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Abstract. We propose a new matrix learning scheme to extend Gener-
alized Relevance Learning Vector Quantization (GRLVQ). By introducing
a full matrix of relevance factors in the distance measure, correlations be-
tween different features and their importance for the classification scheme
can be taken into account. In comparison to the weighted euclidean metric
used for GRLVQ, this metric is more powerful to represent the internal
structure of the data appropriately while maintaining its excellent gener-
alization ability as large margin optimizer. The algorithm is tested and
compared to alternative LVQ schemes using an artificial dataset and the
image segmentation data from the UCI repository.

1 Introduction

Learning vector quantization (LVQ) as introduced by Kohonen constitutes a
particularly intuitive and simple though powerful classification scheme [10] which
is very appealing for several reasons: the method is easy to implement; the
complexity of the resulting classifier can be controlled by the user; the classifier
can naturally deal with multiclass problems; and, unlike many alternative neural
classification schemes, the resulting classifier is human understandable. Original
LVQ, however, suffers from several drawbacks such as slow convergence and
instability. An exact investigation of these properties is quite complex [2] and a
variety of alternatives have been proposed, see e.g. [10].

One major drawback consists in the dependency on the euclidean metric. A
variety of extensions of metric based approaches such as k-nearest neighbor or k-
means clustering to more general metrics including an adaptive diagonal metric
or a full matrix exist [5, 6]. For LVQ type algorithms, generalized relevance
learning vector quantization [9] constitutes a more powerful alternative which
includes adaptive relevance factors into training. This allows to scale the axes,
i.e. a better adaptation towards clusters with axes-parallel ellipsoidal shapes.
Here we introduce a more general version which includes a full adaptive matrix
for every prototype, i.e. the possibility to adapt to arbitrary local ellipsoids which
correspond to locally correlated input dimensions. We show that this general
method leads to efficient and powerful classifiers with excellent generalization
ability, as substantiated by a theoretical counterpart as well as two experiments.

2 Generalized metric LVQ

LVQ aims at approximating a clustering by prototypes. Assume training data
(ξi, yi) ∈ R

N ×{1, . . . , C} are given, N denoting the data dimensionality and C
the number of different classes. A LVQ network consists of a number of proto-
types which are characterized by their location in the weight space wi ∈ R

N and
their class label c(wi) ∈ {1, . . . , C}. Classification takes place by a winner takes
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all scheme. For this purpose, a (possibly parameterized) similarity measure dλ

is fixed for R
N . Often, the standard euclidean metric is chosen. A data point

ξ ∈ R
N is mapped to the class label c(ξ) = c(wi) of the prototype i for which

dλ(wi, ξ) ≤ dλ(wj , ξ) holds for every j 6= i (breaking ties arbitrarily).
Learning aims at determining weight locations for the prototypes such that

the given training data are mapped to their corresponding class labels. A very
flexible learning approach has been introduced in [9]. It is derived as a mini-
mization of the cost function

∑

i

Φ

(

dλ
J − dλ

K

dλ
J + dλ

K

)

(1)

where Φ is a monotonic function, e.g. the identity or the logistic function, dλ
J =

dλ(wJ , ξi) is the distance of data point ξi from the closest prototype wJ with
the same class label yi, and dλ

K = dλ(wK , ξi) is the distance from the closest
prototype wK with a different class label than yi. Taking the derivatives with
respect to the prototypes and metric parameters yields the adaptation rules.

The choice of the similarity measure as standard euclidean metric yields
GLVQ. The squared weighted euclidean metric dλ(w, ξ) =

∑

i λi(wi−ξi)
2 where

λi ≥ 0 and
∑

i λi = 1 constitutes a powerful alternative, GRLVQ, particularly
suited for high dimensional data with a different (but priorly not known) rel-
evance of the input dimensions. Thereby, the relevance factors need not be
global, but they can be attached to a single prototype, i.e. individual updates
take place for the relevance factors λj , and dλj (wj , ξi) is computed based on λj .
This method, localized GRLVQ (LGRLVQ), has been investigated in [7].

3 Generalized matrix LVQ

Here, we introduce a more general choice of the similarity measure, a full matrix,
which can account for arbitrary correlations of the dimensions. The metric has
the form

dΛ(w, ξ) = (ξ − w)T Λ (ξ − w)

where Λ is a full matrix. Note that, this way, arbitrary euclidean metrics can
be achieved by an appropriate choice of the parameters. In particular ellipsoidal
clusters which are not axes parallel can be obtained. Such choices have already
successfully been introduced in several unsupervised clustering methods, e.g. [6].

Note that the above similarity measure only leads to a squared distance if Λ
is positive (semi-) definite. We can achieve this by substituting Λ = Ω ΩT . As
Λ is symmetric, we can assume that Ω itself is symmetric: Ω = ΩT . To obtain
the adaptation formulas we need to compute the derivatives of (1) with respect
to w and Λ. We get the updates

∆wJ = + ε · φ′(µ(ξ)) · µ+(ξ) · ΩΩ · (ξ − wJ )

∆wK = − ε · φ′(µ(ξ)) · µ−(ξ) · ΩΩ · (ξ − wK)

∆Ωlm = − ε · φ′(µ(ξ)) ·
(

µ+(ξ) ·
(

[Ω(ξ − wJ)]m(ξl − wJ,l) + [Ω(ξ − wJ)]l(ξm − wJ,m)
)

−µ−(ξ) ·
(

[Ω(ξ − wK)]m(ξl − wK,l) + [Ω(ξ − wK)]l(ξm − wK,m)
)

)
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for the prototypes and matrix elements Ωlm with µ(ξ) = (dΛ
J − dΛ

K)/(dΛ
J + dΛ

K),
µ+(ξ) = 2 · dΛ

K/(dΛ
J + dΛ

K)2, and µ−(ξ) = 2 · dΛ
J /(dΛ

J + dΛ
K)2. (See [3] for the

derivation of these formulas.) Thereby, the learning rate for the metric can
be chosen independently of the learning rate for the prototypes. Note that
Ω is symmetric because these updates are symmetric. After each update, Λ
is normalized to prevent the algorithm from degeneration. We set

∑

i Λii =
∑

i,j Ω2
ij = 1 which fixes the sum of diagonal elements and, here, the sum of

eigenvalues. We term this learning rule generalized matrix LVQ (GMLVQ).
Note that we can work with one full matrix which accounts for a transforma-

tion of the whole input space, or, alternatively, with local matrices Λj attached
to the individual prototypes wj , such that general local ellipsoidal clusters can
be obtained. We refer to this general version as localized GMLVQ (LGMLVQ).

4 Generalization ability

One of the benefits of prototype-based learning algorithms is that they show very
good generalization ability also for high dimensional data as proved in [4, 8]. The
basic insight consists in the fact that large margin generalization bounds can
be derived for LVQ networks similar to learning theoretical results derived for
SVM. Since LVQ networks are universal approximators provided enough neuron,
a good overall behavior is guaranteed. This argument can be transferred to the
matrix version. We shortly sketch the result and refer to [3] for details.

We consider a LGMLVQ network given by P prototypes wi with inputs |ξ| ≤
B for some B > 0 (hence also |wi| ≤ B) and the case of a binary classification,
i.e. labels 1 or −1. Classification takes place by a winner takes all rule

ξ 7→ c(wi) where (ξ − wi)
T Λi(ξ − wi) ≤ (ξ − wj)

T Λj(ξ − wj)∀j 6= i (2)

with positive semidefinite matrix Λi with
∑

l Λ
i
ll = 1. A network corresponds to

a function in F := {f : R
N → {−1, 1} | f is given by (2) for some Λi, wi}.

Assume some unknown underlying probability measure P is given on R
N ×

{−1, 1}. The goal of learning is to find a function f ∈ F such that the general-
ization error

EP (f) := P (y 6= f(y))

is as small as possible. P is not known during training; instead, examples (ξi, yi),
i = 1, . . . , m, are available, which are independent and identically distributed
according to P . Training aims at minimizing the empirical error

Êm(f) :=

m
∑

i=1

|{yi 6= f(ξi)}|/m .

The learning algorithm generalizes to unseen data if Êm(f) is representative for
EP (f) for large enough m and every f . Assume a pattern (ξ, y) is classified by
a GMLVQ network which implements the function f . We define the margin

Mf (ξ, y) = −dΛ
J

J + dΛ
K

K

whereby dΛ
J

J refers to the distance from the closest prototype with class y and

dΛ
K

K refers to the distance from the closest prototype with class different from
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y. Note that LGMLVQ implicitely maximizes this term since it constitutes the
nominator in the cost function (1). Following [1], we define the loss

L : R → R, t 7→







1 if t ≤ 0
1 − t/ρ if 0 < t ≤ ρ
0 otherwise

where ρ > 0 is some fixed value. The term

ÊL
m(f) :=

m
∑

i=1

L(Mf(ξi, yi))/m

accumulates the number of errors for a given data set, and, in addition, also
punishes all correct classifications with a margin smaller than ρ. It is possi-
ble to correlate the generalization error and this modified empirical error by a
dimensionality independent bound: the inequality

EP (f) ≤ ÊL
m(f) + O

(

P 2(B3 +
√

ln(1/δ))

ρ
√

m
+

√

ln(1/δ)

m

)

(3)

holds with probability 1 − δ for every P and f (see [3] for the derivation). This
bound is independent of the dimensionality of the data. Rather, it involves the
margin ρ which is the nominator of the cost function, hence optimized during
LGMLVQ training. Note that, in this formalism, the error of the algorithm can
be uniformly bounded in terms of the training error (involving classifications with
margin smaller than ρ) and a term which depends on some model parameters
and ρ, but not on the input dimensionality and the matrix size. Usually, an
appropriate ρ which yields good overall bounds is not known beforehand. In [3],
a possibility to extend this result to a posterior parameter ρ is presented.

5 Experiments

Artificial Data. In a first experiment, the algorithm is applied to a two-
dimensional artificial dataset consisting of two ellipsoidal classes as depicted in
Fig.1(a). Two Gaussians are generated with mean values µ1 = [1.5, 0.0] and
µ2 = [−1.5, 0.0], respectively, and variance σ1,2 = [0.5, 3.0], and then rotated
about the origin by the angles ϕ1 = π/4 and ϕ2 = −π/6, respectively. Training
and test set consist of 300 resp. 600 datapoints per class. We test the standard
euclidean metric (GLVQ), an adaptive diagonal metric (GRLVQ), individual
adaptive diagonal metrics for each prototype (LGRLVQ), an adaptive matrix
(GMLVQ), and individual adaptive matrices for every prototype (LGMLVQ).
Relevance or matrix learning is done after an initial phase consisting of 500
epochs prototype adaptation and training is done for several 1000 epochs. In all
experiments, learning rates are annealed during training, and they are chosen
smaller for the matrix elements (initial rates ranging from 0.01 to 0.0001).

The classification accuracies on the training and test set are summarized in
Tab.1. The position of the resulting prototypes and decision boundaries are
shown in Fig.1(b)-(f). GMLVQ determines one single direction in feature space
which is used for classification. The resulting matrix Ω projects the data onto
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Fig. 1: (a)Artificial dataset, (b)-(f) Prototypes and receptive fields, (b) GLVQ,
(c) GRLVQ, (d) LGRLVQ, (e)GMLVQ, (f) LGMLVQ, (g)Data transformed by
global matrix Ω, (h) Class1, Class2 transformed by ΩClass1, ΩClass2, respectively.

the respective subspace as depicted in Fig.1(g). Fig.1(h) denotes the projections
of the matrices ΩClass1, ΩClass2 corresponding to the resulting relevance matrices

ΛClass1 =

(

0.5156 −0.4997
−0.4997 0.4844

)

ΛClass2 =

(

0.7195 0.4492
0.4492 0.2805

)

One can clearly observe the benefit of individual matrix adaptation: this allows
each prototype to shape its cluster according to the local ellipsoidal form of the
class. This way, the data points of both ellipsoidal clusters can be classified
correctly except for the tiny region where the classes overlap. Note that, for local
metric parameter adaptation, the receptive fields of the prototypes are no longer
separated by straight lines (Fig. 1(d)) and need no longer be convex (Fig. 1(f)).

Image Data. In a second experiment, the algorithm is applied to the image
segmentation dataset provided in the UCI repository. The dataset contains 19
dimensional feature vectors which encode different attributes of 3×3 pixel regions
extracted out of seven outdoor images (brickface, sky, foliage, cement, window,

Artificial data
Algorithm Training Test

GLVQ 75.33 71.83
GRLVQ 74.33 72.33
GMLVQ 79.67 77.83
LGRLVQ 81.0 78.0
LGMLVQ 91.67 90.75

Image data
Algorithm Training Test

GLVQ 82.38 79.05
GRLVQ 85.71 84.52
GMLVQ 91.9 87.86
LGRLVQ 90.0 89.05
LGMLVQ 96.19 94.29

Table 1: Percentage of correctly classified patterns
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path, grass). The features 3-5 are (nearly) constant and were eliminated for this
experiment. The dataset consists of 30 resp. 300 points per class for training
resp. test. As beforehand, we use one prototype per class and choose optimum
learning rates for the parameters. The classification accuracy is depicted in
Table 1. Obviously, relevance and matrix adaptation allows to improve the
classification accuracy. Thereby, local matrices yield an improvement of more
than 10% compared to simple GLVQ. Remarkably, although the number of free
parameters of the model is dramatically increased (being of order PN2 for P
prototypes and input dimensionality N) no overfitting takes place in this case.

6 Discussion

We extended GRLVQ, a particularly efficient and powerful prototype based clas-
sifier, by a full matrix adaptation scheme. This allows the adaptation of the class
borders to local ellipsoidal shapes. The possibility to improve the classification
accuracy by this extension has been demonstrated in two examples (further ex-
amples are the subject of future work). Remarkably, here, the generalization
ability of the method was quite high as substantiated by theoretical findings.

The complexity of full matrix adaptations scales with N2 per epoch, N be-
ing the input dimensionality. This is better than comparable matrix adaptation
methods as used e.g. in unsupervised fuzzy clustering [6], however, the com-
putational load becomes quite large for large input dimensionality. Therefore,
specific schemes to shape the form of the matrix based on prior information
are of particular interest. Nondiagonal matrix elements indicate a correlation
of input features relevant for the classification. In many cases, one can restrict
useful correlations due to prior knowledge. As an example, spatial, temporal, or
functional data likely show a high correlation of neighbored elements, whereas
the other elements are probably independent, such that one can restrict to a
fixed matrix bandwidth, decreasing the quadratic complexity to a linear term.
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