A general framework for unsupervised
processing of structured data

Barbara Hammer!, Alessio Micheli?, and Alessandro Sperduti?

(1) University of Osnabriick, Department of Mathematics/Computer
Science, Albrechtstrafle 28, 49069 Osnabriick, Germany,
e-mail: hammer@informatik.uni-osnabrueck.de
(2) University of Pisa, Department of Computer Science, Corso Italia
40, 56125 Pisa, Italy, e-mail: {micheli,perso}@di.unipi.it

Abstract. 'We propose a general framework for unsupervised recur-
rent and recursive networks. This proposal covers various popular ap-
proaches like standard self organizing maps (SOM), temporal Kohonen
maps, resursive SOM, and SOM for structured data. We define Hebbian
learning within this general framework. We show how approaches based
on an energy function, like neural gas, can be transferred to this abstract
framework so that proposals for new learning algorithms emerge.

1. Introduction

Supervised recurrent neural networks constitute a well established approach
for modeling sequential data e.g. in language processing or time series predic-
tion. They can naturally be generalized to so-called recursive networks such
that more complex data structures, such as tree structures, can be dealt with
[4]. Since symbolic terms possess a representation as a tree, this generaliza-
tion has successfully been applied in various areas where symbolic or hybrid
data structures arise such as theorem proving, chemistry, image processing, or
natural language processing [1, 3]. The training method for recursive networks
is a straightforward generalization of standard backpropagation through time.
Moreover, important theoretical investigations from the field of feedforward and
recurrent neural networks have been transferred to recursive networks [3, 6].
The field of unsupervised learning constitutes an alternative important
paradigm for neural networks which has been successfully applied in data min-
ing and visualization, see for example [8]. Since additional structural informa-
tion is often available for data, a transfer of standard unsupervised learning
methods to sequences and more complex tree structures would be valuable
such that unsupervised recurrent or recursive networks arise. Up to now, only
few approaches enlarge the standard SOM to sequences: the temporal Kohonen
map (TKM) [2] and the recursive SOM (RSOM) [11] and variations thereof. We
are aware of only one approach which processes tree structured data and thus
also sequences in an unsupervised way: the SOM for structured data (SOMSD)
[10]. These models are trained by Hebbian learning. They have been applied
to monitor standard time series or image data, so far. Since a clear measure of
the success of unsupervised processing of structured data and a theoretical for-
mulation of the above dynamics and training method are lacking, their success

Dagstuhl Seminar Proceedings 07161
Probabilistic, Logical and Relational Learning - A Further Synthesis
http://drops.dagstuhl.de/opus/volltexte/2008 /1383

is usually measured on supervised classification tasks or, alternatively, experts
rate the visualization obtained from the neural maps. The reported results for
the above models seem very promising, however, we need a general theoretical
framework for a deeper insight.

Here we propose a general framework which transfers the idea of recur-
sive processing of complex data to the unsupervised scenario and covers TKM,
RSOM, SOMSD, and the standard SOM. We show how Hebbian learning can
be formulated within this approach. We propose alternative training methods
based on energy functions, such that popular methods in the field of unsuper-
vised learning can be directly transferred to this general framework. This is a
first step to a general theory of unsupervised recurrent and recursive networks
and training algorithms in this framework with a clear mathematical objective.

2. The processing dynamics

We are interested in binary trees with labels in some set W equipped with a
metric dyy. £ denotes the empty tree and a(t1,%2) a tree with root label a and
subtrees t; and t3. The generalization to trees with fan-out & will be immedi-
ate. We start by briefly recalling the approaches for unsupervised processing
structured data which should be covered by the general framework:
SOMSD: SOMSD, described in [10], performs unsupervised processing of
tree structured data. It processes labeled trees in a recursive way by a neu-
ral map starting from the leaves up to the root. For this purpose, a lat-
tice of neurons is defined. Each neuron in the map is equipped with weights
(w,r1,72). Hereby, w € W is contained in the set of possible labels, r1 and
ry are contained in R?, d denoting the dimensionality of the lattice. They
correspond to possible indices of neurons. Given a tree a(t1,t2) as input, its
distance from neuron n with weights (w,ry,72) is recursively computed by
alla — wl|| + Ble(t1) — r1]| + Blle(t2) — r2||. Hereby, ¢(t1) and ¢(t2) denote the
indices of the neurons with smallest distance from t; and ¢, respectively. «,
B > 0 are constants. || - || is the Euclidian metric. Training is performed in a
Hebb style making iteratively the weights of the winner and its neighborhood
in the lattice more similar to the actual input, i.e. w is adapted into the direc-
tion @, r1 and ro are adapted into the directions ¢(¢1) and ¢(t2), respectively.
RSOM: RSOM has originally been proposed for sequences in [11]. However,
it can be generalized to tree structures. Even in this model a lattice of neurons
is defined. Denote the number of neurons by N. The neurons are equipped
with weights (w,r) where w € W. r € RY corresponds to the vector of activa-
tions of all neurons at the previous time step. The distance of a given sequence
[ag, . . .,a;] over W from neuron n weighted with (w,r) is recursively computed
by allag —wl||+B||E([ai,...,a])—r||. Hereby, E(s) for s := [aq,...,qa;] denotes
an exponentially transformed version of the vector of distances of s from all
neurons; i.e. E(s) = (exp(—di(s)),...,exp(—dn(s))) where d;(s) denotes the
distance of s from neuron n;. Hebbian learning is used for training.

TKM: The temporal Kohonen map consists of a lattice of neurons where
each neuron constitutes a leaky integrator [2]. The approach is defined for se-
quences over the set W, only. Each neuron is equipped with a weight w € W.
The distance of the sequence [ag,...,q;] from neuron n weighted with w is

computed by 22:1 a- B ||la; — w|| where o € (0,1) and 3 =1— .

The basic idea for a general framework for these models consists in the
observation that all models share the basic recursive dynamics. They differ in
the way of how tree structures are internally represented with respect to the
recursive processing and the weights of neurons. We need four ingredients for
the definition of a general framework covering these appoaches:

1. the set of labels of trees W with similarity measure dyy : W x W — R,

2. the set of formal representations of trees R with a similarity measure
dr : R x R = R, r¢ denotes the representation of the empty tree &,

3. the set of N neurons N with weights given by £ = (Lo, L1,L2) : N —
R xR,

4. a representation function rep : RY — R which maps activations of the
map to a formal representation of the processed tree.

Then we can recursively define the activation of neuron n given the tree a(ty, t2):

d(a(ty,t2),n) = a-dwl(a,Lo(n)) + f-dr(R1,L1(n)) + B - dr(R2, L2(n))

where

R, = Te B ~ if tj =
T rep(d(tj,m),...,d(tj,nN)) otherwise

for j = 1,2 and a, 8 > 0 are weighting factors. The choice of a and deter-
mines the importance of the root label in comparison to the subtrees.

Note that the set R enables a precise notation of how trees are internally
stored in the map. The function rep constitutes the interface which maps ac-
tivity profiles to internal representations of trees. The above approaches are
contained in the general framework through appropriate choices of the inter-
nal representation of trees. The dynamics for sequences can be found if the
term dg (R2, L2(n)) is dropped. W constitutes the set of labels, commonly R™
with the Euclidian metric. SOMSD chooses R as vector space containing the
indices of neurons in the lattice, e.g. R? with the standard Euclidian metric for
a two-dimensional lattice. rep(z1,...,zxN) outputs the index corresponding to
the minimum z;. £ emerges through training. RSOM uses the set of activa-
tions, i.e. RN | as formal representations R, together with the Euclidian metric.
rep(xy,...,xN) = (exp(—z1),...,exp(—zN)) computes an exponentially scaled
version for the sake of robustness. £ emerges through training again. TKM
chooses R as the activation of all neurons, i.e. RV, together with the standard
dot product. rep is the identity. Here only Ly is found by training whereas
the formal representation attached to neuron n; coincides with the ith unit
vector. Hence the part dg (R, L1(n)) of the recursive computation coincides
with the activation of neuron n in the previous recursive step. Standard SOM
chooses R as the empty set, therefore no internal representation of trees and
their respective distances is available in this map.

3. Hebbian learning

For simplicity, we assume that VW and R are real-vector spaces. Assume that
a set of trees is given for training. We are here only interested in learning

the weights of the neurons, i.e. adaptation of £. For learning, a neighborhood
structure or lattice of neurons might be important in order to obtain a similarity
preserving map. We assume that nh: N x NV — N measures the degree up to
which two neurons are neighbored. Hebbian learning has been used in all of
the above models. It refers to the paradigm where the weights of the winner,
i.e. the neuron with smallest distance from the given data point, is iteratively
updated into the direction of the data point:

initialize the weights at random
repeat: choose some training pattern t = a(ty,t2);
compute d(a(ty,t2),n;) for all neurons n;;
compute the winner n;, ;
adapt the weights of all n; simultaneously:
Lo(n;) := Lo(ni) +n(nh(ni,nig))(a — Lo(ni));
Ly(ni) := L1(ni) + n(nh(ni, ni,))(Ry — L1(ns));
Lo(ni) := L2(ni) + n(nh(ni)nio))(RQ — L2(ni));

where R; (j = 1,2) constitutes the formal representation for ¢;, i.e. r¢ for t; = £
or rep(d(tj,n1), .- .,d(tj,nn)), respectively. 1 : R — R is a monotonically de-
creasing function which makes sure that the neighborhood of the winner is
updated according to the distance from the winner. Since a proper representa-
tion of a tree can only be expected if all its subtrees are faithfully represented,
Hebbian learning assumes that all subtrees of a tree are contained in the train-
ing set as well. In this case, a simultaneous adaptation of the weights with
respect to a tree and all its subtrees is more efficient. Hebbian learning showed
very promising results for SOMSD, RSOM, and TKM in [2, 10, 11].

4. Learning based on an energy function

Hebbian learning can be derived alternatively as a stochastic gradient de-
scent on an appropriate energy function in the case of simple vectors. Vec-
tor quantization, i.e. only the winner is updated in each step, minimizes the
quantization error [8]. An energy function for a variation of SOM has been
proposed in [5]. This alternative formulation has the advantage that a clear
objective of the dynamics is given and convergence is guaranteed for appro-
priate choices of the learning rates. Hence the question arises whether an
energy function can be found for structure processing unsupervised networks,
too. Commonly, the respective energy functions decompose into a sum of
terms which depend on the distances of a training pattern from the neurons.
Adapted to_structure processing networks, the function has the general form
E=Y,f(d(t,N)). Here d(t,N) is a shorthand notation for the vector of acti-

vations (d(t,n1), - ..,d(t,nx)) of neurons given a tree ¢. If all involved functions
are differentiable, we can easily compute the derivative with respect to some
weight L£;(ny), I € {0,1,2}, of a neuron n:

ZZ d(t, N ad(t,n;)
3£1 (ng) r 6d t,n; 0Li(ny)

where the derivative of d can recursively be computed starting from the leaves:

8J(a(t1,t2),nj)/8£0(nJ) = aé{@dw(a,ﬁo (n]))/aﬁo(n])
+ B01dr (R, L1(ng)) - OBy £o(n,) + B 01dR (R, L2(n)) - ORs £4(n)

for I = 0 and similar formulas if I = 1,2. 67 € {0,1}is 1iff j = J; didr (r1,72)
denotes the vector of derivatives of dir with respect to the first formal repre-
sentation r1; ’-* denotes the standard dot product; ORy ryn,) for k = 1,2
denotes the derivative of the formal representation of ¢z, i.e. 0, if ¢ = &, and
>, Orep(d(te, N))/0d(tr, n) - 0d(tr,, mi) /OLo(nj) otherwise. Note that the first
summand corresponds to the standard Hebb term whereas the remaining terms
do not occur in Hebbian learning. Hebbian learning disregards the error over
the subtrees. Unfortunately, the above updates have the complexity of N?
in comparison to N for simple Hebbian learning. Since the additional terms
in the above formulas are small due to the weighting # which is commonly
smaller than 1, Hebbian learning can be regarded as an efficient approximation
of the above stochastic gradient descent. Alternatively, a more efficient way
of computing the gradients can be found if R is low dimensional. Then the
derivatives can be computed similarly to backpropagation through time: first
the gradients of the error function with respect to the internal representations
are computed in linear time, using backpropagation from the root to the leaves.
Afterwards, the derivatives with respect to weights can easily be derived from
these intermediate values. We refer to [7] for formulas.

Various different energy functions are of interest concerning unsupervised
learning. Simple vector quantization adapted to structure processing networks
minimizes the objective 3, 5~ - Xt,jd(t,n;)?/2 where x;; € {0,1} yields 1 iff
n; is the winner for ¢. SOM itself does not possess an energy function. The fol-
lowing objective has been proposed in [5]: 37, >~ Xt,; >y, n(nh(j, k))d(t,ni)?/2
where 7 is as above, nh refers to the neighborhood of a given lattice of neurons,
and the winner in x; ; is defined in a slightly different way than in the stan-
dard SOM as the neuron with smallest averaged distance. Finally, the neural
gas algorithm [9] constitutes a proposal where no neighborhood function has
to be given a priori, nevertheless a neighborhood structure which is defined
through the distance from the training patterns is taken into account. The
corresponding energy function formulated for structure processing networks is
> 2o m(rk(t, j))d(t, n;)?/2 where rk(t, j) denotes the number of neurons which
are closer to ¢ than n;. All these energy functions can be used for unsupervised
training of structure processing networks via a stochastic gradient descent using
the above formulas for the derivatives.

This proposal yields immediate alternative training algorithms with clear
objective for RSOM. Adaptations are to be performed for SOMSD since the
involved function rep is not differentiable and the choice of the similarity dg
as distance in a lattice is not appropriate for VQ or NG, where no prior lattice
is available. We can simply approximate the function rep using the soft-min
function, for example, up to any desired degree. Furthermore, we can find
alternative formal representations for VQ and NG. Assume N neurons are
given. We define R = RV. For VQ, we can choose rep(z1,...,zx) = e; such
that x; is minimum, where e; denotes the 4 th unit vector. For NG we can define

rep(z1,...,2n) = (rk(z1), ..., rk(zxn)) where rk(z;) denotes the number of x;
which are smaller than z;. These alternative representations or differentiable
approximations thereof take the decoupling of indices for VQ or data driven
lattices for NG, respectively, into account.

5. Conclusions

We have proposed a general framework for unsupervised structure processing
networks which covers various promising approaches from the literature. We
have formulated simple Hebbian learning for this framework and proposed a
general way of transferring algorithms based on an energy function. This yields
new learning algorithms with a clear objective of the dynamics. Moreover, it
makes the transfer of various approaches from the field of unsupervised net-
works such as the neural gas algorithm possible. A key ingredient of the general
formulation is the notion of a formal representation of trees. This clear sepa-
ration proposes the theoretical investigation of desirable properties of R and
rep for adequate structure processing. Obvious demands are for example: rep
should yield a compact image and rep should be noise tolerant. Other demands
whose formalization is less obvious are: rep should preserve similarities of pro-
cessed trees, rep should preserve information of the winner, rep should be a
global mapping. First steps of a mathematical formalization of these demands
have been performed in [7]: as an example, it is possible to formalize the degree
of locality of the processing. One can show that a certain degree of globality of
rep is necessary for proper processing independently of the choice of the other
ingredients of this framework. Note that a precise abstract formalization of the
framework is essential for these investigations and a deeper understanding of
concrete realizations like SOMSD or RSOM.

References

[1] A.M.Bianucci, A.Micheli, A.Sperduti, and A.Starita, Application of cascade correlation
networks for structures to chemistry, Journal of Applied Intelligence 12:117-146, 2000.

[2] G.Chappell and J.Taylor, The temporal Kohonen map, Neural Networks 6:441-445,
1993.

[3] P.Frasconi, M. Gori, A.Kiichler, and A.Sperduti, A field guide to dynamical recurrent
networks, in: J.F.Kolen, S.C.Kremer(eds.), From Sequences to Data Structures: Theory
and Applications, pp.351-374, IEEE, 2001.

[4] P.Frasconi, M.Gori, and A.Sperduti, A general framework for processing of data struc-
tures, IEEE Transactions on Neural Networks 9(5):768-786, 1998.

[5] T.Heskes, Self-organizing maps, vector quantization, and mixture modeling, to appear
in IEEE Transactions on Neural Networks.

(6] B.Hammer, Learning with Recurrent Neural Networks, LNCIS 254, Springer, 2000.

[7] B.Hammer, A.Micheli, and A.Sperduti, A general framework for self-organizing struc-
ture processing neural networks, in preparation.

[8] T.Kohonen, Self-organizing maps, Springer, 1997.
[9] T.Martinetz and K.Schulten, Topology representing networks, Neural Networks
7(3):507-522, 1993.
[10] A.Sperduti, Neural networks for adaptive processing of structured data, in: G.Dorffner,
H.Bischof, K.Hornik (eds.), ICANN’2001, pp. 5-12, Springer, 2001.

[11] T.Voegtlin, Context quantization and contextual self-organizing maps, in: Proc. Int.
Joint Conf. on Neural Networks, vol.5, pp.20-25, 2000.

