
Learning Vector Quantization: generalization
ability and dynamics of competing prototypes

Aree Witoelar1, Michael Biehl1, and Barbara Hammer2

1 University of Groningen, Mathematics and Computing Science
P.O. Box 800, NL-9700 AV, Groningen, The Netherlands

a.w.witoelar@rug.nl,m.biehl@rug.nl
2 Clausthal University of Technology, Institute of Computer Science

D-98678 Clausthal-Zellerfeld, Germany
hammer@in.tu-clausthal.de

Abstract. Learning Vector Quantization (LVQ) are popular multi-class
classification algorithms. Prototypes in an LVQ system represent the
typical features of classes in the data. Frequently multiple prototypes are
employed for a class to improve the representation of variations within
the class and the generalization ability. In this paper, we investigate the
dynamics of LVQ in an exact mathematical way, aiming at understanding
the influence of the number of prototypes and their assignment to classes.
The theory of on-line learning allows a mathematical description of the
learning dynamics in model situations. We demonstrate using a system
of three prototypes the different behaviors of LVQ systems of multiple
prototype and single prototype class representation.
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1 Introduction

Learning Vector Quantization (LVQ) is a family of powerful and intuitive classi-
fication algorithms. LVQ is used in many applications, including medical data or
gene expressions, and handwriting recognition [1]. Prototypes in LVQ algorithms
represent typical features within a data set using the same feature space instead
of a black-box approach as in many other classification algorithms, e.g. feedfor-
ward neural networks or support vector machines. This approach makes them
attractive for researchers outside the field of machine learning. Other advan-
tages of LVQ algorithms are (1) they are easy to be implemented for multi-class
classification problems and (2) the algorithm complexity can be adjusted during
training as needed.

One widely used method in increasing this complexity is by employing multi-
ple prototypes in a class in order to improve representation of variations within
the class and generalization ability. However, the effectiveness of this strategy
and the influence of multiple prototypes on the learning dynamics and perfor-
mance of LVQ has not been studied thoroughly.
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In general, LVQ algorithms such as Kohonen’s original LVQ1 are based on
heuristics and many variants are developed without an associated cost function
related to generalization ability. There is a lack of theoretical understanding of
the learning behavior such as convergence, stability, etc. In this paper we present
a mathematical framework to analyse typical LVQ learning behavior on model
data. While the model data considered here is certainly simplifying compared to
practical situations, it provides an insight on idealized situations and a base for
its extension to real-life situations.

2 Algorithms

Let the input data at time step µ = 1, 2, . . . be given as {ξµ, σµ}, ξµ ∈ IRN

where N is the potentially high dimension of the data and σµ is the class of
the data. Here we investigate learning schemes with two classes σµ = ±1 (or
±). An LVQ system aims to represent the data using a set of prototypes W =
{w1, . . . ,wS} ∈ IRN and their class labels C = {c1, . . . , cS} = ±1. To train the
system, a single example {ξµ, σµ} is generated at each learning step according
to an input density P (ξ) and presented sequentially to the system. One or more
prototypes wi are then updated on-line as

wµ
i = wµ−1

i +
η

N
fi(d

µ
1 , . . . , dµ

S , σµ)(ξµ −wµ−1
i ) (1)

where η is the learning rate and dµ
i = (ξµ −wµ−1

i )2/2 is the Euclidean distance
measure. Prototypes are always moved towards or away from the example along
the vector (ξµ−wµ−1

i ). The direction and strength of update is specified by the
modulation function fi(.). Here we present two basic LVQ algorithms:

1. LVQ1: The original formulation of LVQ by Kohonen [8,9] is an intuitive
learning scheme that compromises between data representation and finding
the decision boundary between classes. The closest prototype to the example
is determined. This so-called winner is then moved towards the example if
it is correct, ie. the winner class label matches the class of the example, or
pushed away otherwise. The corresponding modulation function is fi(.) =
ciσ

µ if wi is the winner; 0 else.
2. LVQ+/-: LVQ+/- aims for a more efficient separation of prototypes with

different classes and therefore better generalization ability. This scheme is a
simplified version of LVQ2.1 proposed by Kohonen [7], omitting the restric-
tion of selecting only examples close to the current decision boundary by a
so-called window scheme. The two closest prototypes, say wJ and wK , are
determined. If their class labels are different and one of them is correct, the
correct prototype is moved towards the data while the incorrect prototype
is pushed away. The modulation function is fi(.) = ciσ

µ if i ∈ J,K and
cJ 6= cK ; 0 else.
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3 Model

We choose the model data as a mixture of two classes σ = {±1} with the
probability density function P (ξ) =

∑
σ=±1 pσP (ξ|σ) with

P (ξ|σ) =
1

(
√

2π)N
exp

(
− 1

2
(ξ − λBσ)2

υσ

)
where pσ are the prior probabilities and p+ + p− = 1. The distribution of each
class is a spherical Gaussian cluster. The components of vectors ξµ are random
numbers with mean vectors λBσ and variance υσ. The parameter λ controls the
separation between the mean vectors. Bσ are orthonormal, i.e. Bi · Bj = δi,j

where δ is the Kronecker delta.
Note that data from different classes strongly overlap. They separate only

on a two-dimensional space spanned by B+ and B− and completely overlap on
other subspaces. The goal is to identify this separation from the N -dimensional
data.

4 Analysis

In this section we describe the methods to analyse the learning dynamics in LVQ
algorithms. We give a brief description of the theoretical framework and refer to
[3,11] for further details. Following the lines of the theory of on-line learning, e.g.
[5], the system can be fully described in terms of a few so-called order parameters
in the thermodynamic limit N → ∞. A suitable set of characteristic quantities
for the considered learning model is:

Rµ
iσ = wµ

i ·Bσ Qµ
ij = wµ

i ·w
µ
j . (2)

Note that Riσ are the projections of prototype vectors wµ
i on the center vectors

Bσ and Qµ
ij correspond to the self- and cross- overlaps of the prototype vectors.

These quantities are called the order parameters.
From the generic update rule defined above, Eq. (1), we can derive the fol-

lowing recursions in terms of the order parameters:

Rµ
iσ −Rµ−1

iσ

1/N
= ηfi(.)

(
bµ
σ −Rµ−1

iσ

)
Qµ

ij −Qµ−1
ij

1/N
= η

[
fj(.)

(
hµ

i −Qµ−1
ij

)
+ fi(.)

(
hµ

j −Qµ−1
ij

)]
+

η2fi(.)fj(.)(ξµ)2/N +O(1/N) (3)

where the input data vectors ξµ enters the system as their projections hµ
i and

bµ
i , defined as

hµ
i = wµ−1

i · ξµ bµ
σ = Bσ · ξµ. (4)
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In the limit N →∞, theO(1/N) term can be neglected and the order parameters
self average [10] with respect to the random sequence of examples. This means
that fluctuations of the order parameters vanish and the system dynamics can
be described exactly in terms of their mean values.

Also for N → ∞ the rescaled quantity t ≡ µ/N can be conceived as a
continuous time variable. Accordingly, the dynamics can be described by a set
of coupled ODE [3,6] after performing an average over the sequence of input
data:

dRiσ

dt
= η

(
〈bσfi(.)〉 − 〈fi(.)〉Riσ

)
dQij

dt
= η

(
〈hifj(.)〉 − 〈fj(.)〉Qij + 〈hjfi(.)〉 − 〈fi(.)〉Qij

)
+

η2
∑

σ

pσυσ〈fi(.)fj(.)〉σ (5)

where 〈.〉 and 〈.〉σ are the averages over the density P (ξ) and P (ξ|σ), respectively.
Here we used the following relation to simplify the last term of Eq. (5):

lim
N→∞

〈ξ2〉
N

= lim
N→∞

1
N

∑
σ

pσ(υσN + λ2) =
∑

σ

pσυσ.

Exploiting the limit N → ∞ once more, the quantities hµ
i , bµ

σ become cor-
related Gaussian quantities by means of the Central Limit Theorem. Thus, the
above averages reduce to Gaussian integrations in S + 2 dimensions. In the
simplest case of a system with two competing prototypes, the averages can be
calculated analytically. For three or more prototypes, the mathematical treat-
ment becomes more involved and requires multiple numerical integrations. See
[3,11] for details of the computations.

Given the averages for a specific modulation function f(.) we obtain a closed
set of ODE. Using initial conditions {Riσ(0), Qij(0)}, we integrate this system
for a given algorithm and get the evolution of order parameters in the course
of training, {Riσ(t), Qij(t)}. Also the generalization error εg is determined from
{Riσ(t), Qij(t)} as follows:

εg =
∑

σ=±1

pσ〈fi(.)〉−σ (6)

where fi(.) = 1 if wi is the winner; 0 else. We thus obtain the learning curve
εg(t) which quantifies the success of training. This method of analysis shows
excellent agreement with Monte Carlo simulations of the learning system for
dimensionality as low as N = 200, as demonstrated in [2,6].

5 Results

The dynamics of LVQ algorithms for a system with two prototypes and two
classes have been investigated in an earlier publication [2]. Here we discuss an
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important extension to three prototypes which allows multiple prototypes to be
assigned within one class. It is interesting to observe whether this assignment
gives an advantage over the simpler single prototype per class and to search for
optimal assignments.

5.1 Competition within classes

The combination of behavior from competing prototypes within a class and
between different classes is not straightforward. We begin by investigating the
effects of competition between multiple prototypes within a class in the LVQ1
algorithm. Here we introduce a one-class problem (formally p+ = 1, p− = 0)
and two competing prototypes W = w1, w2 with the same class label c1 = c2 =
+1. Without the presence of other classes, prototypes within the same class
behave like in unsupervised vector quantization. The prototypes are initialized
randomly.

The evolution of the order parameters are depicted in Fig. 1. Although for-
mally the analysis uses the limit N →∞, we show that they are already in good
agreement with Monte Carlo simulations using an artificial data set with dimen-
sionality N = 50. The prototypes gradually approach the class center λB+ and
the system reaches a configuration with order parameters R1σ = R2σ = λ, Q11 =
Q22. However, Eq. 2 and Q11 > λ2, Q12 6= Q11 indicate that the prototypes are
not identical vectors located at the exact class center λB+, but instead they
spread out symmetrically in an arbitrary direction. While this behavior pro-
duces better data representation [12], its relation to classification ability is not
yet clear.
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Fig. 1. Left panel: Order parameter Riσ(t), Qij(t) during training using LVQ1
with p+ = 1 (only one class present), η = 0.1, λ = 1 and υ+ = 0.81. The
system is initialized using random prototypes. Crosses mark the corresponding
quantities from Monte Carlo simulations using an artificial data set with similar
parameters and N = 50. Right panel: The projection of the prototypes on the
plane spanned by B+, B−. The cross marks the class center λB+.
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5.2 Optimal class assignment in LVQ1

Now we consider a system with three prototypes with two classes σ = ±1. The
prior probabilities p+, p− and variance υ+, υ− are set with unequal values in
order to break the symmetry between the two classes. As shown in the left panel
of Fig. 2, the class labels of the three prototypes can be assigned in two different
sets, which are named for shorthand C1 = {+,+,−} or C2 = {+,−,−}. Here
the parameters are λ = 1, p+ = 0.6, υ+ = 0.81, υ− = 0.25.

We compare the generalization errors between the two sets and also to a two
prototype system with C3 = {+,−} in the right panel of Fig. 2. In principle, ad-
ditional prototypes provide the system with more degrees of freedom and allow
for more complex decision boundaries. Thus, in an optimal configuration, the
generalization error could be lower or at least equal to systems with less proto-
types. We indeed observe this result with C1 where the three-prototype system
outperforms the two-prototype system. However, surprisingly, the generalization
error with different class assignments C2 is higher.

Figure 3 shows more general results with the asymptotic generalization error
εg(t → ∞), i.e. for small learning rates and arbitrary many examples t → ∞,
η → 0, ηt → ∞. The performances of different sets are compared as a function
of p+ for unequal variances υ+ > υ−. The set C1 produces the best results while
C2 produces the largest errors. Note that this is valid at all p+ and therefore the
best choice of class labels does not depend on prior probabilities.

Also in Fig. 3, The performances are compared to the best achievable general-
ization error. For bimodal Gaussian distributions, this optimal decision boundary
is hyperquadric [4] where the condition p+P (ξ|+) = p−P (ξ|−) is satisfied. The
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Fig. 2. LVQ1 with η = 0.01, λ = 1, p+ = 0.6, υ+ = 0.81, υ− = 0.25, t̃ = ηt = 15.
Left panel: Trajectories of the three prototypes with C1 = {+,+,−} (solid
line, ©) and C2 = {+,−,−} (dashed line, 4). Right panel: The corresponding
learning curves εg(t) with C1, C2 and two prototypes with C3 = {+,−} (dotted
lines).
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Fig. 3. The asymptotic generalization error as a function of p+ with other pa-
rameters similar as in Fig. 2 for sets C1, C2 (×) and a two-prototype system
S = 2, C3 (©). The lowest achievable error for the respective sets are shown by
the dotted line and chain line.

shape depends on the variance of both classes, viz. υ+, υ−. In the case υ+ = υ−
the decision boundary is a hyperplane, which can be reproduced exactly using
two prototypes and so two-prototype systems are already optimal for classifica-
tion. For unequal variances, e.g. υ+ > υ− it is a concave subspace from λB+

and convex subspace from λB−. Multiple prototypes in one class allow for a
piecewise decision boundary and a better approximation of the optimal decision
boundary. However in a three-prototype system, the decision boundary can only
form a convex, wedge-shaped subspace in the class with the single prototype.
Therefore the performance can be improved only if two prototypes are assigned
to the class with larger variance.

Another observation is shown in Fig. 4, where υ− = 1 and the priors are fixed
as equal p+ = p− (left panel) or p+ > p− (right panel). Based on the asymptotic
generalization errors, the optimal choice of class assignments depends on υ+,
which are divided in three stages: S = 3, C2 (in the left panel, at υ+ < 0.8),
S = 2 (at 0.8 < υ+ < 1.3) and S = 3, C1 (at υ+ > 1.3). Note that the lines of
C1 and C2 intersect at equal variance υ+ = υ− = 1. The behavior is the same
for the case of classes with unequal priors, with the three stages shifting towards
lower υ+: S = 3, C2 (υ+ < 0.45), S = 2 (at 0.45 < υ+ < 0.8) and S = 3, C1 (at
υ+ > 0.8). These results can be interpreted as (1) multiple prototypes should
be assigned to the class with higher variance, which becomes more apparent for
largely unequal variance and (2) near equal variances, the two prototype system
is already optimal.

To summarize, using the LVQ1 algorithm, multiple prototype systems do
not always perform better than simpler single prototype systems, i.e. does not
always reduce the generalization error. The LVQ1 algorithm does not explicitly
find the minimum generalization error. Also, it has a data representation part
as explained in section 5.1. This part however can have negative contribution
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Fig. 4. Asymptotic generalization error as a function of υ+ where υ− = 1. The
prior probabilities are set equal p+ = 0.5 in the left panel and p+ = 0.75 in the
right panel The two prototype system is the optimal choice when υ+ is close
to υ−. C1 is best when υ+ > υ− and C2 is best when υ+ < υ−. Vertical lines
indicate regions where, respectively from left to right, C2, C3 and C1 produce
the best performance.

to classification purposes, e.g. in cases of assigning more prototypes to the class
with equal or less or similar variance in the model scenario.

5.3 Stability in LVQ+/-

The LVQ+/- is known to be subject to divergence and stability problems for
classes with unequal weights [2]. Prototypes representing the weak classes, ie.
the class with lower prior probability, are pushed away frequently by examples
of the stronger classes. Without any modifications, the attraction from its own
class is outweighed by this repulsion and the system diverges exponentially.

In a two-prototype system, the system becomes highly divergent at all priors
except for the singular case of balanced priors [2]. The condition that two near-
est prototypes have different classes is always met, and so both prototypes are
always updated for each example. On the other hand, in a system with multiple
prototypes per class, it is possible that the two nearest prototypes belong to the
same class and no update is performed. The result is that the system is more
stable, although problems still exist.

An example of a three-prototype system is shown in Fig. 5 for λ = 1, υ+ =
υ− = 1.0 and unbalanced priors p+ = 0.6, p− = 0.4. In the left panel, the set
of class label is C1 = {+,+,−}, ie. two prototypes are assigned to the stronger
class. The characteristic quantities increase linearly for Riσ and quadratically
for Qij with the learning time t. The prototype move toward infinity as t →∞.
Alternately if the labels are C2 = {+,−,−}, the system is highly divergent. The
characteristic quantities for the two prototype increase exponentially as in the
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Fig. 5. Evolution of Qij for LVQ+/- with η = 0.05, λ = 1, υ+ = υ− = 1.0
and p+ = 0.6. The classes are C1 (left panel) and C2 (right panel). The system
displays highly divergent behavior in the case of C2.

two-prototype system. It is better to assign more prototypes to the stronger class
if stability is the main concern.

Several methods have been developed to counter this diverging behavior,
e.g. window schemes [9]. One conceptually simple approach is an early stopping
scheme. Here the learning process is terminated when the system reaches its
lowest generalization error and before the performance deteriorates. However,
the achievable generalization ability is highly dependent on the initial conditions.
The training process becomes a race between the system finding the optimal set
before the instability problems occur.

5.4 Integrated algorithms

While the LVQ1 algorithm is intuitive and fast in finding the structure of the
data, LVQ+/- is specifically designed for classification purposes. However, the
performance of LVQ+/- varies depending on the initial conditions and the train-
ing process can have instability problems. Here we combine the advantages of
each algorithm by initially using LVQ1 to its asymptotic configuration. After-
wards we switch to LVQ+/- with early stopping using the same configuration to
fine tune the decision boundary. The performance after the LVQ+/- can only be
better or at least equal than that of LVQ1 because of the early stopping method.

Figure 6 shows the achievable generalization error as a function of the prior
probabilities. The variance of each class is υ+ = 0.81, υ− = 0.25. In the left
panel, the LVQ+/- does not improve the performance of LVQ1. The LVQ1 al-
ready performs very well because the class assignments are already optimal, ie.
assigning more prototypes on the class with larger variance. On the contrary,
the LVQ+/- produces significantly lower generalization errors than LVQ1 when
υ+ < υ−. LVQ+/- is not as dependent on correct class assignments as LVQ1.
Note that for small p+, LVQ+/- with C2 rapidly diverges and does not provide
advantage over the LVQ1.
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Fig. 6. Generalization error achieved using LVQ1 and then LVQ+/- with early
stopping for υ+ = 0.81, υ− = 0.25, η = 0.1, after t̃ = 500 for LVQ1 and t̃ = 5 for
the adjustments by LVQ+/-. Left panel: C1 = {+,+,−}. The plots of LVQ1
and LVQ+/- coincide ie. LVQ+/- does not provide any advantage. Right panel:
C2 = {+,−,−}. LVQ+/- improves the performance because it is less sensitive
to suboptimal class assignments.

6 Summary

We investigated the learning dynamics of LVQ algorithms, including LVQ1 and
LVQ+/-, for high dimensional data and multiple prototypes within a class. While
LVQ1 aims to both represent the data well and good generalization ability, the
two goals do not always agree with one another. Introducing multiple prototypes
to the system improves representation but may have positive or negative effect
on the generalization ability.

The class assignments are vital in the performance of LVQ1 and it is closely
related to the structure of the data. The important feature to improve general-
ization is by assigning the additional prototype(s) to classes with larger variance,
and not related explicitly to the prior probabilities. This feature of LVQ1 is use-
ful when there is prior knowledge or hypothesis on the relative variations of
different classes.

LVQ+/- with early stopping is less sensitive to suboptimal prototype class
assignments and can achieve better performance than LVQ1 in these cases. How-
ever, instability remains the main problem in this learning method. Assigning
multiple prototypes on a strong class slows down but does not solve the issue of
divergence.

Further research is directed amongst others toward more complex and realis-
tic data structures. Also, one should investigate probabilistic labeling where the
classes are learned during the course of training. This would avoid the problem of
incorrectly adding complexity with minimal benefits or even lower performance.
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