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Abstract. Combining first-order logic and probability has long been a
goal of AI. Markov logic (Richardson & Domingos, 2006) accomplishes
this by attaching weights to first-order formulas and viewing them as
templates for features of Markov networks. Unfortunately, it does not
have the full power of first-order logic, because it is only defined for fi-
nite domains. This paper extends Markov logic to infinite domains, by
casting it in the framework of Gibbs measures (Georgii, 1988). We show
that a Markov logic network (MLN) admits a Gibbs measure as long as
each ground atom has a finite number of neighbors. Many interesting
cases fall in this category. We also show that an MLN admits a unique
measure if the weights of its non-unit clauses are small enough. We then
examine the structure of the set of consistent measures in the non-unique
case. Many important phenomena, including systems with phase tran-
sitions, are represented by MLNs with non-unique measures. We relate
the problem of satisfiability in first-order logic to the properties of MLN
measures, and discuss how Markov logic relates to previous infinite mod-
els.

Keywords. Statistical relational learning, Gibbs measures, first-order
logic

1 Introduction

Most AI problems are characterized by both uncertainty and complex structure,
in the form of multiple interacting objects and relations. Handling both requires
combining the capabilities of probabilistic models and first-order logic. Attempts
to achieve this have a long history, and have gathered steam in recent years.
Within AI, Nilsson [1] is an early example. Bacchus [2], Halpern [3] and coworkers
(e.g., Bacchus et al. [4]) produced a substantial body of relevant theoretical
work. Around the same time, several authors began using logic programs to
compactly specify complex Bayesian networks, an approach known as knowledge-
based model construction [5]. More recently, many combinations of (subsets of)
first-order logic and probability have been proposed in the burgeoning field of
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statistical relational learning [6], including probabilistic relational models [7],
stochastic logic programs [8], Bayesian logic programs [9], and others.

One of the most powerful representations to date is Markov logic [10]. Markov
logic is a simple combination of Markov networks and first-order logic: each
first-order formula has an associated weight, and each grounding of a formula
becomes a feature in a Markov network, with the corresponding weight. The use
of Markov networks instead of Bayesian networks obviates the difficult problem
of avoiding cycles in all possible groundings of a relational model [11]. The use of
first-order logic instead of more limited representations (e.g., description logics,
Horn clauses) makes it possible to compactly represent a broader range of depen-
dencies. For example, a dependency between relations like “Friends of friends are
(usually) friends” cannot be specified compactly in (say) probabilistic relational
models, but in Markov logic it suffices to write down the corresponding formula
and weight. Markov logic has been successfully applied in a variety of domains
[12], and open source software with implementations of state-of-the-art inference
and learning algorithms for it is available [13].

One limitation of Markov logic is that it is only defined for finite domains.
While this is seldom a problem in practice, considering the infinite limit can
simplify the treatment of some problems, and yield new insights. We would also
like to elucidate how far it is possible to combine the full power of first-order
logic and graphical models. Thus in this paper we extend Markov logic to infinite
domains. Our treatment is based on the theory of Gibbs measures [14]. Gibbs
measures are infinite-dimensional extensions of Markov networks, and have been
studied extensively by statistical physicists and mathematical statisticians, due
to their importance in modeling systems with phase transitions. We begin with
some necessary background on first-order logic and Gibbs measures. We then de-
fine MLNs over infinite domains, state sufficient conditions for the existence and
uniqueness of a probability measure consistent with a given MLN, and examine
the important case of MLNs with non-unique measures. Next, we establish a
correspondence between the problem of satisfiability in logic and the existence
of MLN measures with certain properties. We conclude with a discussion of the
relationship between infinite MLNs and previous infinite relational models.

2 Background

2.1 First-Order Logic

A first-order knowledge base is a set of sentences or formulas in first-order logic
[15]. Formulas are constructed using four types of symbols: constants, variables,
functions, and predicates. Constant symbols represent objects in the domain
of discourse (e.g., people: Anna, Bob, Chris, etc.). Variable symbols range over
the objects in the domain (or a subset of it, in which case they are typed).
Function symbols (e.g., MotherOf) represent mappings from tuples of objects
to objects. Predicate symbols represent relations among objects (e.g., Friends)
or attributes of objects (e.g., Smokes). A term is any expression representing
an object. It can be a constant, a variable, or a function applied to a tuple of
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terms. For example, Anna, x, and GreatestCommonDivisor(x, y) are terms. An
atomic formula or atom is a predicate symbol applied to a tuple of terms (e.g.,
Friends(x, MotherOf(Anna))). A ground term is a term containing no variables.
A ground atom or ground predicate is an atomic formula all of whose arguments
are ground terms. Formulas are recursively constructed from atomic formulas
using logical connectives and quantifiers. A positive literal is an atomic formula;
a negative literal is a negated atomic formula. A clause is a disjunction of literals.
Every first-order formula can be converted into an equivalent formula in prenex
conjunctive normal form, Qx1 . . . QxnC(x1, . . . , xn), where each Q is a quantifier,
the xi are the quantified variables, and C(. . .) is a conjunction of clauses.

The Herbrand universe U(C) of a set of clauses C is the set of all ground
terms constructible from the function and constant symbols in C (or, if C con-
tains no constants, some arbitrary constant, e.g., A). If C contains function
symbols, U(C) is infinite. (For example, if C contains solely the function f and
no constants, U(C) = {f(A), f(f(A)), f(f(f(A))), . . .}.) Some authors define the
Herbrand base B(C) of C as the set of all ground atoms constructible from the
predicate symbols in C and the terms in U(C). Others define it as the set of
all ground clauses constructible from the clauses in C and the terms in U(C).
For convenience, in this paper we will define it as the union of the two, and talk
about the atoms in B(C) and clauses in B(C) as needed.

An interpretation is a mapping between the constant, predicate and function
symbols in the language and the objects, functions and relations in the domain.
In a Herbrand interpretation there is a one-to-one mapping between ground terms
and objects (i.e., every object is represented by some ground term, and no two
ground terms correspond to the same object). A model or possible world specifies
which relations hold true in the domain. Together with an interpretation, it
assigns a truth value to every atomic formula, and thus to every formula in the
knowledge base.

2.2 Gibbs Measures

Gibbs measures are infinite-dimensional generalizations of Gibbs distributions.
A Gibbs distribution, also known as a log-linear model or exponential model,
and equivalent under mild conditions to a Markov network or Markov random
field, assigns to a state x the probability

P (X=x) =
1

Z
exp

(

∑

i

wifi(x)

)

(1)

where wi is any real number, fi is an arbitrary function or feature of x, and Z
is a normalization constant. In this paper we will be concerned exclusively with
Boolean states and functions (i.e., states are binary vectors, corresponding to
possible worlds, and functions are logical formulas). Markov logic can be viewed
as the use of first-order logic to compactly specify families of these functions [10].
Thus, a natural way to generalize it to infinite domains is to use the existing
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theory of Gibbs measures [14]. Although Gibbs measures were primarily devel-
oped to model regular lattices (e.g., ferromagnetic materials, gas/liquid phases,
etc.), the theory is quite general, and applies equally well to the richer structures
definable using Markov logic.

One problem with defining probability distributions over infinite domains is
that the probability of most or all worlds will be zero. Measure theory allows us
to overcome this problem by instead assigning probabilities to sets of worlds [16].
Let Ω denote the set of all possible worlds, and E denote a set of subsets of Ω. E
must be a σ-algebra, i.e., it must be non-empty and closed under complements
and countable unions. A function µ : E → R is said to be a probability measure
over (Ω, E) if µ(E) ≥ 0 for every E ∈ E , µ(Ω) = 1, and µ(

⋃

Ei) =
∑

µ(Ei),
where the union is taken over any countable collection of disjoint elements of E .

A related difficulty is that in infinite domains the sum in Equation 1 may
not exist. However, the distribution of any finite subset of the state variables
conditioned on its complement is still well defined. We can thus define the infinite
distribution indirectly by means of an infinite collection of finite conditional
distributions. This is the basic idea in Gibbs measures.

Let us introduce some notation which will be used throughout the paper.
Consider a countable set of variables S = {X1, X2, . . .}, where each Xi takes
values in {0, 1}. Let X be a finite set of variables in S, and SX = S \ X. A
possible world ω ∈ Ω is an assignment to all the variables in S. Let ωX denote
the assignment to the variables in X under ω, and ωXi

the assignment to Xi. Let
X denote the set of all finite subsets of S. A basic event X = x is an assignment
of values to a finite subset of variables X ∈ X , and denotes the set of possible
worlds ω ∈ Ω such that wX = x. Let E be the set of all basic events, and let
E be the σ-algebra generated by E, i.e., the smallest σ-algebra containing E.
An element E of E is called an event, and E is the event space. The following
treatment is adapted from Georgii [14].

Definition 1. An interaction potential (or simply a potential) is a family Φ =
(ΦV)V∈X of functions ΦV : V → R such that, for all X ∈ X and ω ∈ Ω, the
summation

HΦ
X(ω) =

∑

V∈X ,V∩X6=∅

ΦV(ωV) (2)

is finite. HΦ
X

is called the Hamiltonian in X for Φ.

Intuitively, the Hamiltonian HΦ
X

includes a contribution from all the poten-
tials ΦV which share at least one variable with the set X. Given an interaction
potential Φ and a subset of variables X, we define the conditional distribution
γΦ
X

(X|SX) as1

1 For physical reasons, this equation is usually written with a negative sign in the
exponent, i.e., exp[−H

Φ

X(ω)]. Since this is not relevant in Markov logic and does not
affect any of the results, we omit it.
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γΦ
X

(X = x|SX = y) =
exp(HΦ

X
(x,y))

∑

x∈Dom(X)

exp(HΦ
X

(x,y))
(3)

where the denominator is called the partition function in X for Φ and denoted
by ZΦ

X
, and Dom(X) is the domain of X. Equation 3 can be easily extended

to arbitrary events E ∈ E by defining γΦ
X

(E|SX) to be non-zero only when E
is consistent with the assignment in SX. Details are skipped here to keep the
discussion simple, and can be found in Georgii [14]. The family of conditional
distributions γΦ = (γΦ

X
)X∈X as defined above is called a Gibbsian specification.2

Given a measure µ over (Ω, E) and conditional probabilities γΦ
X

(E|SX), let
the composition µγΦ

X
be defined as

µγΦ
X(E) =

∫

Dom(SX)

γΦ
X(E|SX) ∂µ (4)

µγΦ
X

(E) is the probability of event E according to the conditional probabil-
ities γΦ

X
(E|SX) and the measure µ on SX. We are now ready to define Gibbs

measure.

Definition 2. Let γΦ be a Gibbsian specification. Let µ be a probability measure
over the measurable space (Ω, E) such that, for every X ∈ X and E ∈ E, µ(E) =
µγΦ

X
(E). Then the specification γΦ is said to admit the Gibbs measure µ. Further,

G(γΦ) denotes the set of all such measures.

In other words, a Gibbs measure is consistent with a Gibbsian specifica-
tion if its event probabilities agree with those obtained from the specification.
Given a Gibbsian specification, we can ask whether there exists a Gibbs mea-
sure consistent with it (|G(γΦ)| > 0), and whether it is unique (|G(γΦ)| = 1). In
the non-unique case, we can ask what the structure of G(γΦ) is, and what the
measures in it represent. We can also ask whether Gibbs measures with specific
properties exist. The theory of Gibbs measures addresses these questions. In this
paper we apply it to the case of Gibbsian specifications defined by MLNs.

3 Infinite MLNs

3.1 Definition

A Markov logic network (MLN) is a set of weighted first-order formulas. As
we saw in the previous section, these can be converted to equivalent formu-
las in prenex CNF. We will assume throughout that all existentially quantified

2 Georgii [14] defines Gibbsian specifications in terms of underlying independent spec-
ifications. For simplicity, we assume these to be equidistributions and omit them
throughout this paper.
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variables have finite domains, unless otherwise specified. While this is a signif-
icant restriction, it still includes essentially all previous probabilistic relational
representations as special cases. Existentially quantified formulas can now be
replaced by finite disjunctions. By distributing conjunctions over disjunctions,
every prenex CNF can now be converted to a quantifier-free CNF, with all vari-
ables implicitly universally quantified.

The Herbrand universe U(L) of an MLN L is the set of all ground terms
constructible from the constants and function symbols in the MLN. The Her-
brand base B(L) of L is the set of all ground atoms and clauses constructible
from the predicates in L, the clauses in the CNF form of L, and the terms in
U(L), replacing typed variables only by terms of the corresponding type. We as-
sume Herbrand interpretations throughout. We are now ready to formally define
MLNs.

Definition 3. A Markov logic network (MLN) L is a (finite) set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is a real number. L defines a
countable set of variables S and interaction potential ΦL = (ΦL

X
)X∈X , X being

the set of all finite subsets of S, as follows:

1. S contains a binary variable for each atom in B(L). The value of this variable
is 1 if the atom is true, and 0 otherwise.

2. ΦL

X
(x) =

∑

j wjfj(x), where the sum is over the clauses Cj in B(L) whose
arguments are exactly the elements of X. If Fi(j) is the formula in L from
which Cj originated, and Fi(j) gave rise to n clauses in the CNF form of L,
then wj = wi/n. fj(x) = 1 if Cj is true in world x, and fj = 0 otherwise.

For ΦL to correspond to a well-defined Gibbsian specification, the correspond-
ing Hamiltonians (Equation 2) need to be finite. This brings us to the following
definition.

Definition 4. Let C be a set of first-order clauses. Given a ground atom X ∈
B(C), let the neighbors N(X) of X be the atoms that appear with it in some
ground clause. C is said to be locally finite if each atom in the Herbrand base
of C has a finite number of neighbors, i.e., ∀X ∈ B(C), |N(X)| < ∞. An MLN
(or knowledge base) is said to be locally finite if the set of its clauses is locally
finite.

It is easy to see that local finiteness is sufficient to ensure a well-defined
Gibbsian specification. Given such an MLN L, the distribution γL

X
of a set of

variables X ∈ X conditioned on its complement SX is given by

γL

X
(X=x|SX =y) =

exp
(

∑

j wjfj(x,y)
)

∑

x′∈Dom(X) exp
(

∑

j wjfj(x′,y)
) (5)

where the sum is over the clauses in B(L) that contain at least one element
of X, and fj(x,y) = 1 if clause Cj is true under the assignment (x,y) and 0
otherwise. The corresponding Gibbsian specification is denoted by γL.

For an MLN to be locally finite, it suffices that it be σ-determinate.
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Definition 5. A clause is σ-determinate if all the variables with infinite do-
mains it contains appear in all literals.3 A set of clauses is σ-determinate if
each clause in the set is σ-determinate. An MLN is σ-determinate if the set of
its clauses is σ-determinate.

Notice that this definition does not require that all literals have the same infi-
nite arguments; for example, the clause Q(x, y) ⇒ R(f(x), g(x, y)) is σ-determinate.
In essence, σ-determinacy requires that the neighbors of an atom be defined
by functions of its arguments. Because functions can be composed indefinitely,
the network can be infinite; because first-order clauses have finite length, σ-
determinacy ensures that neighborhoods are still finite.

If the MLN contains no function symbols, Definition 3 reduces to the one
in Richardson and Domingos [10], with C being the constants appearing in the
MLN. This can be easily seen by substituting X = S in Equation 5. Notice it
would be equally possible to define features for conjunctions of clauses, and this
may be preferable for some applications.

3.2 Existence

Let L be a locally finite MLN. The focus of this section is to show that its
specification γL always admits some measure µ. It is useful to first gain some
intuition as to why this might not always be the case. Consider an MLN stating
that each person is loved by exactly one person: ∀x∃!yLoves(y, x). Let ωk denote
the event Loves(Pk, Anna), i.e., Anna is loved by the kth person in the (countably
infinite) domain. Then, in the limit of infinite weights, one would expect that
µ(
⋃

ωk) = µ(Ω) = 1. But in fact µ(
⋃

ωk) =
∑

µ(ωk) = 0. The first equality
holds because the ωk’s are disjoint, and the second one because each ωk has zero
probability of occurring by itself. There is a contradiction, and there exists no
measure consistent with the MLN above.4 The reason the MLN fails to have a
measure is that the formulas are not local, in the sense that the truth value of
an atom depends on the truth values of infinite others. Locality is in fact the key
property for the existence of a consistent measure, and local finiteness ensures
it.

Definition 6. A function f : Ω → R is local if it depends only on a finite subset
V ∈ X . A Gibbsian specification γ = (γX)X∈X is local if each γX is local.

Lemma 1. Let L be a locally finite MLN, and γL the corresponding specifica-
tion. Then γL is local.

3 This is related to the notion of a determinate clause in logic programming. In a deter-
minate clause, the grounding of the variables in the head determines the grounding
of all the variables in the body. In infinite MLNs, any literal in a clause can be
inferred from the others, not just the head from the body, so we require that the
(infinite-domain) variables in each literal determine the variables in the others.

4 See Example 4.16 in Georgii [14] for a detailed proof.
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Proof. Each Hamiltonian HL

X
is local, since by local finiteness it depends only

on a finite number of potentials φL

V
. It follows that each γL

X
is local, and hence

the corresponding specification γL is also local.

We now state the theorem for the existence of a measure admitted by γL.

Theorem 1. Let L be a locally finite MLN, and γL = (γL

X
)X∈X be the cor-

responding Gibbsian specification. Then there exists a measure µ over (Ω, E)
admitted by γL, i.e., |G(γL)| ≥ 1.

Proof. To show the existence of a measure µ, we need to prove the following two
conditions:

1. The net (γL

X
(X|SX))X∈X has a cluster point with respect to the weak topol-

ogy on (Ω, E).
2. Each cluster point of (γL

X
(X|SX))X∈X belongs to G(γL).

It is a well known result that, if all the variables Xi have finite domains, then
the net in Condition 1 has a cluster point (see Section 4.2 in Georgii [14]). Thus,
since all the variables in the MLN are binary, Condition 1 holds. Further, since
γL is local, every cluster point µ of the net (γL

X
(X|SX))X∈X belongs to G(γL)

(Comment 4.18 in Georgii [14]). Therefore, Condition 2 is also satisfied. Hence
there exists a measure µ consistent with the specification γL, as required.

3.3 Uniqueness

This section addresses the question of under what conditions an MLN admits
a unique measure. Let us first gain some intuition as to why an MLN might
admit more than one measure. The only condition an MLN L imposes on a
measure is that it should be consistent with the local conditional distributions
γL

X
. But since these distributions are local, they do not determine the behavior

of the measure at infinity. Consider, for example, a semi-infinite two-dimensional
lattice, where neighboring sites are more likely to have the same truth value than
not. This can be represented by formulas of the form ∀x, y Q(x, y) ⇔ Q(s(x), y)
and ∀x, yQ(x, y) ⇔ Q(x, s(y)), with a single constant 0 to define the origin (0, 0),
and with s() being the successor function. The higher the weight w of these
formulas, the more likely neighbors are to have the same value. This MLN has
two extreme states: one where ∀xS(x), and one where ∀x¬S(x). Let us call these
states ξ and ξ¬, and let ξ′ be a local perturbation of ξ (i.e., ξ′ differs from ξ
on only a finite number of sites). If we draw a contour around the sites where
ξ′ and ξ differ, then the log odds of ξ and ξ′ increase with wd, where d is the
length of the contour. Thus long contours are improbable, and there is a measure
µ → δξ as w → ∞. Since, by the same reasoning, there is a measure µ¬ → δξ¬

as w → ∞, the MLN admits more than one measure.5

5 Notice that this argument fails for a one-dimensional lattice (equivalent to a Markov
chain), since in this case an arbitrarily large number of sites can be separated from
the rest by a contour of length 2. Non-uniqueness (corresponding to a non-ergodic
chain) can then only be obtained by making some weights infinite (corresponding to
zero transition probabilities).
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Let us now turn to the mathematical conditions for the existence of a unique
measure for a given MLN L. Clearly, in the limit of all non-unit clause weights
going to zero, L defines a unique distribution. Thus, by a continuity argument,
one would expect the same to be true for small enough weights. This is indeed
the case. To make it precise, let us first define the notion of the oscillation of a
function. Given a function f : X → R, let the oscillation of f , δ(f), be defined
as

δ(f) = max
x,x′∈Dom(X)

|f(x) − f(x′)|

= max
x

|f(x)| − min
x

|f(x)| (6)

The oscillation of a function is thus simply the difference between its extreme
values. We can now state a sufficient condition for the existence of a unique
measure.

Theorem 2. Let L be a locally finite MLN with interaction potential ΦL and
Gibbsian specification γL such that

sup
Xi∈S

∑

Cj∈C(Xi)

(|Cj | − 1)|wj | < 2 (7)

where C(Xi) is the set of ground clauses in which Xi appears, |Cj | is the number
of ground atoms appearing in clause Cj , and wj is its weight. Then γL admits
a unique Gibbs measure.

Proof. Based on Theorem 8.7 and Proposition 8.8 in Georgii [14], a sufficient
condition for uniqueness is

sup
Xi∈S

∑

V∋Xi

(|V| − 1)δ(ΦL

V
) < 2 (8)

Rewriting this condition in terms of the ground formulas in which a variable
Xi appears (see Definition 3) yields the desired result.

Note that, as alluded to before, the above condition does not depend on the
weight of the unit clauses. This is because for a unit clause |Cj | − 1 = 0. If we
define the interaction between two variables as the sum of the weights of all the
ground clauses in which they appear together, then the above theorem states
that the total sum of the interactions of any variable with its neighbors should
be less than 2 for the measure to be unique.

Two other sufficient conditions are worth mentioning briefly. One is that, if
the weights of the unit clauses are sufficiently large compared to the weights
of the non-unit ones, the measure is unique. Intuitively, the unit terms “drown
out” the interactions, rendering the variables approximately independent. The
other condition is that, if the MLN is a one-dimensional lattice, it suffices that
the total interaction between the variables to the left and right of any arc be
finite. This corresponds to the ergodicity condition for a Markov chain.
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3.4 Non-unique MLNs

At first sight, it might appear that non-uniqueness is an undesirable property,
and non-unique MLNs are not an interesting object of study. However, the non-
unique case is in fact quite important, because many phenomena of interest
are represented by MLNs with non-unique measures (for example, very large
social networks with strong word-of-mouth effects). The question of what these
measures represent, and how they relate to each other, then becomes important.
This is the subject of this section.

The first observation is that the set of all Gibbs measures G(γL) is convex.
That is, if µ, µ′ ∈ G(γL) then ν ∈ G(γL), where ν = sµ + (1 − s)µ′, s ∈ (0, 1).
This is easily verified by substituting ν in Equation 4. Hence, the non-uniqueness
of a Gibbs measure implies the existence of infinitely many consistent Gibbs
measures. Further, many properties of the set G(γL) depend on the set of extreme
Gibbs measures exG(γL), where µ ∈ exG(γL) if µ ∈ G(γL) cannot be written as
a linear combination of two distinct measures in G(γL).

An important notion to understand the properties of extreme Gibbs measures
is the notion of a tail event. Consider a subset S′ of S. Let σ(S′) denote the σ-
algebra generated by the set of basic events involving only variables in S′. Then
we define the tail σ-algebra T as

T =
⋂

X∈X

σ(SX) (9)

Any event belonging to T is called a tail event. T is precisely the set of
events which do not depend on the value of any finite set of variables, but rather
only on the behavior at infinity. For example, in the infinite tosses of a coin, the
event that ten consecutive heads come out infinitely many times is a tail event.
Similarly, in the lattice example in the previous section, the event that a finite
number of variables have the value 1 is a tail event. Events in T can be thought
of as representing macroscopic properties of the system being modeled.

Definition 7. A measure µ is trivial on a σ-algebra E if µ(E) = 0 or 1 for all
E ∈ E.

The following theorem (adapted from Theorem 7.8 in Georgii [14]) describes
the relationship between the extreme Gibbs measures and the tail σ-algebra.

Theorem 3. Let L be a locally finite MLN, and γL denote the corresponding
Gibbsian specification. Then the following results hold:

1. A measure µ ∈ ex G(γL)) iff it is trivial on the tail σ-algebra T .
2. Each measure µ is uniquely determined by its behavior on the tail σ-algebra,

i.e., if µ1 = µ2 on T then µ1 = µ2.

It is easy to see that each extreme measure corresponds to some particular
value for all the macroscopic properties of the network. In physical systems,
extreme measures correspond to phases of the system (e.g., liquid vs. gas, or
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different directions of magnetization), and non-extreme measures correspond
to probability distributions over phases. Uncertainty over phases arises when
our knowledge of a system is not sufficient to determine its macroscopic state.
Clearly, the study of non-unique MLNs beyond the highly regular ones statistical
physicists have focused on promises to be quite interesting. In the next section
we take a step in this direction by considering the problem of satisfiability in the
context of MLN measures.

4 Satisfiability and Entailment

Richardson and Domingos [10] showed that, in finite domains, first-order logic
can be viewed as the limiting case of Markov logic when all weights tend to
infinity, in the following sense. If we convert a satisfiable knowledge base K into
an MLN LK by assigning the same weight w → ∞ to all clauses, then LK defines
a uniform distribution over the worlds satisfying K. Further, K entails a formula
α iff LK assigns probability 1 to the set of worlds satisfying α (Proposition 4.3).
In this section we extend this result to infinite domains.

Consider an MLN L such that each clause in its CNF form has the same
weight w. In the limit w → ∞, L does not correspond to a valid Gibbsian
specification, since the Hamiltonians defined in Equation 2 are no longer finite.
Revisiting Equation 5 in the limit of all equal infinite clause weights, the limiting
conditional distribution is equi-distribution over those configurations X which
satisfy the maximum number of clauses given SX = y. It turns out we can
still talk about the existence of a measure consistent with these conditional
distributions, because they constitute a valid specification (though not Gibbsian)
under the same conditions as in the finite weight case. We omit the details and
proofs for lack of space; they can be found in Singla and Domingos [17]. Existence
of a measure follows as in the case of finite weights because of the locality of
conditional distributions. We now define the notion of a satisfying measure, which
is central to the results presented in this section.

Definition 8. Let L be a locally finite MLN. Given a clause Ci ∈ B(L), let Vi

denote the set of Boolean variables appearing in Ci. A measure µ ∈ G(γL) is
said to be a satisfying measure for L if, for every ground clause Ci ∈ B(L), µ
assigns non-zero probability only to the satisfying assignments of the variables
in Ci, i.e., µ(Vi = vi) > 0 implies that Vi = vi is a satisfying assignment for
Ci. S(γL) denotes the set of all satisfying measures for L.

Informally, a satisfying measure assigns non-zero probability only to those
worlds which are consistent with all the formulas in L. Intuitively, existence of
a satisfying measure for L should be in some way related to the existence of a
satisfying assignment for the corresponding knowledge base. Our next theorem
formalizes this intuition.

Theorem 4. Let K be a locally finite knowledge base, and let L∞ be the MLN
obtained by assigning weight w → ∞ to all the clauses in K. Then there exists
a satisfying measure for L∞ iff K is satisfiable. Mathematically,
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|S(γL∞)| > 0 ⇔ Satisfiable(K) (10)

Proof. Let us first prove that existence of a satisfying measure implies satisfia-
bility of K. This is equivalent to proving that unsatisfiability of K implies non-
existence of a satisfying measure. Let K be unsatisfiable. Equivalently, B(K),
the Herbrand base of K, is unsatisfiable. By Herbrand’s theorem, there exists
a finite set of ground clauses C ⊆ B(K) that is unsatisfiable. Let V denote
the set of variables appearing in C. Then every assignment v to the variables
in V violates some clause in C. Let µ denote a measure for L∞. Since µ is
a probability measure,

∑

v∈Dom(V) µ(V = v) = 1. Further, since V is finite,

there exists some v ∈ Dom(V) such that µ(V = v) > 0. Let Ci ∈ C be some
clause violated by the assignment v (every assignment violates some clause). Let
Vi denote the set of variables in Ci and vi be the restriction of assignment v

to the variables in Vi. Then vi is an unsatisfying assignment for Ci. Further,
µ(Vi = vi) ≥ µ(V = v) > 0. Hence µ cannot be a satisfying measure for L∞.
Since the above argument holds for any µ ∈ G(γL∞), there does not exist a
satisfying measure for L∞ when K is unsatisfiable.

Next, we need to prove that satisfiability of K implies existence of a satisfying
measure. We will only give a proof sketch here; the full proof can be found in
Singla and Domingos [17]. Let K be satisfiable. Now, consider a finite subset
X of the variables defined by L∞. Given X, let ∆X denote the set of those
probability distributions over X which assign non-zero probability only to the
configurations which are partial satisfying assignments of K. We will call ∆X

the set of satisfying distributions over X. ∆X is a compact set. Let Y denote
the set of neighbors of the variables in X. We define FX : ∆Y → ∆X to be the
function which maps a satisfying distribution over Y to a satisfying distribution
over X given the conditional distribution γL∞

X
(X|SX). The mapping results in a

satisfying distribution over X because, in the limit of all equal infinite weights,
the conditional distribution over X is non-zero only for the satisfying assignments
of X. Since ∆Y is compact, its image under the continuous function FX is also
compact.

Given Xi ⊂ Xj and their neighbors, Yi and Yj respectively, we show that
if πXj

∈ ∆Xj
is in the image of ∆Yj

under FXj
, then πXi

=
∑

Xj−Xi
πXj

is
in the image of ∆Xi

under FXi
. This process can then be repeated for ever-

increasing sets Xk ⊃ Xi. This defines a sequence (Tj
i )

j=∞
j=i of non-empty subsets

of satisfying distributions over Xi. Further, it is easy to show that ∀kTk+1
i ⊆ Tk

i .
Since each Tk

i is compact and non-empty, from the theory of compact sets we

obtain that the countably infinite intersection Ti =
⋂j=∞

j=i T
j
i is also non-empty.

Let (X1, X2, . . . , Xk, . . .) be some ordering of the variables defined by L∞,
and let Xk = {X1, X2, . . . Xk}. We now define a satisfying measure µ as follows.
We define µ(X1) to be some element of T1. Given µ(Xk), we define µ(Xk+1) to
be that element of Tk+1 whose marginal is µ(Xk) (such an element always exists,
by construction). For an arbitrary set of variables X, let k be the smallest index
such that X ⊆ Xk, and define µ(X) =

∑

Xk\X
µ(Xk). We show that µ defined

in such a way satisfies the properties of a probability measure (see Section 2.2).
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Finally, µ is a satisfying measure because ∀k µ(Xk) ∈ Tk and each Tk is a set
of satisfying distributions over Xk.

Corollary 1. Let K be a locally finite knowledge base. Let α be a first-order
formula, and Lα

∞ be the MLN obtained by assigning weight w → ∞ to all clauses
in K∪{¬α}. Then K entails α iff Lα

∞ has no satisfying measure. Mathematically,

K |= α ⇔ |S(γL
α
∞)| = 0 (11)

Thus, for locally finite knowledge bases with Herbrand interpretations, first-
order logic can be viewed as the limiting case of Markov logic when all weights
tend to infinity. Whether these conditions can be relaxed is a question for future
work.

5 Related Work

A number of relational representations capable of handling infinite domains have
been proposed in recent years. Generally, they rely on strong restrictions to make
this possible. To our knowledge, Markov logic is the most flexible language for
modeling infinite relational domains to date. In this section we briefly review the
main approaches.

Stochastic logic programs [8] are generalizations of probabilistic context-free
grammars. PCFGs allow for infinite derivations but as a result do not always
represent valid distributions [18]. In SLPs these issues are avoided by explicitly
assigning zero probability to infinite derivations. Similar remarks apply to related
languages like independent choice logic [19] and PRISM [20].

Many approaches combine logic programming and Bayesian networks. The
most advanced one is arguably Bayesian logic programs [9]. Kersting and De
Raedt show that, if all nodes have a finite number of ancestors, a BLP represents
a unique distribution. This is a stronger restriction than finite neighborhoods.
Richardson and Domingos [10] showed how BLPs can be converted into Markov
logic without loss of representational efficiency.

Jaeger [21] shows that probabilistic queries are decidable for a very restricted
language where a ground atom cannot depend on other groundings of the same
predicate. Jaeger shows that if this restriction is removed queries become unde-
cidable.

Recursive probability models are a combination of Bayesian networks and
description logics [22]. Like Markov logic, RPMs require finite neighborhoods,
and in fact existence for RPMs can be proved succinctly by converting them
to Markov logic and applying Theorem 1. Pfeffer and Koller show that RPMs
do not always represent unique distributions, but do not study conditions for
uniqueness. Description logics are a restricted subset of first-order logic, and thus
MLNs are considerably more flexible than RPMs.

Contingent Bayesian networks [23] allow infinite ancestors, but require that,
for each variable with infinite ancestors, there exist a set of mutually exclusive
and exhaustive contexts (assignments to finite sets of variables) such that in
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every context only a finite number of ancestors affect the probability of the
variable. This is a strong restriction, excluding even simple infinite models like
backward Markov chains [22].

Multi-entity Bayesian networks are another relational extension of Bayesian
networks [24]. Laskey and Costa claim that MEBNs allow infinite parents and
arbitrary first-order formulas, but the definition of MEBN explicitly requires
that, for each atom X and increasing sequence of substates S1 ⊂ S2 ⊂ . . .,
there exist a finite N such that P (X |Sk) = P (X |SN) for k > N . This as-
sumption necessarily excludes many dependencies expressible in first-order logic
(e.g., ∀x ∃!y Loves(y, x)). Further, unlike in Markov logic, first-order formulas
in MEBNs must be hard (and consistent). Laskey and Costa do not specify
a language for specifying conditional distributions; they simply assume that a
terminating algorithm for computing them exists. Thus the question of what
infinite distributions can be specified by MEBNs remains open.

6 Conclusion

In this paper, we extended the semantics of Markov logic to infinite domains
using the theory of Gibbs measures. We gave sufficient conditions for the exis-
tence and uniqueness of a measure consistent with the local potentials defined
by an MLN. We also described the structure of the set of consistent measures
when it is not a singleton, and showed how the problem of satisfiability can be
cast in terms of MLN measures. Directions for future work include designing
lifted inference and learning algorithms for infinite MLNs, deriving alternative
conditions for existence and uniqueness, analyzing the structure of consistent
measure sets in more detail, extending the theory to non-Herbrand interpreta-
tions and recursive random fields [25], and studying interesting special cases of
infinite MLNs.
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