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Abstract

We introduce relational variants of neural gas, a very efficient and

powerful neural clustering algorithm. It is assumed that a similarity or

dissimilarity matrix is given which stems from Euclidean distance or dot

product, respectively, however, the underlying embedding of points is un-

known. In this case, one can equivalently formulate batch optimization in

terms of the given similarities or dissimilarities, thus providing a way to

transfer batch optimization to relational data. Interestingly, convergence

is guaranteed even for general symmetric and nonsingular metrics.

1 Introduction

Topographic maps such as the self-organizing map (SOM) constitute a valuable
tool for robust data inspection and data visualization which has been applied in
diverse areas such as telecommunication, robotics, bioinformatics, business, etc.
[18]. Alternative methods such as neural gas (NG) [22] provide an efficient clus-
tering of data without fixing a prior lattice. This way, subsequent visualization
such as multidimensional scaling [21] can readily be applied, whereby no prior
restriction of a fixed lattice structure as for SOM is necessary and the risk of
topographic errors is minimized. For NG, an optimum (nonregular) data topol-
ogy is induced such that browsing in a neighborhood becomes directly possible
[23].

In the last years, a variety of extensions of these methods has been proposed
to deal with more general data structures. This accounts for the fact that more
general metrics have to be used for complex data such as microarray data or
DNA sequences. Further it might be the case that data are not embedded in a
vector space at all, rather, pairwise similarities or dissimilarities are available.

Several extensions of classical SOM and NG to more general data have been
proposed: a statistical interpretation of SOM as considered in [5, 14, 30, 31]
allows to change the generative model to alternative general data models. The
resulting approaches are very flexible but also computationally quite demanding,
such that proper initialization and metaheuristics (e.g. deterministic annealing)
become necessary when optimizing statistical models. For specific data struc-
tures such as time series or recursive structures, recursive models have been pro-
posed as reviewed e.g. in the article [10]. However, these models are restricted
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to recursive data structures with Euclidean constituents. Online variants of
SOM and NG have been extended to general kernels e.g. in the approaches
presented in [27, 34] such that the processing of nonlinearly preprocessed data
becomes available. However, these versions have been derived for (slow) online
adaptation only.

The approach [20] provides a fairly general method for large scale applica-
tion of SOM to nonvectorial data: it is assumed that pairwise similarities of
data points are available. Then the batch optimization scheme of SOM can be
generalized by means of the generalized median to a visualization tool for gen-
eral similarity data. Thereby, prototype locations are restricted to data points.
This method has been extended to NG in [3] together with a general proof of
the convergence of median versions of clustering. Further developments concern
the efficiency of the computation [2] and the integration of prior information if
available to achieve meaningful visualization and clustering [6, 7, 32].

Median clustering has the benefit that it builds directly on the derivation
of SOM and NG from a cost function. Thus, the resulting algorithms share
the simplicity of batch NG and SOM, its mathematical background and con-
vergence, as well as the flexibility to model additional information by means
of an extension of the cost function. However, for median versions, prototype
locations are restricted to the set of given training data which constitutes a
severe restriction in particular for small data sets. Therefore, extensions which
allow a smooth adaptation of prototypes have been proposed e.g. in [8]. In this
approach, a weighting scheme is introduced for the points which represents vir-
tual prototype in the space spanned by the training data. This model has the
drawback that it is not an extension of the standard Euclidean version.

Here, we use an alternative way to extend NG to relational data given by
pairwise Euclidean similarities or dissimilarities, respectively, which is similar
to the relational dual of fuzzy clustering as derived in [12, 13]. For a given
distance matrix or Gram matrix which stems from a (possibly high-dimensional
and unknown) Euclidean space, it is possible to derive the relational dual of
topographic map formation which expresses the relevant quantities in terms of
the given matrix and which leads to a learning scheme similar to standard batch
optimization. This scheme provides identical results as the standard Euclidean
version if an embedding of the given data points is known. In particular, it
possesses the same convergence properties as the standard variants, thereby re-
stricting the computation to known quantities which do not rely on an explicit
embedding. Since these relational variants rely on the same cost function, ex-
tensions to additional label information or magnification control [6, 7, 9] become
readily available. Further, convergence of the algorithm is guaranteed for ev-
ery symmetric nonsingular matrix which need not be Euclidean or stem from a
metric.

In this contribution, we first introduce batch learning algorithms for neural
gas based on a cost function. Then we derive the respective relational dual
resulting in a dual cost function and batch optimization schemes for the case
of a given distance matrix of data or a given Gram matrix, respectively. We
demonstrate the possibility to extend this model to supervised information, and
we show the performance in a variety of experiments.
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2 Neural gas

Neural clustering and topographic maps constitute effective methods for data
preprocessing and visualization. Classical variants deal with vectorial data
~x ∈ R

n which are distributed according to an underlying distribution P in
the Euclidean plane. The goal of neural clustering algorithms is to distribute
prototypes ~wi ∈ R

n, i = 1, . . . , k among the data such that they represent the
data as accurately as possible. A new data point ~x is assigned to the winner
~wI(~x) which is the prototype with smallest distance ‖~wI(~x) − ~x‖2. This clusters
the data space into the receptive fields of the prototypes.

Different popular variants of neural clustering have been proposed to learn
prototype locations from given training data [18]. Assume the number of pro-
totypes is fixed to k. Neural gas (NG) [22] optimizes cost function

ENG(~w) =
1

2C(λ)

k
∑

i=1

∫

hλ(ki(~x)) · ‖~x − ~wi‖2 P (d~x)

where
ki(~x) = |{~wj | ‖~x − ~wj‖2 < ‖~x − ~wi‖2}|

is the rank of the prototypes sorted according to the distances, hλ(t) = exp(−t/λ)
scales the neighborhood cooperation with neighborhood range λ > 0, and C(λ)

is the constant
∑k

i=1 hλ(ki(~x)). The neighborhood cooperation smoothes the
data adaptation such that, on the one hand, sensitivity to initialization can be
prevented, on the other hand, a data optimum topological ordering of proto-
types is induced by linking the respective two best matching units for a given
data point [23]. Classical NG is optimized in an online mode. For a fixed train-
ing set, an alternative fast batch optimization scheme is offered by the following
algorithm, which in turn computes ranks, which are treated as hidden variables
of the cost function, and optimum prototype locations [3]:

init ~wi

repeat
compute ranks ki(~x

j) = |{~wk | ‖~xj − ~wk‖2 < ‖~xj − ~wi‖2}|
compute new prototype locations ~wi =

∑

j hλ(ki(~x
j)) · ~xj/

∑

j hλ(ki(~x
j))

NG can be used as a preprocessing step for data mining and visualization, fol-
lowed e.g. by subsequent projection methods such as multidimensional scaling.

It has been shown in e.g. [3] that batch optimization schemes converge in a
finite number of steps towards a (local) optimum of the cost function, provided
the data points are not located at borders of receptive fields of the final prototype
locations. In the latter case, convergence can still be guaranteed but the final
solution can lie at the border of basins of attraction.

3 Relational data

Relational data xi are not explicitely embedded in a Euclidean vector space,
rather, pairwise similarities or dissimilarities are available. Batch optimization
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can be transferred to such situations using the so-called generalized median
[3, 20]. Assume, distance information d(xi, xj) is available for every pair of
data points x1, . . . , xm. Median clustering reduces prototype locations to data
locations, i.e. adaptation of prototypes is not continuous but takes place within
the space {x1, . . . , xm} given by the data. We write wi to indicate that the
prototypes need no longer be vectorial. For this restriction, the same cost func-
tions as beforehand can be defined whereby the Euclidean distance ‖~xj − ~wi‖2

is substituted by d(xj , wi) = d(xj , xli) whereby wi = xli . Median clustering
substitutes the assignment of ~wi as (weighted) center of gravity of data points
by an extensive search, setting wi to the data points which optimize the respec-
tive cost function for fixed assignments. This procedure has been tested e.g. in
[3, 6]. It has the drawback that prototypes have only few degrees of freedom
if the training set is small. Thus, median clustering usually gives inferior re-
sults compared to the classical Euclidean versions when applied in a Euclidean
setting.

Here we introduce relational clustering for data characterized by similarities
or dissimilarities, using a direct transfer of the standard Euclidean training al-
gorithm to more general settings allowing smooth updates of the solutions. The
essential observation consists in a transformation of the cost functions as defined
above to their so-called relational dual. We distinguish two settings, similarity
data where dot products of training data are available, and dissimilarity data
where pairwise distances are available.

3.1 Metric data

Assume training data x1, . . . , xm are given in terms of pairwise distances dij =
d(xi, xj)2. We assume that it originates from a Euclidean distance measure,
that means, we are always able to find (possibly high dimensional) Euclidean
points ~xi such that dij = ‖~xi−~xj‖2. Note that this notation includes a possibly
nonlinear mapping (feature map) xi 7→ ~xi corresponding to the embedding in a
Euclidean space. However, this embedding is not known, such that we cannot
directly optimize the above cost functions in the embedding space. The key
observation is based on the fact that batch NG optimum prototype locations ~wj

can be expressed as linear combination of data points. Therefore, the unknown
values ‖xj − wi‖2 can be expressed in terms of known values dij .

More precisely, assume there exist points ~xj such that dij = ‖~xi − ~xj‖2.
Assume the prototypes can be expressed in terms of data points ~wi =

∑

j αij~x
j

where
∑

j αij = 1. Then

‖~wi − ~xj‖2 = (D · αi)j − 1/2 · αt
i · D · αi

where D = (dij)ij is the distance matrix and αi = (αij)j are the coefficients.
This fact can be shown as follows: for ~wi =

∑

j αij~x
j , one can compute

‖~xj − ~wi‖2 = ‖~xj‖2 − 2
∑

l

αil(~x
j)t~xl +

∑

l,l′

αilαil′ (~x
l)t~xl′ .
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This is the same as

(D · αi)j − 1/2 · αt
i · D · αi

=
∑

l ‖~x
j − ~xl‖2 · αil − 1/2 ·

∑

ll′ αil‖~x
l − ~xl′‖2αil′

=
∑

l ‖~x
j‖2αil − 2 ·

∑

l αil(~x
j)t~xl +

∑

l αil‖(~x
l)‖2

−
∑

ll′ αil′αil′‖~x
l‖2 +

∑

ll′ αilαil′(~x
l)t~xl′

because of
∑

j αij = 1. Because of this fact, we can substitute all terms ‖~xj −

~wi‖2 in batch optimization schemes. The parameters αi yield

1. αij = δi,I(~xj)/
∑

j δi,I(~xj) for k-means,

2. αij = hλ(ki(~x
j))/

∑

j hλ(ki(~x
j)) for NG

This allows to reformulate the batch optimization in terms of relational data.
We obtain

init αij with
∑

j αij = 1
repeat

compute the distance ‖~xj − ~wi‖2 as (D · αi)j − 1/2 · αt
i · D · αi

compute optimum assignments based on this distance matrix
α̃ij = hλ(ki(~x

j))
compute αij = α̃ij/

∑

j α̃ij as normalization of these values.

Hence, prototype locations are computed only indirectly by means of the coef-
ficients αij . Initialization can be done e.g. setting initial prototype locations to
random data points, which is realized by a random selection of k rows from the
given distance matrix. Note that prototypes are represented only indirectly by
means of the coefficients αij . For every prototype, m coefficients are stored, m
denoting the number of training points. Hence the space complexity of relational
clustering is linear w.r.t. the number of training data and the time complexity
of one training epoch is quadratic w.r.t. the number of training points.

Given a new data point x which can isometrically be embedded in Euclidean
space as ~x, and pairwise distances dj = d(x, xj)2 corresponding to the distance
from xj , the winner can be determined by using the equality

‖~x − ~wi‖2 = (D(x)t · αi) − 1/2 · αt
i · D · αi

where D(x) denotes the vector of distances D(x) = (dj)j = (d(x, xj)2)j .
The quantization error can be expressed in terms of the given values dij by

substituting ‖~xj − ~wi‖2 by (D · αi)j − 1/2 · αt
i · D · αi. Interestingly, using the

formula for optimum assignments of batch optimization, one can also derive
relational dual cost functions for the algorithms. We use the abbreviation kij =
hλ(ki(~x

j)). Because of ~wi =
∑

j kij · ~x
j/
∑

j kij , we find

1/2 ·
∑

ij kij‖~x
j − ~wi‖2

= 1/2 ·
∑

ij kij‖~x
j −

∑

l kil · ~x
l/
∑

l kil‖
2

=
∑

i 1/(2 ·
∑

l kil) ·
(

∑

ll′ kilkil′‖~x
l‖2 −

∑

ll′ kilkil′ (~x
l)t~xl′

)

.
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Thus, the relational dual of NG is

∑

i

1

4
∑

l hλ(ki(~xl))
·
∑

ll′

hλ(ki(~x
l))hλ(ki(~x

l′ ))dll′ .

Note that this relational learning gives exactly the same results as standard
batch optimization provided the given relations stem from an Euclidean met-
ric. See e.g. [29] for a characterization of this property. Hence, convergence is
guaranteed in this case since it holds for the standard batch versions. If the
given distance matrix does not stem from an Euclidean metric, this equality
does no longer hold and the terms (D · αi)j − 1/2 · αt

i ·D · αi can become nega-
tive. In this case, one can correct the distance matrix by the γ-spread transform
Dγ = D + γ(1− I) for sufficiently large γ where 1 equals 1 for each entry and I

is the identity [12]. For sufficiently large γ, this correction yields a setting where
an interpretation of clustering by means of Euclidean prototypes in a possibly
high-dimensional Euclidean space exists.

Alternatively, one can apply the formulas for relational clustering directly to
any given matrix D, whereby an interpretation by means of explicit prototypes
is no longer possible. Interestingly, one can show that this algorithm converges
for every symmetric and nonsingular D in a finite number of steps. We present
the proof for NG: consider the cost function

E(kij , αij) =
∑

ij

hλ(kij)

(

∑

l

djlαil −
1

2
·
∑

ll′

dll′αilαil′

)

where αij ∈ R and kij constitutes a permutation of 0, . . . , k − 1, k denoting
the number of prototypes. In relational NG, this cost function is iteratively
optimized with respect to αij for fixed kij and kij for fixed αij . The latter
is obvious. The first can be seen as follows: the derivative of E(kij , αij) with
respect to αnm yields

∑

j

hλ(knj)djm−
∑

j

hλ(knj)
∑

l

dlmαnl =
∑

j

djm

(

hλ(knj) −
∑

l

hλ(knl)αnj

)

For nonsingular D, this is 0 for all n and m iff αnj = hλ(knj)/
∑

l hλ(knl), hence
relational NG optimizes αnj in the iterative procedure. Assume αij(kij) are op-
timum values αij for fixed kij . Assume kij are given. Assume k′

ij are computed
in the next iteration of relational NG. Then E(kij , αij(kij)) ≥ E(k′

ij , αij(kij)

because k′

ij is chosen optimum with respect to αij(kij)), and E(k′

ij , αij(kij)) ≥
E(k′

ij , αij(k
′

ij)) since αij(k
′

ij) is chosen optimum with respect to k′

ij . Hence the
cost function decreases in consecutive steps. Since only a finite number of dif-
ferent assignments kij exists, the algorithm converges (thereby we assume that
potential ties for the choice of the ranks kij are broken deterministically).

Hence relational NG and variants converge for every nonsingular and sym-
metric matrix D, whereby the cost function E(kij , αij) is minimized. Note that
for optimum values αij = hλ(kij)/

∑

l hλ(kil) the cost function yields

E(kij , αij) =
1

2

∑

i

1
∑

l′′ hλ(kil′′ )

∑

ll′

hλ(kil)hλ(kil′ )dll′ ,
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i.e. we arrive at the relatioanl dual of NG also when using this procedure for
general (symmetric and nonsingular) D.

3.2 Dot products

A dual possibility is to characterize data x1, . . . , xm by means of pairwise sim-
ilarities, i.e. dot products. We denote the similarity of xi and xj by k(xi, xj) =
kij . We assume that these values fulfill the properties of a dot product, i.e. the
matrix K with entries kij is positive definite. In this case, a representation ~xi

of the data can be found in a possibly high dimensional Euclidean vector space
such that kij = (~xi)t~xj .

As beforehand, we can represent distances in terms of these values if ~wi =
∑

l αil~x
l with

∑

l αil = 1 yields optimum prototypes:

‖~xj − ~wi‖2 = kjj − 2
∑

l

αilkjl +
∑

ll′

αilαil′kll′ .

This allows to compute batch optimization in the same way as beforehand:

init αij with
∑

j αij = 1
repeat

compute the distance ‖~xj − ~wi‖2 as kjj − 2
∑

l αilkjl +
∑

ll′ αilαil′kll′

compute optimum assignments based on this distance matrix
α̃ij = hλ(ki(~x

j)) (for NG)
compute αij = α̃ij/

∑

j α̃ij as normalization of these values.

One can use the same identity for ‖~x − ~wi‖2 to obtain a possibility to com-
pute the winner given a point x and to compute the respective cost function.
Convergence of this algorithm is guaranteed since it is identical to the batch
versions for the Euclidean data embedding ~xi if K is positive definite.

If K is not positive definite negative values can occur for ‖~xj − ~wi‖2. Then
the kernel matrix can be corrected by Kγ = K + γ · 1 with large enough γ.

4 Supervision

The possibility to include further information, if available, is very important
to get meaningful results for unsupervised learning. This can help to prevent
the ‘garbage in - garbage out’ problem of unsupervised learning, as discussed
e.g. in [16, 17]. Here we assume that additional label information is available
which should be accounted for by clustering or visualization. Thereby, labels
are embedded in R

d and can be fuzzy. We assume that the label attached to

xj is denoted by ~yj . We equip a prototype wi with a label ~Y i ∈ R
d which is

adapted during learning. For the Euclidean case, the basic idea consists in a
substitution of the standard Euclidean distance ‖~xj − ~wi‖2 by a mixture

(1 − β) · ‖~xj − ~wi‖2 + β · ‖~yj − ~Y i‖2

which takes the similarity of label assignments into account and where β ∈ [0, 1]
controls the influence of the label values. This procedure has been proposed in
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[6, 7, 32] for Euclidean and median clustering and online neural gas, respectively.
One can use the same principles to extend relational clustering.

For discrete Euclidean settings ~x1, . . . , ~xm cost functions and related batch
optimization is as follows (neglecting constant factors):

ENG(~w, ~Y ) =
∑

ij

hλ(ki(~x
j)) ·

(

(1 − β) · ‖~xj − ~wi‖2 + β · ‖~yj − ~Y i‖2
)

where ki(~x
j) denotes the rank of neuron i measured according to the distances

(1 − β) · ‖~xj − ~wi‖2 + β · ‖~yj − ~Y i‖2. This change in the computation of the

rank is accompanied by the adaptation ~Y i =
∑

j hλ(~xj)~yj/
∑

j hλ(~xj) for the
prototype labels for batch optimization

For this generalized cost function, relational learning becomes possible by
substituting the distances ‖~xj − ~wi‖2 using the identity ~wi =

∑

αij~x
j for opti-

mum assignments which still holds for these extensions. The same computation
as beforehand yields to the algorithm for clustering dissimilarity data charac-
terized by pairwise distances dij :

init αij with
∑

j αij = 1
repeat

compute the distances as (1 − β) · ((D · αi)j − 1/2 · αt
iDαi) + β · ‖Y i − yj‖2

compute optimum assignments α̃ij based on this distance as before
compute αij = α̃ij/

∑

j α̃ij

compute prototype labels ~Y i =
∑

j αij~y
j

An extension to similarity data given by dot products ~xi · ~xj proceeds in the
same way using the distance computation based on dot products as derived
beforehand. As beforehand, this version converges in a finite number of steps.

5 Experiments

In the experiments, we focus on the clustering and classification ability of the
algorithms rather than the visualization, since these aspects can easily be eval-
uated by the classification error for given data labels. For comparison, we also
include k-means which is obrained in the limit of vanishing neighborhood co-
operation. We demonstrate the performance of the neural gas and k-means
algorithms in different scenarios covering a variety of characteristic situations.
All algorithms have been implemented based on the SOM Toolbox for Matlab
[26]. Note that, for all median versions, prototypes situated at identical points
of the data space do not separate in subsequent runs. Therefore constellations
with exactly identical prototypes should be avoided. For the Euclidean and re-
lational versions this problem is negligible, presumed prototypes are initialized
at different positions. However, for median versions it is likely that prototypes
move to an identical locations due to the limited number of different positions
in data space, in particular for small data sets. To cope with this fact in me-
dian versions, we add a small amount of noise to the distances in each epoch in
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k-Means Supervised Median Relational Supervised
k-Means k-Means k-Means Relational

k-Means

Accuracy

Mean 93.6 93.0 93.0 93.4 93.5
StdDev 0.8 1.1 1.0 1.2 1.1

Batch Supervised Median Relational Supervised
NG Batch Batch Batch Relational

NG NG NG Batch NG

Accuracy

Mean 94.1 94.7 93.1 94.0 94.4
StdDev 1.0 0.8 1.0 0.9 1.0

Table 1: Classification accuracy on the WDBC database for posterior labeling.
The mean accuracy over 100 repeats of 2-fold cross-validation is reported.

order to separate identical prototypes. The initial neighborhood rate for neu-
ral gas is λ = n/2, n being the number of neurons, and it is multiplicatively
decreased during training. In all runs, relational clustering has been applied
directly without any correction of the given matrix.

Wisconsin Breast Cancer Database

The Wisconsin Diagnostic Breast Cancer database (WDBC) is a standard bench-
mark set from clinical proteomics [33]. It consists of 569 data points described
by 30 real-valued input features: digitized images of a fine needle aspirate of
breast mass are described by characteristics such as form and texture of the
cell nuclei present in the image. Data are labeled by two classes, benign and
malignant.

For training we used 40 neurons and 150 epochs per run. The dataset was
z-transformed beforehand. The results were gained from repeated 2-fold cross-
validations averaged over 100 runs. The mixing parameter of the supervised
methods was set to 0.5 for the simulations reported in Table 1. Moreover, the
data set is contained in the Euclidean space therefore we are able to compare the
relational versions introduced in this article to the standard Euclidean methods.
These results are shown in Table 1. The effect of a variation of the mixing
parameter is demonstrated in Fig. 1. The results are competitive to supervised
learning with the state-of-the-art-method GRLVQ as obtained in [28].

As one can see, the results of Euclidean and relational clustering are iden-
tical, as expected by the theoretical background of relational clustering. Re-
lational clustering and supervision allow to improve the more restricted and
unsupervised median versions by more than 1% classification accuracy.

Cat Cortex

The Cat Cortex Data Set originates from anatomic studies of cats’ brains. A
matrix of connection strengths between 65 cortical areas of cats was compiled
from literature [4]. There are four classes corresponding to four different regions
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Figure 1: Results of the supervised methods for the WDBC data set with dif-
ferent mixing parameters applied.

of the cortex. For our experiments a preprocessed version of the data set from
Haasdonk et al. [11] was used. The matrix is symmetric but the triangle
inequality does not hold.

The algorithms were tested in 10-fold cross-validation using 12 neurons
(three per class) and 150 epochs per run. The results presented reveal the mean
accuracy over 250 repeated 10-fold cross-validations per method. The mixing
parameter of the supervised methods was set to 0.5 for the simulations reported
in Table 2. Results for different mixing parameters are shown in Figure 2.

A direct comparison of our results to the findings of Graepel et al. [4] or
Haasdonk et al. [11] is not possible. Haasdonk et al. gained an accumulated
error over all classes of at least 10% in leave-one-out experiments with SVMs.
Graepel et al. obtained virtually the same results with the Optimal Hyperplane
(OHC) algorithm. In our experiments, the improvement of restricted median

Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy

Mean 72.8 71.6 89.0 88.7 77.9 89.2 91.3
StdDev 3.9 4.0 3.3 3.0 3.5 3.0 2.8

Table 2: Classification accuracy on the Cat Cortex Data Set for posterior label-
ing. The mean accuracy over 250 repeats of 10-fold cross-validation is reported.
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Figure 2: Results of the supervised methods for the Cat Cortex Data Set with
different mixing parameters applied.

clustering by relational extensions can clearly be observed, which accounts for
more than 10% classification accuracy. Note that relational clustering works
quite well in this case although a theoretical foundation due to the non-metric
similarity matrix is missing.

Proteins

The evolutionary distance of 226 globin proteins is determined by alignment
as described in [24]. These samples originate from different protein families:
hemoglobin-α, hemoglobin-β, myoglobin, etc. Here, we distinguish five classes
as proposed in [11]: HA, HB, MY, GG/GP, and others.

For training we used 45 neurons and 150 epochs per run. The results were
gained from repeated 10-fold cross-validations averaged over 100 runs. The
mixing parameter of the supervised methods was set to 0.5 for the simulations
reported in Table 3.

Unlike the results reported in [11] for SVM which uses one-versus-rest en-
coding, the classification in our setting is given by only one clustering model.
Depending on the choice of the kernel, [11] reports errors which approximately
add up to 4% for the leave-one-out error. This result, however, is not compa-
rable to our results due to the different error measure. A 1-nearest neighbor
classifier yields an accuracy 91.6 for our setting (k-nearest neighbor for larger k
is worse; [11] which is comparable to our results.
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Chromosomes

The Copenhagen chromosomes database is a benchmark from cytogenetics [19].
A set of 4200 human nuclear chromosomes from 22 classes (the X resp. Y sex
chromosome is not considered) are represented by the grey levels of their im-
ages and transferred to strings representing the profile of the chromosome by
the thickness of their silhouettes. Thus, this data set consists of strings of differ-
ent length, and standard k-means clustering cannot be used. Median versions,
however, are directly applicable. The edit distance is a typical distance measure
for two strings of different length, as described in [15, 25]. In our application,
distances of two strings are computed using the standard edit distance whereby
substitution costs are given by the signed difference of the entries and inser-
tion/deletion costs are given by 4.5 [25].

The algorithms were tested in 2-fold cross-validation using 100 neurons and
100 epochs per run (cf. [3]). The results presented are the mean accuracy
over 10 times 2-fold cross-validation per method. The mixing parameter of the
supervised methods was set to 0.9.

As can be seen, supervised relational neural gas achieves an accuracy of 0.914
for α = 0.9. This improves by 8% compared to median variants.

6 Discussion

We have introduced relational neural clustering which extends the classical Eu-
clidean versions to settings where pairwise distances or dot products of the data
are given but no explicit embedding into a Euclidean space is known. By means
of the relational dual, batch optimization can be formulated in terms of these
quantities only. This extends previous median clustering variants to a contin-
uous prototype update which is particularly useful for only sparsely sampled
data. The derived relational algorithms have a formal background only for Eu-
clidean distances or metrics; however, as demonstrated in an example for the
cat cortex data, the algorithms might also prove useful in more general scenar-
ios, and converegence is guaranteed for fairly general settings. In all exprem-
inats presented inthis contribution, relational clustering significantly improves
the classification accuracy obtained by semi-supervised clustering compared to
median clustering using the same underlying cost function. Depending on the
data set at hand, results which are competitive to state-of-the-art classification
(using dedicated supervised training) could be approximated in our settigns,

Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy

Mean 76.1 76.3 88.0 89.9 89.4 88.2 90.0
StdDev 1.3 1.8 1.8 1.3 1.4 1.7 1.0

Table 3: Classification accuracy on the Protein Data Set for posterior labeling.
The mean accuracy over 100 repeats of 10-fold cross-validation is reported.
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Median Median Relational Relational Supervised Supervised Supervised
k-Means Batch k-Means Batch Median Relational Relational

NG NG Batch NG k-Means Batch NG

Accuracy

Mean 82.3 82.8 90.6 91.3 89.4 90.1 91.4
StdDev 2.2 1.7 0.6 0.2 0.6 0.6 0.6

Table 4: Classification accuracy on the Copenhagen Chromosome Database for
posterior labeling. The mean accuracy over 10 runs of 2-fold cross-validation is
reported.

demonstrating the efficiency and robustness of relational clustering. However,
being based on the quantization error and related quantities, relational cluster-
ing is mainly intended for data inspection whereby additional information can
be integrated to achieve meaningful clusters. The general framework as intro-
duced in this article opens the way towards the transfer of further principles
of SOM and NG to the setting of relational data: as an example, the magni-
fication factor of topographic map formation for relational data transfers from
the Euclidean space, and possibilities to control this factor as demonstrated for
batch clustering e.g. in the approach [9] can readily be used.

One very important subject of future work concerns the complexity of com-
putation and sparseness of prototype representation. For the approach as in-
troduced above, the complexity scales quadratic with the number of training
examples and the size of prototype representations is linear with respect to
the number of examples. The representation contains a large number of very
small coefficients, which correspond to data points for which the distance from
the prototype is large. Therefore it can be expected that a restriction of the
representation to the close neighborhood is sufficient for accurate results.
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