.

<sender> ::= <agent>

<receiver> ::= <agent> | <group>

By using the extensions provided above for illocution, it is possible to model

norms 1 (Section 4.1), 4 (Section 4.2) and 6 (Section 4.3) that omit the agent

identification that is playing the referee role. In such cases, it is not important to

identify the agent but only the role that the agent is playing. Norm 1 also omits the

receiver and its role to characterize that the message is being broadcasted. Norm 4

identifies the role of the receiver but does not identify the agent playing the role since

the message to be send does not depend on the agent. Moreover, norm 6 does not

identify the receiver agent but the receiver team that will be punished.

4.5 Specifying Messages

The message concept has not been specified in the previous version of the normative

language. We propose to specify such concept since it may be necessary to provide

some characteristics of the messages while describing the norms. The message

concept was extended according to the parameters defined by an ACL message.

<msg> ::= <conversation_id>';'<contents>';'<language_encoding>';

'<ontology_protocol>';'<reply_by>';'<reply_to>';'<reply_with>';'<in_reply_to>

Implementing Norms that Govern Non-Dialogical Actions 7

 |...!it is possible to omit any parameter.

While describing norms 4 and 6 we have used the extended message concept.

When a referee penalizes a player it is important to inform such player why he/she is

receiving such punishment. In order to provide such information we have used the

<in_reply_to> parameter.

5 Implementing Norms

Once we have seen how norms can be described, we need to demonstrate how they

are implemented. Similar to the approach presented in [7], we have also used Jess to

implement the governance mechanism. Jess is a rule-based system that maintains a

collection of facts in its knowledge base. Jess was chosen due three main reasons: (i)

it provides interfaces to programs in Java (the multi-agent systems) that can use the

knowledge base and declarative rules; (ii) it is possible to dynamically change the set

of rules defined in Jess during the execution of Java programs and(iii) it facilitates the

extensions we are proposing since the original implementation was also done in Jess.

The use of Jess makes possible to describe facts and rules that are fired according

to the stated facts. In our approach, facts are agents’ observable attributes, (dialogical

and non-dialogical) actions executed by the agents, the norms activated by the rules,

and the information about norm violations. The rules are fired according to the

executed actions or observable attributes and can activate norms or assert violations.

5.1 The Use of Jess

In Jess, facts are described based on templates that specify the structure of the facts.

We have defined a template to define agents’ observable attributes and three

templates to describe actions: one for describe dialogical actions and two for

describing the two different kinds of non-dialogical actions contemplated in the paper

(method calling and execution of the action of an agent plan). Besides, we have also

described nine templates for describing each of the three norm kinds (obliged,

permitted and forbidden) associated with the three different actions (message, method

calling and plan execution). In addition, one template was defined for being used to

describe norm violations. Such template points out the norm that was violated and the

facts that have violated the norm. The two examples below illustrate templates to

describe an obligation norm to execute the action of a plan and a violation.

(deftemplate OBLIGED-non-dialogical-action-plan

 (slot entity)(slot role)(slot plan) (slot action) (slot attribs (type String))

 (slot contract-pre (type String)) (slot contract-post (type String))

 (slot contract-inv (type String)) (slot beliefUpdated (type String))

 (slot condition (type String)))

(deftemplate VIOLATION (slot norm-violated) (multislot action-done))

Rules are composed by two parts. The left-hand side of the rule describes patterns

of facts that need to be inserted in the knowledge base in order to fire the rule. The

right-hand side defines facts that will be upload to the knowledge based if the rule is

8 Viviane Torres da Silva*

fired. In our approach, these facts will be norms or norms’ violations. Examples of

rules are presented in Sections 5.3, 5.4, 5.5 and 5.6.

5.2 Some Guidelines

For each application norm, there is (usually) a need for describing three rules in Jess.

The first rule is used to state the norm by conditioning it to the facts that activate the

norm. If the facts are inserted into the knowledge based, the rule is fired and the norm

is activated. The second rule deactivates the norm retracting it from the knowledge

base. The period during while some norms are active are limited and conditioned to

the addition of some facts in the knowledge base. The third and final rule points out

the violations. Prohibitions are violated if facts are inserted into the knowledge base

during while they are forbidden and permissions are violated if the facts are inserted

into the knowledge outside the period during while they are permitted. The violations

of obligations occur if facts are not inserted into the knowledge base in the

corresponding period. The following Sections will demonstrate how to implement

those rules according to the temporal situations and if conditions mentioned in

Section 4.

5.3 Simple Obligations, Permissions and Prohibitions

Norms that describe obligations, permissions or prohibitions over the execution of

actions without defining any temporal situation or if condition are always active. Such

norms are never deactivated no matter what happens.

Although it is possible to describe obligations and permissions over the execution

of a norm without stating any condition, it is not possible to state violations.

Permissions characterize that such actions can always be executed, and, therefore,

such norms are never violated. The obligations characterize that the actions must be

executed but do not state when the executions must be checked. Thus, for each

obligation or permission that is not associated with any temporal situation or if

condition, only one rule that states the norm must be described.

On the other hand, prohibition can do be checked and violations can be fired in

case the action is executed. Therefore, for each norm that describes prohibition for the

execution of an action, two rules need to be defined: (i) to assert the prohibition; and

(ii) to assert the violations if the forbidden facts are added to the knowledge base.

In order to exemplify the use of Jess we describe the implementation of norm 5.

Rule (i) asserts the prohibition that is not conditioned to any fact. Rule (ii) asserts the

violation if a kicker gets the ball.

(defrule forbidden:KickerGetBall ;(rule i)

=> (assert (FORBIDDEN-non-dialogical-action-plan (entity kicker)(plan play)

 (action getBall))))

(defrule violation:KickerGetBall ;(rule ii)

?fact <- (non-dialogical-action-plan (entity kicker)(plan play)(action getBall))

?forbidden <- (FORBIDDEN-non-dialogical-action-plan (entity kicker)(plan play)

 (action getBall))

=> (assert (VIOLATION (norm-violated (fact-id ?forbidden))

 (action-done (fact-id ?fact)))))

Implementing Norms that Govern Non-Dialogical Actions 9

5.4 Before the Occurrence of a Fact

Obligations for executing an action X before the occurrence of a fact W are verified

testing if X has been executed before W occurs. For governing such norms three rules

are defined: rule (i) asserts the obligation for execute X; rule (ii) retracts the

obligation if X has been executed and W occurs; and rule (iii) asserts a violation if W

occurs but X has not been executed (what can be verified by the existence of the

obligation).

Permissions for executing an action X before the occurrence of W are verified

testing if X is executed after W. In such case, the execution of X is not permitted.

These norms are governed by three rules: rule (i) asserts the permission for execute X;

rule (ii) retracts the permission if W occurs; and rule (iii) asserts a violation if W

occurs and X is executed.

Prohibitions for executing an action X before the occurrence of an action W are

verified testing if X is executed and W has not occurred. Such norms are also

governed by three rules: rule (i) asserts the prohibition; rule (ii) retracts the

prohibition if W occurs; and rule (iii) asserts a violation if X is executed and W has

not occurred (what can be verified by the existence of the prohibition).

Norm 1 is a good example for illustrate the implementation of norms that govern

the actions that must be executed before another one. Since the norm defines that a

referee is obliged to check the equipment of the players before starting the game,

three rules was defined to govern such norm. Rule (i) stated the obligation. Rule (ii)

retracts the obligation if the referee has checked the player equipment when the game

starts. Rule (iii) asserts a violation if the game has been started and the obligation still

holds informing that the referee has not checked the equipment. The obligation

governs a non-dialogical action that must be executed after a dialogical action.

(defrule obliged:CheckEquipment ;(rule i)

 =>(assert (OBLIGED-non-dialogical-action-plan (entity referee)(plan managingGame)

 (action checkEquipment)(attribs players)

 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))))

(defrule retract:CheckEquipment ;(rule ii)

(non-dialogical-action-plan (entity referee)(plan managingGame)

 (action checkEquipment)(attribs players))

(dialogical-action (scene game)(state si)(performative inform)(sRole referee)

 (message "gameStart"))

?obliged <- (OBLIGED-non-dialogical-action-plan (ntity referee)

 (plan managingGame)(action checkEquipment)(attribs players)

 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))

=> (retract ?obliged))

(defrule violation:CheckEquipment ;(rule iii)

?fact <- (dialogical-action (scene game)(state si)(performative inform)

 (sRole referee)(message "gameStart"))

?obliged <- (OBLIGED-non-dialogical-action-plan (ntity referee)

 (plan managingGame)(action checkEquipment)(attribs players)

 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))

=> (assert (VIOLATION (norm-violated (fact-id ?obliged))

 (action-done (fact-id ?fact)))))

10 Viviane Torres da Silva*

5.5 After the Occurrence of W or If W occurs

Obligations for executing an action X after the occurrence of Y (or if Y occurs)

cannot be governed since it is not possible to affirm that the execution of X will never

occur after the execution of Y. It is not possible to state a rule that fires a violation for

such norm since the action X can be executed anytime after Y has occurred. In order

to govern such norms it is necessary to state any temporal situation limiting the time

for the execution of X after Y has occurred. The temporal concept between should be

used instead of after or if for governing such obligations. Norms 4 and 6 are example

of norms that should be implemented by using between, as depicted in Section 5.6.

Permissions for executing X after the occurrence of Y can be governed by two

rules: rule (i) assert the permission if Y occurs; and rule (ii) asserts a violation if X is

executed but Y has not occurred yet.

The governance of prohibitions for executing X after the occurrence of Y is the

opposite of the governance of the related permission. Such governance is also

characterized by two rules: rule (i) asserts the prohibition if Y occurs; and rule (ii)

asserts a violation if X is executed after Y has occurred or if Y is true.

In order to exemplify a norm that use the if condition we refer to norm 2. This

norm defines that the coach cannot execute an action that substitutes players if the

number of substitutions is equal or greater than 3. The prohibition governs a non-

dialogical action that is condition to the state of an object.

(defrule forbidden:PlayerSubstitution ;(rule i)

(attribute-value (objectORagent team)(attribute substitutions)(value 3))

=> (assert (FORBIDDEN-non-dialogical-action-plan (role coach)(plan managingTeam)

 (action substitutePlayer)(attribs outPlayer,inPlayer,team)

 (contract-pre "team.coach=coach")

 (contract-post "team.substitutions=team.substitutions@pre+1,

 team.playersInField->excludes(outPlayer),

 team.playersInField->includes(inPlayer)"))))

(defrule violation:PlayerSubstitution ;(rule ii)

?fact1 <- (non-dialogical-action-plan (role coach)(plan managingTeam)

 (action substitutePlayer))

?fact2 <- (attribute-value (objectORagent team)(attribute substitutions))

?forbiden <- (FORBIDDEN-non-dialogical-action-plan (role coach)(plan managingTeam)

 (action substitutePlayer)(attribs outPlayer,inPlayer,team)

 (contract-pre "team.coach=coach")

 (contract-post "team.substitutions = team.substitutions@pre+1,

 team.playersInField->excludes(outPlayer),

 team.playersInField->includes(inPlayer)"))

=> (if (>= (fact-slot-value ?fact 2) 3) then

 (assert (VIOLATION (action-done ?fact1 ?fact2)

 (norm-violated ?forbidden)))))

5.6 Between Y and W

A norm that states an obligation for executing an action X after the occurrence of Y

and before the execution of W is governed by three rules: rule (i) asserts the

obligation for execute X if Y occurs; rule (ii) retracts the obligation if X is executed

and if W occurs; and rule (iii) asserts a violation if W occurs but X has not been

executed.

Implementing Norms that Govern Non-Dialogical Actions 11

The permission for executing X between the occurrence of Y and W is governed

by the following four rules: rule (i) asserts the permission for execute X if Y occurs;

rule (ii) retracts the permission if W occurs; rule (iii) asserts a violation if W occurs

and X is executed; and rule (iv) asserts a violation if X is executed but Y has not

occurred yet (i.e., if the permission for executing X has not been fired yet).

Prohibitions for executing X between the occurrence of Y and W are governed by

three rules: rule (i) asserts the prohibition if Y occurs; rule (ii) retracts the prohibition

if W occurs; and rule (iii) asserts a violation if X is executed, Y has occurred but W

has not occurred, that is equal to say if X is executed and the prohibitions is still

activated. Note that the rules that govern both prohibitions and permissions while

using the temporal concept between are the combination of the rules used to govern

such norms using the after and before temporal concepts.

The use of between can be exemplified by norm 3. It states that the player is

forbidden to leave the field between the beginning and the end of the game. The norm

defines a prohibition to execute a non-dialogical action limited by the execution of

two dialogical actions. Rule (i) asserts the prohibition if the first dialogical action is

executed, rule (ii) retracts the prohibition if the second dialogical action is executed

and rule (iii) declares a violation if the non-dialogical action is executed during while

it is being prohibited.

(defrule forbidden:LeaveFiled ;(rule i)

(dialogical-action (scene game)(state si)(performative inform)(sRole referee)

 (message "gameStart"))

 => (assert (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)

 (action leaveField)(contract-pre agent.position@pre=inField)

 (contract-post agent.position!=inField))))

(defrule retract:LeaveFiled ;(rule ii)

(dialogical-action (scene game)(state si)(performative inform)(sRole referee)

 (message "gameStop"))

?forbidden <- (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)

 (action leaveField)(contract-pre agent.position@pre=inField)

 (contract-post agent.position!=inField))

 => (retract ?forbidden))

(defrule violation:LeaveFiled ;(rule iii)

(dialogical-action (scene game)(state si)(performative inform)(sRole referee)

 (message "gameStart"))

?forbidden <- (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)

 (action leaveField)(contract-pre agent.position@pre=inField)

 (contract-post agent.position!=inField))

?fact <- (non-dialogical-action-plan (role player)(plan moving)(action leaveField)

 (contract-pre agent.position@pre=inField)

 (contract-post agent.position!=inField))

=> (assert (VIOLATION (norm-violated (fact-id ?forbidden))

 (action-done (fact-id ?fact)))))

Sections 5.3 and 5.5 point out that some obligations over the execution of a norm

that cannot be governed. Since obligations need not to be fulfilled immediately after

they were declared, it is necessary to inform the period during while the agents are

being obligated to execute the action in order to govern them. Norms 6 and 4 are very

good examples of such obligations. Norm 6, for instance, defines that the referee must

declare a penalty if a kicker gets the ball. However, this norm does not define how

much time does the referee has to fulfill its obligation. Therefore, it is not possible to

affirm that the obligation was not fulfilled since it can be at any time. In order to

properly regulate such norm it is needed to provide a limit till when this obligation

12 Viviane Torres da Silva*

must be fulfilled. Norms 6 was adapted to inform that the referee has 1 minute to

declare the penalty after the kicker has gotten the ball.

OBLIGED (UTTER(game; si; PENALTY(;referee;kickerTeam;[;penalty;;;;;;ballTouch]))

 BETWEEN (kicker EXECUTE play:getBall, 1 MINUTES OF kicker EXECUTE play:getBall))

6 Conclusion

This paper proposes the implementation of norms3 that govern dialogical and non-

dialogical actions by using Jess. Our normative language makes possible the

specification of non-dialogical norms that govern actions not related to messages

being sent or received. As illustrated by the example, the specification of those kinds

of norms is very important for governing multi-agent systems. In addition, we have

also presented how to implement in Jess the rules that regulate several possible norms

taking into account the three deontic concepts, the proposed temporal situations and if

conditions. Our proposal was designed to receive information about the executed

actions and observable attributes and to activate norms or assert violations of norms.

Although the current version does not contemplate sanctions and awards, it can be

easily extended in order to do so. The sanctions should be provided when the related

violations are fired. The awards should be supplied when the norms are retracted and

no violation of such norms has been fired.

References

1. Boella, G.; van der Torre, L.: Regulative and Constitutive Norms in Normative Multi-

Agent Systems. In Proceeding of 9th Int. Conference on the Principles of Knowledge

Representation and Reasoning. California (2004).

2. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing in Norm-

Governed Ad Hoc Networks. Volume 3476 of LNCS. Springer-Verlag (2005)

3. Broersen, J., Dignum, F., Dignum, V. and Meyer, J. Designing a deontic logic of

deadlines. In 7th Int. Workshop of Deontic Logic in Computer Science (2004)43-56.

4. Cranefield, S.: A Rule Language for Modelling and Monitoring Social Expectations in

Multi-Agent Systems. Technical Report 2005/01, Univ. of Otago (2005)

5. Dignum, F., Broersen, J., Dignum, V., and Meyer, J. Meeting the deadline: Why, when and

how. In 3rd Int. Workshop on Formal Approaches to Agent-Based Systems, (2004)30-40.

6. García-Camino, A., Rodriguez-Aguilar, J, Sierra, C, Vasconcelos, W. Norm-Oriented

Programming of Electronic Institutions: A Rule-based. In Proc of the 5th Int. Joint Conf. on

Autonomous Agents and Multiagent Systems, ACM Press (2006) 670-672

7. García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A.: Implementing Norms in

Electronic Institutions. In: Proc. of the 4th Int. Joint Conf. on Autonomous Agents and

Multi Agent Systems AAMAS’04, ACM Press (2005) 667-673.

8. López, F.: Social Power and Norms: Impact on agent behavior. PhD thesis, Univ. of

Southampton (2003)

3 The full normative language described in the paper and the Jess program used to illustrate our

approach are available at http://maude.sip.ucm.es/~viviane/products.html.

Implementing Norms that Govern Non-Dialogical Actions 13

9. López, F, Luck, M. and d'Inverno,M. Constraining autonomy through norms. In Proc. of

the 1st Int Joint Conf. on Autonomous Agents and Multi Agent Systems(2002) 674-681

10. Meyer, B. Object-Oriented Software Construction Prentice Hall, second edition (1997)

11. Singh, M.: An Ontology for Commitments in Multiagent Systems: Toward a Unification of

Normative Concepts. Artificial Inteligente and Law v. 7 (1) (1999) 97-113.

12. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing Norms in Multiagent

Systems. LNAI 3187. Springer-Verlag (2004) 313 - 327

