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Figure 1. Discovery of the network layout (a double star shape). The number of nodes in this example is 2171 and the average node degree is
10. (i) The Voronoi cells of the landmarks (black nodes are on the Voronoi edges); (ii) The Delaunay edges extracted from the Voronoi cells of the
landmarks; (iii) Our embedding result of the extracted Delaunay complex; (iv) Our localization result of the entire network.

Abstract
We propose a distributed algorithm to discover and re-
cover the layout of a large sensor network having a com-
plex shape. As sensor network deployments grow large
in size and become non-uniform, localization algorithms
suffer from “flip” ambiguities—where a part of the net-
work folds on top of another while keeping all edge
length measurements preserved. We explore the high-
order topological information in a sensor field to prevent
incorrect flips and accurately recover the shape of the sen-
sor network. We select landmarks on network boundaries
with sufficient density, construct the landmark Voronoi di-
agram and its dual combinatorial Delaunay complex on
these landmarks. The key insight is that when the land-
marks are dense enough to capture the local geometric
complexity, the combinatorial Delaunay complex is glob-
ally rigid and has a unique realization in the plane. An
embedding by simply gluing the Delaunay triangles prop-
erly derives a faithful network layout, which consequently
leads to a practical and sufficiently accurate localization
algorithm. We prove the global rigidity of the combina-
torial Delaunay complex in the case of a continuous ge-
ometric region. Simulations on discrete networks show
surprisingly good results, while multi-dimensional scal-
ing and rubberband representation perform poorly or not
at all in recovering the network layout.

1 Introduction
The physical location of sensor nodes in a network is crit-
ical for network operation and data interpretation. Local-
ization algorithms that find the locations of nodes through
local communication and message passing have become
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an indispensable architecture component. Many local-
ization algorithms have been proposed in the past few
years [35, 37, 38, 31, 32, 39, 4, 23, 11, 22, 21, 30], yet
there is still no universally recognized localization algo-
rithm that produces accurate location information with
small overhead [33, 41]. As sensor networks grow in
popularity and size, retrieving the locations of the nodes
becomes even more important and challenging. The
difficulty in achieving accurate location information is
not only due to the network scale and increase to both
the communication and computation load, but also due
to the fact that large deployments of sensor nodes are
more likely to have uneven node distribution as obstacles
and terrain variations inevitably come in to the picture.
Although most localization algorithms work reasonably
well for uniform and dense sensor deployments, they of-
ten run into serious trouble when the network layout has
complicated geometric features. The prominent difficulty
is the rigidity issue and the problem of resolving incorrect
flips. To give an intuitive example, Figure 2 illustrates
that with only network connectivity information (and/or
distance information), one is unable to tell the “flip” of
triangle 4bcd relative to triangle 4abc locally. When
the network is large, this flipping ambiguity issue can be
so severe that many optimization-based approaches easily
get stuck at local minima corresponding to configurations
far from the ground truth. A number of localization al-
gorithms deal with the problem of rigidity by exploring
the graph structure [11, 22, 21, 30]. These algorithms
either require that the network is dense enough to guaran-
tee global rigidity, or even more, guarantee the network
is a tri-lateration graph (such that iterative trilateration
method resolves the ambiguity of flips) [11, 22, 30]; or,
when the network is sparse, record all possible configu-
rations and prune incompatible ones whenever possible,
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which, in the worst case, can result in exponential space
requirement [21].
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Figure 2. A connectivity graph with two distinct embeddings having
the same set of edge lengths.

Aside from localization algorithms, recently there is a
growing interest in the study of global topology and ge-
ometry of a sensor field deployment. The focus is to iden-
tify large topological features (such as coverage holes) by
detecting the network boundaries [17, 18, 15, 14, 28, 40].
The identification of these features immediately indicates
points of insufficient network coverage [20]. In addition,
they can also help with basic network operations such as
routing and information discovery [12, 8, 19, 13]. There
is still an unclosed gap in the loop, as Funke and Milosavl-
jevic spotted [19], in that the identification of boundary
nodes still has not produced a global picture of the sensor
field layout. Or, we know how many holes there are and
which are the boundary nodes but we have no idea how
they are laid out in the domain.

In this paper we are interested in the discovery and
recovery of the network layout, which is of great help
for large-scale network localization and also interesting
on its own. The question we ask is: with connectiv-
ity information only, can we recover the global layout
of the network? This is quite a challenging task due to
the global nature of the problem. Existing approaches
that use centralized global optimization techniques such
as multi-dimensional scaling (MDS) or semi-definite pro-
gramming [5, 39] are both computationally intensive and
unsatisfactory quality-wise (see Figure 4 left). In addi-
tion, recovering the correct global layout is the most crit-
ical component in localization and also of great impor-
tance for network organization and operation. For exam-
ple, greedy routing with imperfect geographical locations
that differ from their true locations can still achieve high
success delivery rate [36], if there are no global flips. To
give an intuitive feeling, Figure 3 shows the real deploy-
ment of sensor nodes (left) and two possible embedding
results that may have similar quality measured by the ab-
solute location error. The middle one that does capture
the most essential feature of the network layout (5 point
star with no hole), is far better than the more devastat-
ing embedding to the right, in which part of the network
incorrectly folds on top of the other.

Figure 3. Left to right: the ground truth; one possible embedding; a
more devastating embedding.

Figure 4. Embedding of the double star. Left: multi-dimensional scal-
ing; Right: rubberband representation.

One step towards the eternal goal of recovering the net-
work layout is to use the rubberband embedding, by Rao
et al. in [36] and by Funke and Milosavljevic in [19].
The idea is to fix the network outer boundary on a rectan-
gle and then each internal node iteratively takes the center
of gravity of its neighbors’ locations as its own location.
The rubberband relaxation converges to what is called the
rubberband representation. With the identification of the
network outer boundary, this method does give a layout
without incorrect folds, but unfortunately induces large
distortion as holes are typically embedded much larger
than they are. An example is shown in Figure 4 (right).
In the literature [36, 19] the rubberband representation is
mainly used in extracting the sensor network topology
and assigning virtual coordinates to the nodes for geo-
graphic routing purposes.

In this paper we propose an efficient algorithm that re-
covers the network layout with surprising accuracy. We
explore the fact that the sensor nodes are embedded in
the plane (or with terrain variation, on a 2-manifold sur-
face). When there are incorrect global folds, some nodes
with a large minimum hop distance in the network are
brought closer than what it should be. Our layout dis-
covery algorithm is quite simple and uses only the net-
work connectivity information. We take samples on the
network boundaries (both the outer boundary and inner
hole boundaries) with sufficient density and denote select
nodes as landmarks. Each node in the network records
the closest landmark in terms of network hop distance.
The network is then partitioned into Voronoi cells, each of
which consists of one landmark and all the nodes closest
to it. The Delaunay graph, as the dual of the Voronoi di-
agram, has two landmarks connected by a Delaunay edge
if their corresponding Voronoi cells are adjacent (or share
some common nodes). Now, here is the key insight: given
two Delaunay triangles sharing a common edge, there is
only one way to embed them such that they do not share
interior points (the case in Figure 2 left cannot happen).
This is because the Delaunay triangles are induced from
the underlying Voronoi partitioning so intuitively we can
think them as ‘solid’ triangles, which, when embedded,
must keep their interiors disjoint. In this paper we make
the above intuition rigorous. We prove in the case of a
continuous geometric domain that when the landmarks
are sufficiently dense (with respect to the local feature
size measuring the local geometric complexity), the in-

2



duced Delaunay graph is rigid. In addition, the Delaunay
complex (in terms of simplicial complex, to be defined
later) is globally rigid, i.e., there is a unique way to em-
bed these ‘solid’ Delaunay triangles in the plane.

The identification of the Delaunay triangles and more
importantly the way to embed them relative to each other
removes a major hurdle towards the recovery of the net-
work layout. In this paper we use a simple incremental al-
gorithm to glue the triangles one by one. Each Delaunay
edge is given a length equal to the minimum hop count
between the two landmarks. Since the hop counts are in-
evitably noisy, we use mass-spring relaxation to improve
the quality of the embedding and balance the error distri-
bution. The final result on the double star case is shown in
Figure 1 (iii). It is apparent that our result is much better
than those produced by MDS or rubberband representa-
tion and very close to the ground truth.

As the recovery of the network layout when the nodes
have non-uniform distribution is the major challenge in
anchor-free localization algorithms (i.e., no nodes have
any location information, the goal is to discover the rel-
ative node positioning up to a global rigid motion), the
results from the layout algorithm can be used to localize
the rest of the nodes easily. With the landmarks localized,
each additional node can localize itself by using trilatera-
tion with its hop count distances to 3 or more landmarks.
Again we apply mass-spring relaxation to further improve
the localization result. The final localization result of the
double star example is shown in Figure 1 (iv).

The outline of the paper is as follows. In Section 2 we
prove the rigidity of the Delaunay complex when land-
marks are sufficiently dense in the case of a continuous
domain. The reason we explain the theory first is to intro-
duce notations and subtle issues due to degeneracies that
will show up in the discrete case as well. Readers can
also choose to read Section 3 first, in which we explain
the algorithm for the discrete network. The discovery of
the sensor layout, i.e., landmark selection and discovery
of the Delaunay edges is done in a distributed way. The
recovery algorithm, i.e., embedding of the Delaunay com-
plex, is of an incremental nature and thus can also natu-
rally implemented in a distributed way by message pass-
ing. We tested our algorithms under various deployment
scenarios and compared the embedding result with the re-
sults by using multi-dimensional scaling and the rubber-
band embedding in Section 4.

2 Theoretical Foundations
2.1 Medial axis, local feature size and

r-sample
We consider a geometric regionRwith boundary ∂R that
consists of k cycles, one outer boundary and k−1 bound-
aries of inner holes. For any two points p, q ∈ R, we
denote by |pq| their Euclidean distance and d(p, q) the

geodesic distance between them inside R. A ball cen-
tered at a point p of radius r, denoted by Br(p), contains
all the points within geodesic distance r from p.

Definition 2.1. The medial axis of R is the closure of
the collection of points, with at least two closest points
(measured by Euclidean distance) on the boundary ∂R.

The medial axis of ∂R consists of two components, one
part inside R and denoted as the inner medial axis, and
the other part outsideR, denoted as the outer medial axis.
See Figure 5 (i). In this paper we are more interested in
the inner medial axis.

We remark that the standard definition of medial axis
for curves in the plane measures the Euclidean distance
of two points. In a sensor network without location in-
formation, we can use the minimum hop length between
two nodes as their distance, whose analog in the contin-
uous case is the geodesic distance. In this paper all the
distances are by default measured by the geodesic dis-
tances unless specified otherwise. When we change from
Euclidean measure to geodesic measure one may wonder
how that changes the inner medial axis. Luckily this is
not a big issue as it is not difficult to prove that the inner
medial axis under the two measures are the same.

Lemma 2.2. The inner medial axis of R measured in
terms of Euclidean distance is the same as that measured
in terms of geodesic distance.

Proof: Take the maximum size ball centered at a point
p on the medial axis under Euclidean distance measure.
This ball touches two or more points on the boundary and
has no boundary points in its interior. Thus the geodesic
distances from p to the tangent points are the same as the
Euclidean distances. In other words, a point p is on the
medial axis under the Euclidean distance is also on the
medial axis under the geodesic measure.

On the other hand, take a maximum size ball centered
at a point p on the medial axis under the geodesic distance
measure and its tangent points on ∂R. We argue that the
geodesic shortest path from p to its tangent point must be
a straight line. If otherwise it can only bend at a point q
on the boundary ∂R. This means q is a closer boundary
point than the tangent point, which contradicts with the
assumption. Thus the point p is also on the medial axis
under the geodesic distance measure. ¤

Now we are ready to explain how to measure the lo-
cal geometric complexity of R, which will consequently
decide the sampling density. An example is shown in Fig-
ure 5.

Definition 2.3. The inner local feature size of a point
p ∈ ∂R, denoted as ILFS(p), is the distance from p
to the closest point on the inner medial axis. The local
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Figure 5. The region R with boundary shown in dark curves. (i) The medial axis and landmarks selected on the boundaries. Point p ∈ ∂R has
a landmark within distance ILFS(p). (ii) The Voronoi graph (shown in dashed lines) and the Delaunay graph/complex. (iii) When the set of
landmarks is not an r-sample (with r < 1), the combinatorial Delaunay graph may be non-rigid.

feature size of a point p ∈ ∂R, denoted as LFS(p), is
the distance from p to the closest point on the medial axis
(including both the inner and outer medial axis).

Next we prove an important Lemma about the inner lo-
cal feature size. This Lemma and its proof are motivated
by [2].

Lemma 2.4. Given a disk B containing at least two
points on ∂R, for each connected component of B ∩ R,
either it contains a point on the inner medial axis, or its
intersection with ∂R is connected.

Proof: We take one connected component C of B ∩ R
and assume that it does not contain a point on the inner
medial axis and intersects ∂R in two or more connected
pieces. Now we take a point u in C but u is not on ∂R.
Now take u’s closest point on C∩∂R. If the closest point
is not unique, then u is on the inner medial axis and we
have a contradiction. Now the closet point p stays on one
connected piece of C ∩ ∂R. We take u’s closest point on
a different piece of C ∩ ∂R, denoted as q. See Figure 6.
Now as we move a point x from u to q along the geodesic

p
B

x q
u

Figure 6. Each connected component of B ∩R either contains a point
on the inner medial axis or its intersection with ∂R is connected.

path between u and q, x’s closest point on C ∩ ∂R starts
with p and eventually becomes q. So at some point x
the closest point changes. That point x is on the inner
medial axis. This arrives at a contradiction and the claim
is true. ¤
Definition 2.5. An r-sample of the boundary ∂R is a
subset of points S on ∂R such that for any point p ∈ ∂R,
the ball centered at p with radius r · ILFS(p) has at least
one sample inside.

Landmark density criterion Our algorithm selects
the set of landmarks as an r-sample, with r < 1 and se-
lects at least 3 landmarks on each boundary cycle. We
will show that these landmarks imply important topologi-
cal information about the network layout and can be used
to reconstruct the network layout.

2.2 Landmark Voronoi diagram and
combinatorial Delaunay graph

We take some points in R and denote them as landmarks
S. Construct the landmark Voronoi diagram V (S) as
in [12]. Essentially each point in R identifies the clos-
est landmark in terms of geodesic distance. The Voronoi
cell of a landmark u, denoted as V (u), includes all the
points that have u as a closest landmark. Rigorously,

V (u) = {p ∈ R | d(p, u) ≤ d(p, v), ∀v ∈ S}.
Each Voronoi cell is a connected region in R. The union
of Voronoi cells covers the entire region R. A point is
said to be on the Voronoi edge if it has equal distance to
its two closest landmarks. A point is called a Voronoi ver-
tex if its distances to three (or more) closest landmarks are
the same. A Voronoi edge ends at either a Voronoi vertex
or a point on the region boundary ∂R. The Voronoi graph
is the collection of points on Voronoi edges. The combi-
natorial Delaunay graph D(S) is defined as a graph on S
such that two landmarks are connected by an edge if and
only if the corresponding Voronoi cells of these two land-
marks share some common points. An example is shown
in Figure 5. We state some immediate observation about
the Voronoi diagram and the corresponding combinatorial
Delaunay graph below.

Observation 2.6. A point on the Voronoi edge of two
landmarks u, v certifies that there is a Delaunay edge be-
tween u, v in D(S). A Voronoi vertex of three landmarks
u, v, w certifies that there is a triangle between u, v, w in
D(S).

In the case of a degeneracy, four landmarks or more
may become cocircular and thus share one Voronoi ver-
tex. See the left top corner in Figure 5 (ii). We will
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capture these high-order features by defining the Delau-
nay complex in the notion of abstract simplicial com-
plex [10]. Formally, a finite system A of finite sets is
an abstract simplicial complex if α ∈ A and β ⊆ α im-
plies β ∈ A. A set α is an (abstract) simplex with dimen-
sion dim α = card α − 1, i.e., the number of elements
in α minus 1. The way to construct an abstract Delaunay
complex is to take the Cěch complex of the Voronoi cells,
defined below.

Definition 2.7. The (abstract) Delaunay complex is the
collection of sets

DC(S) = {α ⊆ S |
⋂
u∈α

V (u) 6= ∅}.

In other words, a set α ⊆ S is a Delaunay simplex if the
intersection of the Voronoi cells of landmarks of α is non-
empty. The dimension of the Delaunay simplex α is the
cardinality of α minus 1.

Thus a landmark vertex is a Delaunay simplex of di-
mension 0. A Delaunay edge is a simplex of dimension
1. A Delaunay triangle is a simplex of dimension 2 (in-
tuitively, think of the triangle as a ‘solid’ triangle with its
interior filled up). In case of a degeneracy, k landmarks
are co-circular and their Voronoi cells have non-empty in-
tersection. This corresponds to a simplex of dimension
k − 1. The rightmost 4 landmarks in Figure 5 (iii) form
a dimension-3 simplex (again, intuitively think the sim-
plex as a solid object). We drew the Delaunay complex as
shaded regions.

The definition of an abstract simplicial complex is
purely combinatorial, i.e., no geometry, thus the name of
‘abstract’ complex. We can talk about an embedding or
realization of an abstract simplicial complex in a geomet-
ric space as a simplicial complex (with geometry). We
give the definitions below. The whole point of this paper
is to find the geometric realization of the abstract Delau-
nay complex extracted from a sensor field, to recover its
global layout.

A finite set of points is affinely independent if no affine
space of dimension i contains more than i + 1 of the
points, for any i. A k-simplex is the convex hull of a col-
lection of k + 1 affinely independent points S, denoted as
σ = conv S. The dimension of σ is dim σ = k. Figure 7
shows 0, 1, 2, 3-simplex in R3. The convex hull of any

Figure 7. 0, 1, 2, 3-simplex in R3.

subset T ⊆ S is also a simplex. It is a subset of conv S
and called a face of σ. For example, take the convex hull
of three points in a 3-simplex, it is a 2-simplex (a trian-
gle). A simplicial complex is the collection of faces of

a finite number of simplices such that any two of them
are either disjoint or meet in a common face. A geomet-
ric realization of an abstract simplicial complex A is a
simplicial complex K together with a bijection ϕ of the
vertex set of A to the vertex set of K, such that α ∈ A
if and only if conv ϕ(α) ∈ K. Of course the embedded
ambient space has to have dimension at least equivalent
to the highest dimension of the simplex in A. In our case,
when there is degeneracy theoretically we will have to
embed in a dimension higher than 2. We will discuss how
to get around this problem in the next section after the
discussion of rigidity. In the rest of the paper, when we
say the Delaunay graph, we refer to the Delaunay edges
and vertices. When we say the Delaunay complex, we
also include the higher order simplices such as Delaunay
triangles etc.

2.3 Global rigidity of combinatorial De-
launay complex

The property of the combinatorial Delaunay graph clearly
depends on the selection of landmarks. The goal of this
section is to show that with sufficiently dense landmarks
— when there are at least 3 landmarks on each boundary
cycle and they form an r-sample of ∂R with r < 1—the
Delaunay graph is rigid (no continuous deformation pos-
sible if the edges are of fixed lengthes) and the Delaunay
complex is globally rigid (it admits a unique realization).
An example when the combinatorial Delaunay graph is
not rigid due to insufficient sampling is shown in Figure 5
(iii). Now we prepare to prove the rigidity results by first
showing that the Voronoi graph (collection of points on
Voronoi edges) is connected within R. In this subsection
we assume that the landmarks are selected according to
the landmark selection criterion mentioned above.

Lemma 2.8. Two Voronoi vertices connected by a
Voronoi edge correspond to two Delaunay triangles shar-
ing an edge.

Proof: Recall that each Voronoi vertex x certifies a De-
launay triangle of three landmarks u, v, w. First we argue
that the points on the Voronoi edge connecting Voronoi
vertices x and y must have their two closest landmarks
among u, v, w. Certainly if one point on the Voronoi edge
has one of its closest landmark to be p and p is not any of
u, v, w, then this point is a Voronoi vertex. Without loss of
generality, we assume that y has three closest landmarks
u, v, z. Thus the corresponding Delaunay triangles of x, y
are 4uvw and 4uvz sharing an edge uv. ¤

Lemma 2.9. For any two adjacent landmarks u, v on the
same boundary cycle, there must be a Voronoi vertex in-
side R that involves these two landmarks.

Proof: We take two adjacent landmarks u, v and consider
the set of points in R with equal distance from u, v. The
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Figure 8. u, v are two adjacent landmarks. The point p on the boundary has its closest landmarks as u, v. (i)-(iv) four possible cases.

mid-point on the geodesic path connecting u, v, denoted
by x, is equal distance from u, v. We take a disk through
u, v centered at x and move the disk while keeping it
through u, v. Its center will trace a curve called C(u, v)
with all the points on C(u, v) having equal distances from
u, v. C(u, v) has two endpoints p, q with q on the bound-
ary segment in between u, v and p also on the boundary.
Take r = d(p, u) = d(p, v). See Figure 8.

We claim that there must be a Voronoi vertex on
C(u, v) that involves u, v and we prove this claim by con-
tradiction. Otherwise, p’s two closest landmarks are u, v
— the ball Br(p) centered at p with radius r contains no
other landmark inside. We take r− = r − ε with ε → 0.
Thus Br−(p) contains no landmark. Now we see that this
will violate the sampling condition if we can show that
there is a point on the inner medial axis inside Br−(p)
(meaning that r− ≥ ILFS(p)).

We take the connected component of Br−(p) ∩ R that
contains the curve C(u, v), denoted by F . By Lemma 2.4,
if F does not contain a point on the inner medial axis,
then its intersection with the boundary ∂R is connected.
Now we do a case analysis depending on how the bound-
ary curve goes through u and v. In Figure 8 (i) & (ii),
the ε-neighborhood of the boundary at u, v also intersects
Br−(p) ∩ R. In (i), F ∩ ∂R has two connected pieces,
thus leading to a contradiction. In (ii), the boundary be-
tween u, v through p is completely inside Br−(p), which
has no other landmark inside. In this case there are only 2
landmarks, namely u, v, on the boundary cycle containing
p. This contradicts our sampling condition.

If the boundary at v (or u, or both) is only tangent to
Br−(p) ∩ R (meaning that Br−(p) does not contain any
ε-neighborhood of v, see Figure 8 (iii) & (iv)), we ar-
gue that F contains a point on the inner medial axis. To
see that, we take the ball Br(p) tangent at v with v’s ε-
neighborhood outside the ball. Now we shrink it while
keeping it tangent to v until it is tangent to two points on
the boundary of F . Now the center of the small ball B′

is on the inner medial axis, which is inside Br−(p). Thus
we have the contradiction. The claim is true. ¤

Lemma 2.9 implies that the Delaunay graph has no
node with degree 1 – since every node is involved in 2
triangles with its adjacent 2 nodes on the same boundary.

Lemma 2.10. If there is a continuous curve C that con-
nects two points on the boundary ∂R such that C does
not contain any point on Voronoi edges, then C cuts off a
topological 1-disk of ∂R with no other landmark inside.

Proof: Without loss of generality we assume that C has
no other boundary points in its interior. Assume C con-
nects two points p, q on the boundary. Since C does not
cut any Voronoi edges, C must stay completely inside the
Voronoi cell of one landmark say u. Without loss of gen-
erality assume that u is to the right of boundary point
q. See Figure 9(i). Now the boundary of Voronoi cell

C

q

w p

uv

x

p′

q′

C

q

w p

uv

x

p′

q′

(i) (ii)

Figure 9. (i) C is inside the Voronoi cell of landmark u to the right of
C. (ii) the curve C cuts off a segment of ∂R with no other landmark
inside.

of u is partitioned by the curve C, with one part com-
pletely to the left of C. Consider one of the intersec-
tions between the Voronoi cell boundary of u with the
region boundary ∂R, say p′. We consider the ball Br(p′)
with r = d(p′, u). p′ has two closest landmark, with one
of them as u and the other to the left of C, denoted as
w. Now, this ball cannot contain any other landmark be-
sides u,w. We argue by Lemma 2.4 that the component
of Br(p′)∩R containing p′ intersects ∂R in a connected
piece. Otherwise Br(p′) contains a point on the inner me-
dial axis, which means r > ILFS(p′). Thus by the sam-
pling condition there must be a landmark inside Br(p′).

Now, since the component of Br(p′)∩R containing p′

intersects ∂R in a connected piece, this intersection is a
continuous segment between u and w on ∂R, completely
inside Br(p′), by using the same argument as in the pre-
vious lemma. See Figure 9 (ii). In this case, the curve C
cuts off a segment of ∂R with no other landmark inside.
The claim is true. ¤

Corollary 2.11. The Voronoi graph V (S) is connected.
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Proof: This follows immediately from Lemma 2.10, al-
though Lemma 2.10 is stronger. Specifically if V (S) is
not connected, we are able to find a curve C that cuts
R into two pieces each containing some landmarks and
some Voronoi edges, with C not intersecting with the
Voronoi graph. ¤

Now we are able to show that the combinatorial De-
launay graph is rigid. In other words, given a realiza-
tion of D(S) in the plane, one cannot deform its shape in
the plane without changing the lengthes of the edges. To
prove this, we use a seminal result about graph rigidity
by G. Laman in 1970, known as the Laman condition. It
states that generically rigid graphs in 2D can be classified
by a purely combinatorial condition.

Theorem 2.12 (Laman condition [29]). A graph G
with n vertices is generically rigid1 in 2 dimensions if
and only if it contains a Laman graph G′, which has
2n− 3 edges and every subset of k vertices spans at most
2k − 3 edges.

Theorem 2.13. The combinatorial Delaunay graph
D(S) is rigid.

Proof: In this proof we assume without loss of gener-
ality that there is no degenerate case, i.e., four or more
landmarks are not co-circular. Indeed we can perturb the
locations of the landmarks slightly to eliminate the degen-
eracy. This will only remove edges from the the combi-
natorial Delaunay graph. Certainly with more Delaunay
edges introduced by degeneracy the graph is still rigid.

From the Voronoi graph V (S), we extract a subgraph
V ′ that contains all the Voronoi vertices and the Voronoi
edges that connect between these Voronoi vertices. Some
Voronoi edges end at points on the boundary ∂R and we
ignore those. By Corollary 2.11 this graph V ′ is con-
nected. Now we find a spanning tree T in V ′ that connects
all the Voronoi vertices. Take the corresponding subgraph
D′ of the combinatorial Delaunay graph D(S) such that
an edge exists between two landmarks in D′ if and only
if there is a point in T that certifies it. D′ is a subgraph of
D(S). Now we argue that D′ is a Laman graph.

First the number of landmarks is n. We argue that the
number of edges in D′ is 2n − 3. Assuming the number
of Voronoi vertices is m, T has m− 1 Voronoi edges. We
start from a leaf node on T and sweep along the edges on
T . Each time we add one new vertex that is connected
to the piece that we have explored though an edge. Dur-
ing the sweep we count the number of landmarks and the
number of Delaunay edges that we introduce. To start,

1Intuitively, generic rigidity means that almost all (except some de-
generate cases) realizations of the graph in the plane are rigid – one
cannot continuous move the vertices, up to a global translation and ro-
tation, without changing the lengths of the edges. In other words, the
graph cannot be deformed continuously in the plane.

we have T ′ initialized with one Voronoi vertex, thus we
have three landmarks and three Delaunay edges. The new
Voronoi vertex x we introduce is adjacent to one and only
one vertex in T ′—if x is adjacent to two vertices in T ′,
then there is a cycle since T ′ is connected. This will con-
tradict with the fact that T is a tree. Thus in each addi-
tional step we will introduce one Voronoi vertex that is
connected to T ′ through one Voronoi edge. This will in-
troduce one new landmark and two new Delaunay edges.
When we finish exploring all Voronoi vertices we have
a total of 3 + (m − 1) = m + 2 = n landmarks, and
3 + 2(m − 1) = 2n − 3 Delaunay edges between them.
Thus D′ has n landmarks and 2n− 3 edges.

With the same argument we can show that any sub-
graph of D′ with k landmarks, denoted by S′, has at most
2k − 3 edges. This is because a Delaunay edge is certi-
fied by a Voronoi edge. Thus we take the Voronoi edges
of T such that both of the corresponding landmarks fall
inside S′. These Voronoi edges span at most a tree be-
tween Voronoi vertices involving only landmarks in S′,
because they are a subset of a tree T . By the same ar-
gument as above there are at most 2k − 3 edges between
landmarks in S′. Thus the graph D′ is a Laman graph. By
the Laman condition the combinatorial Delaunay graph
D(S) is rigid. ¤

The above theorem shows the rigidity of the combina-
torial Delaunay graph, but not the global rigidity—there
might be several different realizations of the graph in the
plane. Indeed for an arbitrary triangulation one may flip
one triangle against another adjacent triangle one way or
the other to create different embeddings. However, this is
no longer possible if we embed the combinatorial Delau-
nay complex, induced from the Voronoi diagram V (S).
The intuition is that when the triangles are ‘solid’ and
two triangles cannot share interior points there is only one
way to embed the Delaunay complex. In the following
theorem we show that there can only be a unique way to
embed the abstract Delaunay complex. Thus the recov-
ered Delaunay complex does reflect the true layout of the
sensor field R.

Recall that we want to find an embedding of the ab-
stract Delaunay complex in 2D. That is, find a map-
ping ϕ of the vertices in the plane such that any simplex
σ ∈ DC(S) is mapped as a simplex conv ϕ(σ) ∈ R2.
Notice that in the case of degeneracy there are high-order
k-simplices, k ≥ 3, for which a geometric realization re-
quires embedding into a space of dimension k or higher.
However, this is not really a problem if we force the di-
mension to be 2. Indeed, look at all the edges of a k-
simplex, k ≥ 3, they form a complete graph of k + 1 ≥ 4
vertices. Thus it is a 3-connected graph and redundantly
rigid (a graph remains rigid upon removal of any single
edge). Existing results in rigidity theory [24, 3] show that
a graph is globally rigid (uniquely realizable) in 2D under
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edge lengthes constraints if and only if it’s tri-connected
and is redundantly rigid. Thus all high-order simplices
have unique embeddings in the plane (up to global trans-
lation and rotation). In this paper we find a geometric
realization of the abstract Delaunay complex in the plane,
such that for all the simplices with dimension 2 or smaller,
they are mapped to simplices in the plane; for simplices of
dimension 3 or higher, the induced graph is globally rigid
and subject to a unique embedding, as explained above.

Now the Delaunay complex is composed of a set
of Delaunay triangles (2-simplices) and high-order sim-
plices (and their sub-simplices, of course). We already
know that the high-order simplices are embedded in the
plane as globally rigid components. The Delaunay 2-
simplices/triangles are embedded as geometric complex,
i.e., the geometric realization of the abstract Delaunay
complex. What is left is to show that given two Delau-
nay triangles 4uvw and 4uvp sharing an edge, there is
only one way to embed them in the plane as required by
the definition of simplical complex—that is w and p are
on opposite sides of the shared edge uv, as in Figure 10(i).
Otherwise, w and p are embedded on the same side of uv.

p

w
v

u p

w

v

u

p
w

v

u

(i) (ii) (iii)

Figure 10. Two Delaunay triangles4uvw and4uvp sharing an edge.
(i) is the only valid valid embedding with the two triangles not sharing
any interior points.

Then either w is inside4uvp (as in Figure 10 (iii), or p is
inside4uvw, or two edges intersect at a non-vertex point
(as in Figure 10 (ii). This will violate the properties of a
simplicial complex that any two simplices are either dis-
joint or meet at a common face. If w is inside4uvp, then
the two simplices, a 0-simplex w and a 2-simplex 4uvp
intersect at a vertex w which is not a face of4uvp. In the
other case, if two edges intersect at a non-vertex point,
this intersection is not a face of either edge.

Now we can conclude with the main theoretical result:

Theorem 2.14. Under our landmark selection criterion,
the combinatorial Delaunay complex DC(S) has at most
one embedding in the plane up to a global translation and
rotation.

2.4 A nasty case with special handling
Our sampling condition is unfortunately not sufficient to
guarantee that the combinatorial Delaunay complex is ho-
motopy equivalent2 to the region R. Homotopy equiva-
lence intuitively says that the number of holes and how

2Two maps f and g from X to Y are homotopic if there exists a
continuous map H : X × [0, 1] 7→ Y with H(x, 0) = f(x) and

they are connected in the Delaunay complex are the same
as those in R. A bad example is shown in Figure 11.
To see why this is bad, the Voronoi edge of two land-
marks x, y is not simply connected, with two components,
one above the small hole in the middle and one below the
small hole. Thus the small Delaunay triangle4xyz sticks
out of the paper and can not be embedded in the plane.
Thus there is no valid geometric realization in the plane
without violating the properties of a simplicial complex.

p

x y
z

q

Figure 11. A nasty example with no valid embedding of the De-
launay complex.

We deal with this problem in two ways. As will be
shown in the next section, we are able to detect that
whether the Voronoi edge is connected or not. If it hap-
pens, we insert more landmarks. In particular, we include
one of the Voronoi vertex with x, y as a landmark and
continue doing this until the Voronoi edge between x, y is
simply connected. Similarly, if three or more landmarks
have two or more Voronoi vertices, then we kill all but one
of them by including those as landmarks. As the follow-
ing theorem shows, as long as the Voronoi edge/vertex set
of any k landmarks is either empty or contractible3, the
homotopy equivalence is established.

Lemma 2.15. If we have at least one landmark on each
hole boundary, the Voronoi cell of a landmark u is simply
connected (no holes).

Proof: First we show that the Voronoi cell of a landmark
u is connected. Any point q on the shortest path connect-
ing u with one point p ∈ V (u) also stay in V (u). Other-
wise say q has landmark v as its closest landmark, then v
is a closer landmark to p than u.

H(x, 1) = g(x). Two spaces X and Y have the same homotopy type
if there are continuous maps f : X 7→ Y and g : Y 7→ X such that
g◦f is homotopic to the identity map of X and f ◦g is homotopic to the
identity map of Y . In other words, the maps f and g define a one-to-one
correspondence of the topological features such as connected compo-
nents, cycles, holes, tunnels, etc., and how these features are related.

3A set in Rd which can be reduced to one of its points by a continu-
ous deformation is contractible.

8



If the Voronoi cell is not simply connected, i.e., there
is a hole entirely inside V (u). This cannot happen as any
landmark on the hole boundary, thus inside V (u), will
destroy the property of this Voronoi cell. ¤

Theorem 2.16. If the Voronoi cell/edge/vertex set of any
k landmarks is either empty or contractible, the Delaunay
complex has the same homotopy type as the region R.

Proof: As the combinatorial Delaunay complex is the
Cěch complex of the Voronoi cells, the theorem fol-
lows from the Cěch Theorem [7]. Recall the definition
of the Cěch complex. Given a collection of sets U =
{V (u)∀u ∈ S}, the Cěch complex is the abstract simpli-
cial complex whose k-simplices correspond to nonempty
intersections of k + 1 distinct elements of U . The Cěch
Theorem says that if the sets and all non-empty finite in-
tersections are contractible, then the union ∪uV (u) has
the same homotopy type as the Cěch complex. In our
case, the Cěch complex is the Delaunay complex DS(S),
the union of the Voronoi cells is R. ¤

Another way to handle this is to embed the Delaunay
complex anyway — the embedding theoretically violates
the simplicial complex definition but in practice is per-
fectly fine. One thing we notice is that we do know how
to embed the triangle4xyz because the Voronoi vertex of
4xyz is connected through a Voronoi edge to the Voronoi
vertex q below it. Thus we will embed 4xyz so that it
is disjoint to the dual simplex of q. But 4xyz can and
does overlap with the dual simplex of p, since p is not di-
rectly connected through a Voronoi edge to the Voronoi
vertex of 4xyz. In other words, we embed the simplices
with guidance from the connectivity of the Voronoi ver-
tices that certify them. This is also what we use in the
algorithm below.

3 Algorithm Description
We explain in this section the distributed algorithm to ex-
tract the combinatorial Delaunay complex as well as the
embedding algorithm that recovers the network layout.
Our algorithm only uses the connectivity information and
does not require that the network model follow the unit
disk graph assumption. We assume a large number of
sensor nodes scattered in a geometric region, with nearby
nodes communicating with each other directly. The al-
gorithm basically realizes the landmark selection and em-
bedding suggested in the previous section. Thus we will
not re-iterate many things said already and instead focus
on distributed implementation and robustness issues, for
the geodesic distance is only approximated by the mini-
mum hop count between two sensor nodes. We first out-
line the algorithm and explain each step in detail.

Detect network boundary. Nodes on the network
boundaries are identified and connected into boundary

cycles surrounding inner holes and the outer face by a
boundary detection algorithm [40]. The inner medial axis
is also identified during this process.

Select landmarks. Along the boundary, landmarks
are selected with sufficient density such that for any node
p on the boundary, there is a landmark within the inner
local feature size ILFS(p) of p, that is, the distance from
p to its closest node on the inner medial axis.

Compute landmark Voronoi diagram. The land-
marks flood the network and each node records the clos-
est landmark. This generates the Voronoi diagram of the
landmarks in a distributed fashion.

Extract the combinatorial Delaunay complex.
Nodes on the Voronoi edges/vertices report to their corre-
sponding landmarks. Thus landmarks learn their adjacent
Delaunay simplices. Equivalently, this procedure identi-
fies the combinatorial Delaunay complex G. k landmarks
are included in a Delaunay simplex if their Voronoi cells
share a common node. See Figure 1(i).

Embed the combinatorial Delaunay complex.
We apply an incremental algorithm to embed the combi-
natorial Delaunay complex by gluing these simplices to-
gether. We also use mass spring relaxation to improve the
embedding result by smoothing out noise in the input.

(Optional) Network localization. With the embed-
ding of the landmarks we can easily embed the rest of the
nodes by trilateration with hop count distances to 3 em-
bedded landmarks. Thus we have an anchor-free local-
ization algorithm that is particularly attractive for sensor
network of complex shape.

3.1 Detect network boundary
We use a distributed boundary detection algorithm that
identifies nodes on both outer and inner boundaries and
connects them into boundary cycles [40]. The boundaries
of the sensor field can be used to generate the medial axis
of the sensor field, defined as the set of nodes with at least
two closest boundary nodes. To do that, the boundary
nodes flood inward simultaneously. The flooding mes-
sages are suppressed by the hop count from the bound-
ary nodes to improve the message complexity. Specifi-
cally, each node records the minimum hop count from the
boundary nodes. If a node receives a message containing
a hop count no smaller than what it has stored already, the
message will be discarded. Otherwise the minimum hop
count to network boundary is updated and the message is
further forwarded. In this way each node learns its closest
boundary node. The nodes at which the flooding frontiers
collide are nodes on the inner medial axis.

3.2 Select landmarks
With the boundary and medial axis identified, we select
landmarks from boundary nodes such that for any node
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p on the boundary, there is a landmark within distance
ILFS(p), where ILFS(p) is the inner local feature size
of p defined as the hop count distance from p to its closest
node on the inner medial axis.

In order to find the local feature size of each node on
the boundary, nodes on the medial axis flood the network
simultaneously with proper message suppression in a way
similar with that in the previous subsection. Each bound-
ary node learns its local feature size as the hop count to
its closest node on the medial axis. Landmark selection
is performed by a message traversing along the boundary
cycles. For each boundary cycle, a node (say the one with
minimum ID) marks itself as a landmark and sends a mes-
sage along the boundary cycle. The message goes as far
as possible until for some boundary node p, the message
has walked ILFS(p) hops along the boundary from the
previously selected landmark. At that point p is marked
as a landmark. Keep on going along the boundary cycle
until the message comes back to the start node. In this
way, landmarks are selected with the desired density.

In cases when the boundary detection algorithm [17,
18, 15, 14, 28] does not produce boundary cycles, we can
let each boundary node p wait for a random period of time
and select itself as a landmark. Then p sends a suppres-
sion message with TTL as ILFS(p) to adjacent bound-
ary nodes. A boundary node receiving this suppression
message will not further select itself as landmarks. Thus
landmarks are selected with the required density.

3.3 Compute Voronoi diagram and
combinatorial Delaunay complex

The landmark Voronoi diagram is computed in a dis-
tributed way as in [12]. Essentially all the landmarks
flood the network simultaneously and each node records
the closest landmark(s). Again a node p will not forward
the message if it carries a hop count larger than the clos-
est hop count p has seen. So the propagation of messages
from a landmark ` is confined within `’s Voronoi cell.
All the nodes with the same closest landmark are natu-
rally classified to be in the same cell of the Voronoi dia-
gram. Nodes with more than one closest landmarks stay
on Voronoi edges or vertices. Due to the discreteness of
hop count values, we re-define Voronoi vertices.

Definition 3.1. An interior node is a node p with distance
to its closest landmark strictly smaller than its distances to
all the other landmarks. In this case, the closest landmark
is called the home landmark of p. A border node is a node
that is not an interior node.

Figure 1 (i) is an example of the landmark Voronoi
diagram with different Voronoi cells colored differently.
Border nodes are colored black. We group these border
nodes into Voronoi edges and vertices, or in other words,
the k-witnesses of (k − 1)-simplices.

Definition 3.2. A k-witness is a border node which is
within 1-hop from interior nodes of k different Voronoi
cells. The border nodes that witness the same set of
Voronoi cells are grouped into connected clusters.

One subtle robustness issue, due to the discreteness of
sensor nodes, is that there might not be a node that qual-
ifies for the witness defined above (especially for high-
order simplices). Thus we propose a merge operation:
For two clusters A and B that are both k-witnesses, if
there exists a node p in cluster A, or exists a node q in
cluster B, and all nodes in cluster B are neighbors of p or
all nodes in cluster A are neighbors of q, then we merge
cluster A and B into one cluster that certifies the union of
their corresponding landmarks. The benefit of doing so
is to generate high order Delaunay simplices even when
there are no corresponding witnesses due to the discrete
resolution.

The witnesses certify the existence of Delaunay sim-
plices and by definition can be identified locally. A k-
witness node w, after it identifies itself, reports to the cor-
responding landmarks. Such a report contains the IDs of
the landmarks involved in this dimension k− 1 Delaunay
simplex, together with the distance vector from the wit-
ness node w to each of the k landmarks. Remember that
nodes in a Voronoi cell store their minimum hop count
distances to their home landmark. Thus, the report just
follows the natural shortest path pointer to the landmarks
involved (so routing is simple). It can happen that multi-
ple witnesses certify the same Delaunay simplex (say, in
the case of a Delaunay edge) and they individually report
to the same landmark. These report messages are again
suppressed during routing. If a node sees a report about
a previously received Delaunay simplex, it will not for-
ward it. Naturally the report from the witness with the
smallest hop count to its landmarks will arrive the earli-
est. With these reports, a landmark learns the combinato-
rial Delaunay simplices it is involved in, and in addition,
an approximate hop count to the other landmarks in those
simplices through the distance vectors carried in the re-
ports. In particular, a landmark p estimates the hop count
distance to landmark q as the minimum of the sum of dis-
tances from the witness node to p and q, over all reports
received with q involved. This distance estimation can be
directly used to embed the Delaunay simplices. Or, if the
minimum hop count distances between neighboring land-
marks are desired, one can let the messages initiated by
the landmarks earlier travel to the adjacent Voronoi cells.
Thus each landmark learns the minimum hop count to all
neighboring landmarks.

We remark that in the protocol we aggressively use
message suppression to reduce the communication cost.
With reasonable synchronization most of the flood mes-
sages are pruned and the average number of messages
transmitted by each node is within a small constant.
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We also remark that local synchronization (with possible
global clock drifts) is sufficient as message suppression
occurs mostly among neighboring landmarks.

3.4 Embed Delaunay complex
Now we are ready to glue the simplices together to em-
bed the landmarks and generate the network layout. Since
there is only one way to glue two adjacent simplices (to
keep their interiors disjoint, as shown by Theorem 2.14),
the embedding is unique. We first embed one simplex S1

arbitrarily. Then we can embed its neighbor S2 as fol-
lows: Let `1 and `2 be the landmarks they share in com-
mon. Since S1 and S2 are adjacent, such landmarks must
exist. For each landmark `i in S2 not yet embedded, we
compute the 2 points that are with distance d(`1, `i) from
`1 and d(`2, `i) from `2, where d(·, ·) is the hop-count dis-
tance between landmarks, estimated in the previous sec-
tion. Among the two possible locations we take the one
such that the orientation of points {`1, `2, `i} is different
from the orientation of {`1, `2, `r}, where `r is any land-
mark of S1, other than `1 and `2. Thus `i and `r lie on
opposite sides of edge `1`2.

In some cases one landmark may have two or more
neighboring simplices that are already embedded and is
thus given multiple conflicting coordinate assignments.
A natural solution is to take ` at the centroid of the dif-
ferent positions. After we have a rough embedding of the
entire Delaunay complex, we apply a mass-spring algo-
rithm [27, 25, 26, 16, 34] to “smooth out” the disfigure-
ments caused by the conflicting node assignments. It is
important to recognize however, that mass-spring plays
a minor role in our algorithm as Figure 12 shows, and its
utility is only apparent here because we initially start with
topologically correct landmarks positions, i.e., no global
flips. Without this initial configuration with good layout a
naive mass-spring algorithm can easily gets stuck at local
minima, as observed by many [27].

Briefly, the idea of mass-spring embedding is to think
of the landmarks as masses and each edge as a spring,
whose length is equal to the estimated hop count dis-
tance between two landmark nodes. The springs apply
forces on the nodes and make them move until the sys-
tem stabilizes. The objective is to have the measured dis-
tances (based on their current locations) between land-
marks match as closely as possible the expected dis-
tances (indicated by hop count values). For landmark `i

we let pi designate its current position, and let d(i, j),
r(i, j) be the estimated and measured distance between
`i and `j , respectively. Each edge creates a force F =
(d(i, j) − r(i, j))/d(i, j) along the direction pipj . So
the total force on landmark `i is Fi =

∑
Fij for all

neighbors `j . And the total “energy” of the network is
E =

∑
(d(i, j)− r(i, j))2. We iteratively modify the

node positions, based on the forces acting upon them, un-
til the energy of the system ceases to decrease.

Figure 12. left: before the mass-spring relaxation algorithm is applied;
Right: after mass-spring relaxation.

In a distributed environment the embedding of the De-
launay simplices can be done incrementally with mes-
sage passing. Recall that after the witnesses report to
the relevant landmarks, the landmarks have the informa-
tion about the Delaunay simplices they are involved in.
Thus each landmark can embed its adjacent Delaunay
simplices in a local coordinate frame. Then one land-
mark can initiate a message carrying the partially embed-
ded Delaunay complex to its neighboring landmark. As
this message is passed around, more simplices are glued
together. Remember there is no ambiguity of how two
simplices should be assembled even when the assembly is
performed separately at different landmarks. At the end
of the message passing mass spring relaxation can be per-
formed to improve the quality.

3.5 Network localization
With the global network layout faithfully recovered, em-
bedding of the rest of non-landmark nodes is easy. Since
the locations of the landmarks are known, each non-
landmark node just runs a tri-lateration algorithm to find
its location (e.g., the atomic trilateration in [37]) by us-
ing the hop count estimation to 3 or more landmarks. An
even simpler scheme is to align the boundary nodes along
the boundaries of the embedded combinatorial Delaunay
complex and perform a rubberband relaxation for the rest
of the nodes.

4 Simulations
We conducted simulations on various network topologies
and node densities to evaluate our algorithm and compare
with existing solutions including multi-dimensional scal-
ing and rubberband representation.

Multi-dimensional scaling (MDS). Multidimen-
sional scaling has been used by Shang et al. [39] for
sensor network localization with connectivity informa-
tion only. For n nodes, the input to MDS is the pair-
wise distance estimation of size O(n2). If the inter-node
Euclidean distances are known exactly, then MDS would
precisely determine the coordinates of the points (up to
global transformations). However since only rough hop-
count distances are known, MDS is unsatisfactory in prac-
tice. As our simulations will show, MDS has trouble cap-
turing a twist within the graph, making a long narrow
graph not differentiable from a spiral-shaped graph. In
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(i) (ii) (iii) (iv)

Figure 13: From left to right, we have: (i) the true sensor locations and extracted combinatorial Delaunay complex; (ii) embedding of the
combinatorial Delaunay complex; (iii) localization of all nodes by our algorithm; (iv) the results produced by MDS on all nodes in the network. The
connectivity network is generated with unit disk graph model on nodes placed at perturbed grid points. First row: Cactus, 1692 nodes with average
degree of 6.9. Second row: Spiral in a box, 2910 nodes with average degree of 9.5. Third row: Ginger man, 2807 nodes with average degree of 10.
Fourth row: Square with a concave hole, 2161 nodes with average degree of 10.4. Fifth row: Pretzel, 2993 nodes with average degree of 9.1. Sixth
row: Smile face, 2782 nodes with average degree of 9.5.
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addition, at the heart of MDS is singular value decom-
position (SVD) which has a complexity of O(n3), mak-
ing MDS sluggish. In our simulation we tested MDS in
two cases, once on all the nodes and once on the land-
marks only. They produce similar layout results. MDS
on all nodes is very slow. For some experiments with
5000 nodes the matrix operation involved in MDS re-
quires more than 1GB memory.

Rubberband representation. In rubberband em-
bedding [19, 36], first the perimeter nodes are fixed to
a square, for instance. Then each non-perimeter node, v,
repeatedly updates its coordinates (xv, yv) as the average
of the locations of its neighbors. The process stabilizes
at the rubberband representation. While the rubberband
representation is able to avoid global flips if the outer
boundary is detected correctly, the shape of the sensor
field is wildly distorted. In our experiments the rubber-
band representation does not give enlightening results on
the network layout. Most of them look similar to Figure 4
(right). Due to space constraint we omit the results for
additional examples.

We do use rubberband relaxation in conjunction with
our landmark embedding algorithm in embedding non-
landmark nodes. Since landmark embedding already re-
covers the precise shape, both of the outer boundary and
of any interior cycles, we apply rubberband relaxation to
improve the localization quality for the remaining nodes.

Simulation results. We applied our algorithm to a
number of networks with different layouts, or “shapes”,
and were able to recover the original shape quite faith-
fully. Figure 13 (ii), (iii) shows the results of our algo-
rithm for both the embedding of the combinatorial De-
launay complex and the localization result for all nodes.
We put on the side the embedding results by MDS. MDS
gives reasonable results for some cases (such as the 5th
and 6th example) but performs quite poorly when the real
network has curved pieces (like spirals), and may even
introduce an incorrect global flip, as in the 2nd and 4th
examples.

5 Conclusion
In this paper we proposed an efficient and distributed al-
gorithm to discover and recover the sensor network lay-
out. The protocol is particularly attractive for large-scale
sensor deployment with holes and complex shape. The
novelty of our scheme is to extract high-order topologi-
cal information to solve the notoriously difficult problem
of resolving flip ambiguities in localization algorithms.
While geometric information of sensor nodes (e.g. node
locations) has been recognized as an important character
in sensor networks, the topology of the sensor field is im-
portant as well.
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