
Model equivalence of PRISM programs

James Cussens

Dept of Computer Science & York Centre for Complex Systems Analysis
University of York, York YO10 5DD, UK

jc@cs.york.ac.uk

Abstract. The problem of deciding the probability model equivalence
of two PRISM programs is addressed. In the finite case this problem
can be solved (albeit slowly) using techniques from algebraic statistics,
specifically the computation of elimination ideals and Gröbner bases. A
very brief introduction to algebraic statistics is given. Consideration is
given to cases where shortcuts to proving/disproving model equivalence
are available.

Keywords. PRISM programs, model equivalence, model inclusion, al-
gebraic statistics, algebraic geometry, ideals, varieties, Gröbner bases,
polynomials

1 Introduction

This report presents a solution, in the finite case, to the following PRISM prob-
ability model equivalence problem:

Given two PRISM programs both with unspecified parameters decide
whether they represent the same probability model (i.e. set of probability
distributions) for a given target predicate.

This problem in turn was prompted by the problem of efficient EM maximum
likelihood parameter estimation (MLPE) for PRISM programs. The connection
is the following: if two PRISM programs represent the same probability model
(i.e. set of distributions) then for a given data set the maximum likelihood distri-
bution is the same for both programs. However, it may be that MLPE is faster
for one program than another thus it is worth looking into ways of automati-
cally finding whichever program allows the fastest MLPE for a given probability
model.

Sometimes it is easy to make MLPE more efficient. For example, in those
cases where the structure of a PRISM program directly encodes a decomposable
hierarchical model it is straightforward to construct a program with a different
structure—encoding a Bayesian net—which nevertheless represents the same
probability model. This latter representation allows exact MLPE without re-
course to an iterative approach. So program transformation can be used to allow
efficient MLPE. The question then arises whether program transformation can

Dagstuhl Seminar Proceedings 07161
Probabilistic, Logical and Relational Learning - A Further Synthesis
http://drops.dagstuhl.de/opus/volltexte/2008/1380

2 J. Cussens

also be used when (as is typical) the original PRISM program does not encode
a decomposable hierarchical model.

PRISM programs can represent many probabilistic models, including hier-
archical models, Bayesian networks, stochastic grammars (including HMMs and
PCFGs) and phylogenetic trees. Given this representational power, it is per-
haps not surprising that powerful mathematical tools are required to answer the
PRISM model equivalence problem. (In this paper simple models are used as
examples, but the techniques developed are applicable to general PRISM pro-
grams.)

Here algebraic statistics and, in particular, Gröbner bases [1] are used to
analyse the problem. It is shown that when the success set of the target pred-
icate is finite, it is possible to decide whether two PRISM programs defining
this target predicate are probability model equivalent. In the infinite case an
algorithm is given which when provided with two non-equivalent programs will
eventually detect that they are non-equivalent, but which will not terminate
for equivalent programs. (It seems likely that model equivalence is decidable
even in the infinite case, but, at present, no suitable algorithm has been found.)
Although algebraic statistics provides the necessary mathematical analysis and
algorithms, these algorithms may be excessively inefficient for practical use. So,
in addition, consideration is given to cases where ‘short cuts’ to answering the
model inclusion question are possible.

This report assumes knowledge of the essentials of PRISM programs. If this
is lacking then [2] can be consulted for the basics and [3] for the extension to
‘failure’ models. To nudge readers’ memories here is a brief description nonethe-
less. A PRISM program is a logic program together with a probabilistic built-in
predicate msw/2. A ground fact such as msw(’X1’,x) is actually an abbreviation
for a fact msw(’X1’,j,x) which is a statement that it is true that the random
variable X1,j is instantiated to have a value x, where j is some natural number.
The parameters of a PRISM program define the (discrete) probability distribu-
tion for the X1,j. For any j, j′ ∈ N , X1,j and X1,j′ must be independent and
identically distributed (which motivates the abbreviation just mentioned). Such
random variables are called switches. A ground fact of the form msw(’X2’,x)—
an abbreviation for msw(’X2’,j,x) for some j—declares that X2,j = x. X1,j

and X2,j′ are always independent for all j, j′ (but not necessarily identically dis-
tributed). A possible world is determined by which ground msw/3 facts are true
(‘how the switches are set’). Leaving aside complications which arise if negation
is permitted (such complications are evaded throughout this paper), any collec-
tion of msw/3 facts together with the rest of the clauses of the PRISM program
defines a unique least Herbrand model. Thus the parameters of the PRISM pro-
gram define a product distribution over a set of least Herbrand models—possible
worlds. This distribution induces a distribution over the success sets of predi-
cates defined in terms of the msw/3 predicate. For any such predicate p/n′, the
probability of the atomic formula p(a1, a2, . . . an′) is the sum of the probabilities
of the worlds which satisfy it (in the case of failure models this is only up to

Model equivalence of PRISM programs 3

normalisation). Usually a particular target predicate is distinguished to represent
‘the’ distribution defined by a PRISM program.

2 Some example PRISM programs

Before diving into the mathematical analysis two example PRISM programs are
now given: a hierarchical model and a Bayesian network. These will serve as run-
ning examples and provide ‘instantiations’ of the later more abstract material.
In the interests of simplicity and compactness the PRISM code used to present
each example is the simplest possible, where the target predicate is defined di-
rectly in terms of msw/2 switches. Note that generally, PRISM programs are
considerably more complex using many ‘intermediary’ predicates.

2.1 Hierarchical models

Let Y1, Y2, . . . , Ym be a finite set of finite discrete variables. Let H be a hypergraph
with the Yi as vertices. H is thus just a set of subsets of the Yi. Each subset of
variables h ∈ H is called a hyperedge. H defines a hierarchical model which is
simply the set of all joint distributions over the Yi of the form:

P (Y1, Y2, . . . , Ym) = Z−1
∏

h∈H

ψh(Y1, Y2, . . . , Ym)

where the value of ψh depends only on the Yi ∈ h and otherwise are arbitrary
functions to the non-negative reals. Since everything is finite the functions ψh

can be represented in tabular form usually called factors. If the hyperedges are
the cliques of some undirected graph then the hypergraph is graphical and the
hierarchical model is a graphical model [4]. An example of a non-graphical hy-
pergraph is {{Y1, Y2}, {Y1, Y3}, {Y2, Y3}}

Consider the hierarchical model for binary variables A,B,C,D defined by
the hypergraph {{A,B}, {B,C}, {C,D}, {A,D}}. Note that this is a graphical
model, whose corresponding graph is given in Fig 1.

Table 1 shows a particular distribution in this model. Let this particular
distribution be called Phm. The value of Z which follows from these four factors
is 0.2165. The value of Phm(A = 0, B = 0, C = 0, D = 0) for example is (0.1 ×
0.4 × 0.5 × 0.9)/0.2165 ≈ 0.08.

The key to the PRISM representation of a hierarchical model is the simple
observation that a factored distribution like Phm remains unchanged if each
factor is normalised to become a ‘local’ probability distribution. Applying this to
the representation given in Table 1 gives (to 2 significant figures) the four factors
in Table 2. For this representation the value of Z is approximately 0.07913. The
value of Phm(A = 0, B = 0, C = 0, D = 0) is (0.13×0.26×0.42×0.47)/0.07913≈
0.08 as before.

The PRISM program encoding Phm is given in Fig 2. We can use PRISM to
compute P (A = 0, B = 0, C = 0, D = 0) as follows:

4 J. Cussens

A B

CD

Fig. 1. Graphical model used as a running example

Table 1. Factors defining a distribution in the hierarchical model defined by
hypergraph {{A,B}, {B,C}, {C,D}, {A,D}}.

A B

0 0 0.1

0 1 0.2

1 0 0.3

1 1 0.2

B C

0 0 0.4

0 1 0.7

1 0 0.3

1 1 0.1

C D

0 0 0.5

0 1 0.2

1 0 0.4

1 1 0.1

A D

0 0 0.9

0 1 0.2

1 0 0.7

1 1 0.1

Table 2. Factors which are local probability distributions defining the same
distribution as that given by Table 1. (The numerical values are not exact.)

A B

0 0 0.13

0 1 0.25

1 0 0.37

1 1 0.25

B C

0 0 0.26

0 1 0.47

1 0 0.20

1 1 0.07

C D

0 0 0.42

0 1 0.17

1 0 0.33

1 1 0.08

A D

0 0 0.47

0 1 0.11

1 0 0.37

1 1 0.05

Model equivalence of PRISM programs 5

| ?- prob(hm(0,0,0,0),Psi), prob(hm(_,_,_,_),Z), P is Psi/Z.

prob(hm(0,0,0,0),Psi), prob(hm(_,_,_,_),Z), P is Psi/Z.

Z = 0.07908944

Psi = 0.00667212

P = 0.084361704925462 ?

yes

target(hm,4).

values(factor(_),[(0,0),(0,1),(1,0),(1,1)]).

:- set_sw(factor(ab),0.13+0.25+0.37+0.25).

:- set_sw(factor(bc),0.26+0.47+0.20+0.07).

:- set_sw(factor(cd),0.42+0.17+0.33+0.08).

:- set_sw(factor(ad),0.47+0.11+0.37+0.05).

hm(A,B,C,D) :-

msw(factor(ab),(A,B)),

msw(factor(bc),(B,C)),

msw(factor(cd),(C,D)),

msw(factor(ad),(A,D)).

Fig. 2. PRISM representation of a (fitted) hierarchical model Phm

2.2 Bayesian networks

Bayesian networks are easily encoded as PRISM programs using the approach
given by Poole [5]. Pearl [6] has recently advocated this representation for analysing
causality.

Consider the BN with four binary variables A,B,C,D with this recursive de-
composition: P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|A,C). The relevant
graph is given in Fig 3. This representation involves 1+2+4+4=11 conditional
distributions (there is one on each row of each CPT). A PRISM representation
has 11 switches, and represents the network structure by the rules of the pro-
gram. Fig 4 shows the PRISM program with switch probabilities set so as to
give the same distribution as that given by Tables 1 and 2.

3 Polynomial equations generated by PRISM programs

If we temporarily leave aside the normalisation required by programs with failure,
the probability of any target atom is just the sum of the probabilities of the
possible worlds in which it is true. Since the distribution over possible worlds

6 J. Cussens

A B

CD

Fig. 3. Bayesian network running example

target(bn,4).

values(_,[0,1]).

:- set_sw(cpt(a),0.38+0.62).

:- set_sw(cpt(b,0),0.56+0.44).

:- set_sw(cpt(b,1),0.79+0.21).

:- set_sw(cpt(c,0,0),0.42+0.58).

:- set_sw(cpt(c,0,1),0.79+0.21).

:- set_sw(cpt(c,1,0),0.42+0.58).

:- set_sw(cpt(c,1,1),0.79+0.21).

:- set_sw(cpt(d,0,0),0.92+0.08).

:- set_sw(cpt(d,0,1),0.95+0.05).

:- set_sw(cpt(d,1,0),0.95+0.05).

:- set_sw(cpt(d,1,1),0.97+0.03).

bn(A,B,C,D) :-

msw(cpt(a),A),

msw(cpt(b,A),B),

msw(cpt(c,A,B),C),

msw(cpt(d,A,C),D).

Fig. 4. PRISM program representing a Bayesian network

Model equivalence of PRISM programs 7

is determined by the switch probabilities it follows that the probability of any
target atom is a function of the switch probabilities. Here the Finite Support

Condition is invoked which guarantees that this function is a polynomial. The
Finite Support Condition is generally assumed form PRISM programs, for more
about it see [2]).

This can be illustrated using the hierarchical model example. To aid com-
prehension the relevant random variables will be described with the symbols
used in the actual PRISM program given in Fig 2. There are n = 4 families of
random variables: {Xab,j}j , {Xbc,j}j , {Xcd,j}j and {Xad,j}j . The four probabil-
ities making up the distribution for {Xab,j}j are pAB00 , pAB01 , pAB10 and pAB11 ,
a similar naming convention will be used for the other three random variables.
The 16 target predicate atoms are hm(0, 0, 0, 0), hm(0, 0, 0, 1), . . .hm(1, 1, 1, 1).
Let their probabilities be p0,0,0,0, p0,0,0,1, . . . p1,1,1,1. Let FAIL denote the set of
possible worlds in which no target predicate atom is true. Then:

p0,0,0,0 = pAB00pBC00pCD00pAD00

p0,0,0,1 = pAB00pBC00pCD01pAD01

p0,0,1,0 = pAB00pBC01pCD10pAD00

p0,0,1,1 = pAB00pBC01pCD11pAD01

p0,1,0,0 = pAB01pBC10pCD00pAD00

p0,1,0,1 = pAB01pBC10pCD01pAD01

p0,1,1,0 = pAB01pBC11pCD10pAD00

p0,1,1,1 = pAB01pBC11pCD11pAD01

p1,0,0,0 = pAB10pBC00pCD00pAD00

p1,0,0,1 = pAB10pBC00pCD01pAD11

p1,0,1,0 = pAB10pBC01pCD10pAD10

p1,0,1,1 = pAB10pBC01pCD11pAD11

p1,1,0,0 = pAB11pBC10pCD00pAD10

p1,1,0,1 = pAB11pBC10pCD01pAD11

p1,1,1,0 = pAB11pBC11pCD10pAD10

p1,1,1,1 = pAB11pBC11pCD11pAD11

P (FAIL) = pAB00pBC10 + pAB00pBC11 + pAB01pBC00 + pAB01pBC01 + . . .

pAB11pBC11pCD11pAD01 + pAB11pBC11pCD11pAD10

In PRISM, as in the closely related formalism of stochastic logic programs
[7,8], by definition the probability distribution given by specifying a target pred-
icate gives probability one to the set of all ground atoms of that predicate. If
failure is a possibility, then this is not automatically the case—some probability
mass is ‘missing’, having been assigned to FAIL. This can be fixed by simple
conditioning. Doing this using the current hierarchical model case produces the

8 J. Cussens

following set of polynomial equations:

zp0,0,0,0 = pAB00pBC00pCD00pAD00 (1)

zp0,0,0,1 = pAB00pBC00pCD01pAD01

zp0,0,1,0 = pAB00pBC01pCD10pAD00

zp0,0,1,1 = pAB00pBC01pCD11pAD01

zp0,1,0,0 = pAB01pBC10pCD00pAD00

zp0,1,0,1 = pAB01pBC10pCD01pAD01

zp0,1,1,0 = pAB01pBC11pCD10pAD00

zp0,1,1,1 = pAB01pBC11pCD11pAD01

zp1,0,0,0 = pAB10pBC00pCD00pAD00

zp1,0,0,1 = pAB10pBC00pCD01pAD11

zp1,0,1,0 = pAB10pBC01pCD10pAD10

zp1,0,1,1 = pAB10pBC01pCD11pAD11

zp1,1,0,0 = pAB11pBC10pCD00pAD10

zp1,1,0,1 = pAB11pBC10pCD01pAD11

zp1,1,1,0 = pAB11pBC11pCD10pAD10

zp1,1,1,1 = pAB11pBC11pCD11pAD11

z = pAB00pBC00pCD00pAD00 + pAB00pBC00pCD01pAD01 + · · · + pAB11pBC11pCD11pAD11

Finally, since we have chosen a parameterisation where factors have to be
probability distributions we have the additional constraints:

pAB00 + pAB01 + pAB10 + pAB11 = 1 (2)

pBC00 + pBC01 + pBC10 + pBC11 = 1

pCD00 + pCD01 + pCD10 + pCD11 = 1

pAD00 + pAD01 + pAD10 + pAD11 = 1

A similar set of polynomial equations is easily produced for the Bayesian
network example from Section 2.2. Recall that in this example we have the de-
composition P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|A,C). Abbreviating
P (A = 0) to pA0 , P (B = 1|A = 0) to pBA10 and P (D = 1|A = 0, C = 1) to
pDAC101 and similarly for all other parameters, the values for all probabilities in
the joint distribution P (A,B,C,D) can be written as:

Model equivalence of PRISM programs 9

p0,0,0,0 = pA0pBA00pCB00pDAC000 (3)

p0,0,0,1 = pA0pBA00pCB00pDAC100

p0,0,1,0 = pA0pBA00pCB10pDAC001

p0,0,1,1 = pA0pBA00pCB10pDAC101

p0,1,0,0 = pA0pBA10pCB01pDAC000

p0,1,0,1 = pA0pBA10pCB01pDAC100

p0,1,1,0 = pA0pBA10pCB11pDAC001

p0,1,1,1 = pA0pBA10pCB11pDAC101

p1,0,0,0 = pA1pBA01pCB00pDAC010

p1,0,0,1 = pA1pBA01pCB00pDAC110

p1,0,1,0 = pA1pBA01pCB10pDAC011

p1,0,1,1 = pA1pBA01pCB10pDAC111

p1,1,0,0 = pA1pBA11pCB01pDAC010

p1,1,0,1 = pA1pBA11pCB01pDAC110

p1,1,1,0 = pA1pBA11pCB11pDAC011

p1,1,1,1 = pA1pBA11pCB11pDAC111

There are also the following constraints on the parameters:

pA0 + pA1 = 1 (4)

pBA00 + pBA10 = 1

pBA01 + pBA11 = 1

pCB00 + pCB10 = 1

pCB01 + pCB11 = 1

pDAC000 + pDAC100 = 1

pDAC001 + pDAC101 = 1

pDAC010 + pDAC110 = 1

pDAC011 + pDAC111 = 1

It is clear that in both the hierarchical model case and the Bayesian net
case the parameters determine the probabilities p0,0,0,0, p0,0,0,1, . . . p1,1,1,1 (and
also z in the case of the hierarchical model). From now on the probabilities
p0,0,0,0, p0,0,0,1, . . . p1,1,1,1 will be referred to as the target distribution probabili-
ties. Of more interest is the set of all target probability distributions which are
definable by (legal) values of the parameters. In particular the questions arises
as to whether these two sets are equal in the two cases.

10 J. Cussens

It is clear that the above equations effect constraints between parameters
and target distribution probabilities and also on target distribution probabilities
alone. To analyse such constraints effectively and to answer the model equiva-
lence problem for the general case it is necessary to turn to the techniques of
algebraic statistics.

4 Algebraic statistics of PRISM programs

In the simultaneous polynomial equations (1) and (2) for the hierarchical model
there are in total (4 + 4 + 4 + 4) + 16 + 1 = 33 variables involved. From now
on, to avoid confusion with random variables and also to follow the conventions
in algebraic statistics these variables will be called indeterminates rather than
variables. Any set of 33 numbers satisfying all these equations can be seen as a
point in R33. The set of all such points thus define a subset of R33. (Clearly, this
subset has lower dimension than R33.) The set of target probability distributions
defined by considering all possible values of the parameters can be viewed as
the projection of this set down onto the 16 dimensions corresponding to the
target distribution probabilities p0,0,0,0, . . . p1,1,1,1. This geometric view is the
key to understanding model equivalence, but to actually implement the necessary
algorithms an algebraic approach is necessary. Fortunately, algebraic statistics
provides the necessary bridge between algebra and geometry.

Algebraic statistics is a sub-branch of algebraic geometry devoted to analysing
statistical problems. A central concept of algebraic geometry (and thus also of
algebraic statistics) is that of an ideal of polynomials. As succinctly put in [9]
“A polynomial ideal formalises the intuitive idea of the algebraic consequences
of a system of polynomial equations”. A polynomial ideal is just a set of polyno-
mials which are closed under addition and product by other polynomials. More
precisely, let k[x1, . . . xs] be the set of all polynomials in some set of indetermi-
nates x1, . . . xs with coefficients belonging to the field k. (In this paper it will
be assumed that k = R.) I ⊂ k[x1, . . . xs] is an ideal if, for all f, g ∈ I and
h ∈ k[x1, . . . xs], f + g ∈ I and hf ∈ I.

Ideals generated by finite sets of polynomials are of particular interest. These
are defined as follows in [9].

Definition 1. An ideal I is finitely generated if there exists f1, . . . , fr polyno-
mials in k[x1, . . . xs] such that for any f ∈ I there exist s1, s2, . . . sr polynomials
of k[x1, . . . xs] such that

f =

r
∑

i=1

sifi

We write I = 〈f1, . . . , fr〉 and the set {f1, . . . , fr} is called a basis of I.

It is not difficult to see that for any set of polynomials {f1, . . . , fr}, I = 〈f1, . . . , fr〉
meets the conditions of being an ideal. The Hilbert Basis Theorem states that,
in fact, any ideal in k[x1, . . . xs] has a finite basis.

Model equivalence of PRISM programs 11

Ideals are algebraic objects. To see how they can be used to analyse con-
straints on probability distributions, it is useful to consider the associated ge-
ometric concept, that of a variety. Again, the relevant definition is taken from
[9].

Definition 2. The variety generated by a polynomial ideal I ⊂ k[x1, . . . xs] is

Variety(I) = {(a1, . . . as) ∈ ks : f(a1, . . . , as) = 0 for all f ∈ I}

So the variety of an ideal is the set of points in ks which are zero-points for all
polynomials in the ideal.

Returning again to the polynomials for the hierarchical model (1) and (2).
It is not difficult to see that the set of points in R33 simultaneously satisfying
all these equations is a variety. Indeed it is the variety of the ideal generated by
these 21 polynomials:

zp0,0,0,0 − pAB00pBC00pCD00pAD00 (5)

zp0,0,0,1 − pAB00pBC00pCD01pAD01

zp0,0,1,0 − pAB00pBC01pCD10pAD00

zp0,0,1,1 − pAB00pBC01pCD11pAD01

zp0,1,0,0 − pAB01pBC10pCD00pAD00

zp0,1,0,1 − pAB01pBC10pCD01pAD01

zp0,1,1,0 − pAB01pBC11pCD10pAD00

zp0,1,1,1 − pAB01pBC11pCD11pAD01

zp1,0,0,0 − pAB10pBC00pCD00pAD00

zp1,0,0,1 − pAB10pBC00pCD01pAD11

zp1,0,1,0 − pAB10pBC01pCD10pAD10

zp1,0,1,1 − pAB10pBC01pCD11pAD11

zp1,1,0,0 − pAB11pBC10pCD00pAD10

zp1,1,0,1 − pAB11pBC10pCD01pAD11

zp1,1,1,0 − pAB11pBC11pCD10pAD10

zp1,1,1,1 − pAB11pBC11pCD11pAD11

z − pAB00pBC00pCD00pAD00 − pAB00pBC00pCD01pAD01 − · · · − pAB11pBC11pCD11pAD11

pAB00 + pAB01 + pAB10 + pAB11 − 1

pBC00 + pBC01 + pBC10 + pBC11 − 1

pCD00 + pCD01 + pCD10 + pCD11 − 1

pAD00 + pAD01 + pAD10 + pAD11 − 1

Call this ideal Ihm. Recall that an ideal is a set of polynomials. Of particular
interest are the polynomials in Ihm which only involve the target distribution

12 J. Cussens

probabilities, i.e. the 16 indeterminates p0,0,0,0, p0,0,0,1, . . . p1,1,1,1. This set, which
is Ihm ∩ k[p0,0,0,0, p0,0,0,1, . . . p1,1,1,1] is also an ideal and is an example of an
elimination ideal. This elimination ideal captures the algebraic constraints on the
target distribution probabilities p0,0,0,0, p0,0,0,1, . . . p1,1,1,1. Crucially, it is possible
(as will be seen in Section 4.1) to compute (a basis for) an elimination ideal. This
process of extracting polynomial constraints on the target distribution from a
set of parametric polynomials is known as implicitisation.

The model equivalence problem can now be posed in the language of algebraic
statistics. In fact, a more general problem will be considered: that of model
inclusion. Given two PRISM programs M1 and M2, M2 includes M1 (M1 ⊆M2)
if every distribution expressible by M1 can also be expressed by M2. Clearly two
PRISM programs are equivalent if each includes the other.

Evidently, for there to be any prospect of model inclusion, the success sets
of the target predicates in the two programs must be equal (modulo predicate
symbol renaming). The hierarchical model and Bayesian net running examples
are thus candidates for model inclusion since hm/4 in Fig 2 and bn/4 in Fig 4
have the same success set of 16 ground atoms.

Now consider a distribution p0,0,0,0, p0,0,0,1, . . . , p1,1,1,1 which is definable by
both the hierarchical model and Bayesian net model. Seen as a point in R16

it must be in the appropriate projection of the variety generated by the ideal
whose basis is (5) and in the appropriate projection of the variety of the ideal
whose basis is given by the 25 Bayesian network polynomials (6).

p0,0,0,0 − pA0pBA00pCB00pDAC000 pA0 + pA1 − 1 (6)

p0,0,0,1 − pA0pBA00pCB00pDAC100 pBA00 + pBA10 − 1

p0,0,1,0 − pA0pBA00pCB10pDAC001 pBA01 + pBA11 − 1

p0,0,1,1 − pA0pBA00pCB10pDAC101 pCB00 + pCB10 − 1

p0,1,0,0 − pA0pBA10pCB01pDAC000 pCB01 + pCB11 − 1

p0,1,0,1 − pA0pBA10pCB01pDAC100 pDAC000 + pDAC100 − 1

p0,1,1,1 − pA0pBA10pCB11pDAC101 pDAC001 + pDAC101 − 1

p1,0,0,0 − pA1pBA01pCB00pDAC010 pDAC010 + pDAC110 − 1

p1,0,0,1 − pA1pBA01pCB00pDAC110 pDAC011 + pDAC111 − 1

p1,0,1,0 − pA1pBA01pCB10pDAC011

p1,0,1,1 − pA1pBA01pCB10pDAC111

p1,1,0,0 − pA1pBA11pCB01pDAC010

p1,1,0,1 − pA1pBA11pCB01pDAC110

p1,1,1,1 − pA1pBA11pCB11pDAC111

By simply adding the hierarchical model basis to that of the Bayesian network
(thus producing a basis of 46 polynomials) we define an ideal whose variety is
the set of mutually consistent hierarchical model parameters, Bayesian network

Model equivalence of PRISM programs 13

parameters and target distribution probabilities. To check for model inclusion
it suffices to project this ideal down onto one set of parameters (say, those of
the Bayesian network model) and see if any polynomials are in this elimination
ideal which were not in the original ideal for this model. If there are, then this
reveals that there is a new constraint on these parameters and thus inclusion
fails. Otherwise inclusion is proven.

If model inclusion is our sole concern then ultimately only polynomials in-
volving parameters are of interest. All the constraints between the parameters
of the two models under consideration can be effected by equating target dis-
tribution probabilities. It follows that the target probability distributions can
be immediately eliminated. In our running example this provides the following
basis of 29 polynomials in 34 indeterminates.

(7)

pA0
pBA00

pCB00
pDAC000

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB00
pBC00

pCD00
pAD00

pA0
pBA00

pCB00
pDAC100

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB00
pBC00

pCD01
pAD01

pA0
pBA00

pCB10
pDAC001

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB00
pBC01

pCD10
pAD00

pA0
pBA00

pCB10
pDAC101

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB00
pBC01

pCD11
pAD01

pA0
pBA10

pCB01
pDAC000

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB01
pBC10

pCD00
pAD00

pA0
pBA10

pCB01
pDAC100

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB01
pBC10

pCD01
pAD01

pA0
pBA10

pCB11
pDAC001

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB01
pBC11

pCD10
pAD00

pA0
pBA10

pCB11
pDAC101

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB01
pBC11

pCD11
pAD01

pA1
pBA01

pCB00
pDAC010

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB10
pBC00

pCD00
pAD10

pA1
pBA01

pCB00
pDAC110

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB10
pBC00

pCD01
pAD11

pA1
pBA01

pCB10
pDAC011

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB10
pBC01

pCD10
pAD10

pA1
pBA01

pCB10
pDAC111

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB10
pBC01

pCD11
pAD11

pA1
pBA11

pCB01
pDAC010

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB11
pBC10

pCD00
pAD10

pA1
pBA11

pCB01
pDAC110

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB11
pBC10

pCD01
pAD11

pA1
pBA11

pCB11
pDAC011

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB11
pBC11

pCD10
pAD10

pA1
pBA11

pCB11
pDAC111

(pAB00
pBC00

pCD00
pAD00

+ · · · + pAB11
pBC11

pCD11
pAD11

) − pAB11
pBC11

pCD11
pAD11

pA0
+ pA1

− 1

pBA00
+ pBA10

− 1

pBA01
+ pBA11

− 1

pCB00
+ pCB10

− 1

pCB01
+ pCB11

− 1

pDAC000
+ pDAC100

− 1

pDAC001
+ pDAC101

− 1

pDAC010
+ pDAC110

− 1

pDAC011
+ pDAC111

− 1

pAB00
+ pAB01

+ pAB10
+ pAB11

− 1

pBC00
+ pBC01

+ pBC10
+ pBC11

− 1

pCD00
+ pCD01

+ pCD10
+ pCD11

− 1

pAD00
+ pAD01

+ pAD10
+ pAD11

− 1

So the question is: does the basis (7) define an ideal containing ‘new’ con-
straints on either set of parameters. To answer this question, consideration of
Gröbner bases is required.

14 J. Cussens

4.1 Gröbner bases

To explain Gröbner bases the key concept of term orderings must be given.
Here the presentation given in [1] is followed. Essentially, a term ordering can
be seen as a kind of complexity ordering on the terms of polynomials. Denote
an arbitrary term xβ1

1
, . . . , xβn

n as xβ , then a term ordering is a total order on
terms such that:

1. 1 < xβ for all terms xβ 6= 1;
2. If xα < xβ , then xαxγ < xβxγ for all terms xγ .

For example, if x and y are the only variables, then

1 < x < x2 < x3 < · · · < y < xy < · · · < y2 < . . .

is a term ordering: a lexicographical ordering. Here is another lexicographical
ordering with the roles of x and y reversed

1 < y < y2 < y3 < · · · < x < xy < · · · < x2 < . . .

There are also degree lexicographical orders such as:

1 < x < y < x2 < xy < y2 < x3 < x2y < xy2 < y3 < . . .

where ordering is by degree and terms of the same degree are ordered lexico-
graphically. These examples are taken from [1] where a full account of term
orderings can be found. For current purposes a particularly important class of
term orderings are elimination orderings:

Definition 3. For X1, X2 power products in the x indeterminates {x1, . . . xn}
and Y1, Y2 power products in the y indeterminates {y1, . . . ym}, we define

X1Y1 < X2Y2 ⇔







X1 <x X2

or
X1 = X2 and Y1 <y Y2

where <x and <y are term orderings on the x and y variables. This term order
is called an elimination order with the x variables larger than the y variables.

A proper account of Gröbner bases will not be given here—for such an ac-
count see [1]—instead the bare minimum for the analysis of PRISM model in-
clusion will be given. The definition of a Gröbner bases uses the notion of a
term ordering. In particular, note that, given a term ordering, any non-zero
polynomial f ∈ k[x1, . . . xs] can be written as

f = a1x
α1 + a2x

α2 + · · · + arx
αr

where xα1 > xα2 > · · · > xαr according to the given term ordering. a1x
α1 is

known as the leading term of f (and denoted lt(f)) and xα1 is called the leading
power product of f (and denoted lp(f)).

Model equivalence of PRISM programs 15

Definition 4. A set of non-zero polynomials G = {g1, . . . , gt} contained in an
ideal I is called a Gröbner basis for I if and only if for all f ∈ I such that f 6= 0,
there exists i ∈ {1, . . . , t} such that lp(gi) divides lp(f). [1]

An example from [9] illustrates the point that a Gröbner basis is defined in
terms of a term ordering

Example 1. The Gröbner basis of 〈x2
1 − 2x1x3 + 5, x1x

2
2 + x2x

3
3, 3x

2
2 − 8x3

3〉 ∈
Q[x1, x2, x3] with respect to a lexicographical ordering with the indeterminates
ordered as x2 > x1 > x3 is:

3x2

2 − 8x3

3,

80x2x
3

3
− 3x8

3
+ 32x7

3
− 40x5

3
,

x2

1 − 2x1x3 + 5,

−96x7

3
+ 9x8

3
+ 120x5

3
+ 640x3

3
x1,

240x6

3 + 1600x3

3 − 96x8

3 + 9x9

3

but with a degree reverse lexicographical ordering (again with x2 > x1 > x3)
the Gröbner basis is

x2

1
− 2x1x3 + 5,

−3x2

2
+ 8x3

3
,

8x1x
2

2 + 3x2

2

To illustrate the notion of one leading power product dividing another as
mentioned in the definition of Gröbner basis, note that according to the first
(purely lexicographical) ordering in Example 1, the leading power products of
x2

1 − 2x1x3 + 5, x1x
2
2 + x2x

3
3 and 3x2

2 − 8x3
3 are x2

1, x1x
2
2 and x2

2, respectively.
These are divisible by x2

1
, x2

2
and x2

2
, respectively, the leading power products of

Gröbner basis polynomials x2
1
−2x1x3+5, 3x2

2
−8x3

3
and 3x2

2
−8x3

3
, respectively. In

contrast, for the second degree-based term ordering from Example 1, the leading
power products of x2

1
− 2x1x3 +5, x1x

2
2
+x2x

3
3

and 3x2
2
− 8x3

3
are x1x3, x2x

3
3

and
x3

3, respectively. These are divisible by x1x3, x
3
3 and x3

3 respectively, the leading
power products of Gröbner basis polynomials x2

1
− 2x1x3 + 5, −3x2

2
+ 8x3

3
and

3x2
2
− 8x3

3
respectively.

Gröbner bases have many useful properties. For example using the polyno-
mial division algorithm a Gröbner basis can be used to check whether any given
polynomial is in the ideal generated by the Gröbner basis. For current purposes
the utility of Gröbner bases is due to the following theorem:

Theorem 1. Let I be a non-zero ideal of k[y1, . . . ym, x1, . . . xn], and let < be
an elimination order with the x indeterminates larger than the y indeterminates.
Let G = {g1, . . . , gt} be a Gröbner basis for this ideal. Then G∩ k[y1, . . . , ym] is
a Gröbner basis for the ideal I ∩ k[y1, . . . , ym]. [1]

16 J. Cussens

This is the key theorem which provides a solution to the PRISM model in-
clusion problem in the finite case. Returning to our running example of the
hierarchical model and Bayesian network model, consider again the polynomials
in (7) and the ideal (call it Ibn=hm) they generate. Using an elimination ordering
with the hierarchical model parameters larger than those of the Bayesian net pa-
rameters a Gröbner basis G for Ibn=hm can then be computed. Theorem 1 states
that the polynomials in G which only involve Bayesian network parameters form
a Gröbner basis for the ideal encapsulating all the constraints on these Bayesian
network parameters. If a polynomial not implied by the original constraints on
Bayesian network parameters is found then model inclusion fails, otherwise it
succeeds.

The good news is that (1) there is an algorithm—Buchberger’s algorithm—
for computing Gröbner bases for any given term ordering and (2) this algorithm
is available in a number of algebraic software packages, such as Maple. Putting
our running example to one side temporarily, this good news will be illustrated
with the following very simple example of model inclusion. Consider 2 binary
variablesA andB and the two models: the saturated modelM1 which contains all
possible joint distributions over A and B and the independence model M2 which
includes only those distributions in which A and B are independent. (There is no
need to go to the bother of encoding these models as PRISM programs, although
this is easily done.) Clearly M2 ⊂ M1 but M1 6⊂ M2. This can be established
using algebraic statistics using e.g. Maple. In the independence model let a0,

a1, b0, b1 denote P (A = 0), P (A = 1), P (B = 0), P (B = 1), respectively;
and in the saturated model let ab00, ab01, ab10, ab11 denote P (A = 0, B =
0), P (A = 0, B = 1), P (A = 1, B = 0), P (A = 1, B = 1), respectively. Then
simple denotes the ‘model equivalence ideal’ in Fig 5.

with(PolynomialIdeals);

simple := <a0+a1-1, b0+b1-1, ab00+ab01+ab10+ab11-1, a0*b0-ab00,

a0*b1-ab01, a1*b0-ab10, a1*b1-ab11>

EliminationIdeal(simple, {a0, a1, b0, b1})

<a0 + a1 - 1, b0 + b1 - 1>

EliminationIdeal(simple, {ab00, ab01, ab10, ab11})

< 2

ab00 + ab01 + ab10 + ab11 - 1, ab00 ab10 + ab00 + ab01 ab10 + ab00 ab01 - ab00 >

Fig. 5. Using Maple to establish model (non)-inclusion

Using the Maple built-in EliminationIdeal (which works by computing an
appropriate Gröbner basis), it is found that no new constraints are put on a0,

a1, b0, b1 by asserting model equivalence thus proving thatM2 ⊂M1 but that
a new constraint represented by the polynomial ab00ab10 + ab002 + ab01ab10 +
ab00ab01−ab00 is effected on the saturated model parameters thus showing that
M1 6⊂M2.

Model equivalence of PRISM programs 17

The bad news is that computation of Gröbner bases can be tremendously
computationally expensive. An attempt to compute a Gröbner basis for the
polynomials in (7) using an elimination term ordering with Maple was abandoned
after a few hours of computation. As noted in [1] “the computational complexity
of Buchberger’s algorithm often makes it difficult to compute a Gröbner basis
for even small problems”. Although improving Buchberger’s algorithm is an
area of active research, there is the basic problem that Gröbner bases can have
polynomials with very many terms making it difficult to compute them efficiently.
Taking an example from [1] the (unthreatening-looking) ideal 〈x7 + xy+ y, y5 +
yz + z, z2 + z + 1〉 has a Gröbner basis (for a particular lexicographical term
ordering) of 3 polynomials with 58, 70 and 35 terms, respectively.

Another problem, of course, is actually forming the polynomials such as (7) in
the first place. In the finite case this can at least be done: for each model, for each
atom in the target predicate’s success set one can use PRISM’s built-in probf

predicate to get the needed polynomial for that model and atom. Once this has
been done a polynomial can be formed for each success set atom by putting the
polynomials from each model on opposite sides of a minus sign—as was done in
(7). If one or both models are ‘failure’ models then normalisation must be taken
into account; note that this has been done in (7) by multiplying each Bayesian
network polynomial by (pAB00pBC00pCD00pAD00 + · · ·+ pAB11pBC11pCD11pAD11)
which is the expression for the Z normalising constant for the hierarchical model.
Eventually a finite set of polynomials are formed and an elimination ideal can be
found by Gröbner basis computation and checked for new constraints (=poly-
nomials).

This is an unwieldy business, and when the success set is infinite such an
approach will not work. In the infinite case it is at least possible to compute
elimination ideals for finite subsets of the full infinite set of polynomials. If such
an ideal contains a new polynomial then model inclusion is disproven; but if
not it may be that a bigger finite subset will generate a new polynomial. In the
infinite case, Hilbert’s Theorem tell us that there is a finite basis for the infinite
set of polynomials defined by an infinite success set, but is not clear how this
would be found.

5 Shortcuts to deciding model inclusion

In the running example since both models are graphical, knowledge of conditional
independence relations in such models can be used to provide a direct answer
to the question of model inclusion. The structure of the hierarchical model as
given in Fig 1 makes it evident that only distributions where A ⊥ C|{B,D}
can be members of this model, whereas inspection of Fig 3 makes it evident that
distributions not meeting this constraint are permitted by the Bayesian network.
It follows that the polynomials in (7) must generated an ideal containing a
polynomial only involving BN parameters which was not in the original ideal for
the BN.

18 J. Cussens

In fact, it is not too difficult to construct such a polynomial. If A ⊥ C|{B,D}
then, for example,

P (A = 0|B = 0, D = 0)P (C = 0|B = 0, D = 0) = P (A = 0, C = 0|B = 0, D = 0)

from which it follows that

P (A = 0, B = 0, D = 0)P (C = 0, B = 0, D = 0)−P (A = 0, C = 0, B = 0, D = 0)P (B = 0, D = 0) = 0

or using our abbreviated notation

(p0,0,0,0 + p0,0,1,0)(p0,0,0,0 + p1,0,0,0) − p0,0,0,0(p0,0,0,0 + p0,0,1,0 + p1,0,0,0 + p1,0,1,0) = 0

⇔ p0,0,1,0p1,0,0,0 − p0,0,0,0p1,0,1,0 = 0

The LHS of this second polynomial is (1) contained in the hierarchical model
ideal Ihm, but (2) not in the Bayesian net ideal Ibn. (1) is easy to check: for
example, the 4 target distribution probabilities above can be re-expressed in
terms of the HM parameters and z. It is then obvious that p0,0,1,0p1,0,0,0 −
p0,0,0,0p1,0,1,0 = 0. Any easy way to check (2) is to re-express p0,0,1,0p1,0,0,0 −
p0,0,0,0p1,0,1,0 in terms of the BN parameters:

pA0pBA00pCB10pDAC001 × pA1pBA01pCB00pDAC010

− pA0pBA00pCB00pDAC000 × pA1pBA01pCB10pDAC011

or more simply:

pA0pA1pBA00pBA01(pDAC001pDAC010 − pDAC000pDAC011) (8)

and then check that this polynomial is not a member of the ideal generated by
the original BN parameter constraints. Fig 6 shows this being done using Maple.

with(PolynomialIdeals);

> bnsw := <pa0 + pa1 - 1, pba01 + pba11 - 1, pdac001 + pdac101 - 1,

pcb01 + pcb11 - 1, pcb00 + pcb10 - 1, pdac010 + pdac110 - 1,

pdac011 + pdac111 - 1, pdac000 + pdac100 - 1, pba00 + pba10 - 1>

> newcons := [pa0*pa1*pba00*pba01*(pdac001*pdac010-pdac000*pdac011)]

> IdealMembership(newcons, bnsw)

false

Fig. 6. Proving that a polynomial is not a member of an existing ideal using
Maple

Turning now to model inclusion note that M1 ⊂ M2 if for any parame-
ter setting for M1 there is a parameter setting for M2 that gives the same

Model equivalence of PRISM programs 19

distribution. It follows that model inclusion can be established if such a map
can be found. In our running example, this is easily done. Any parameter
setting for the hierarchical model defines a particular joint distribution over
the variables A,B,C and D which in turn determines conditional distributions
P (A), P (B|A), P (C|A,B) and P (D|A,C) which are precisely the required pa-
rameters for the Bayesian network. This is the required parameter mapping. For
example consider P (B = 0|A = 0) which is abbreviated to pBA00 . In terms of
target distribution probabilities we have

pBA00 =
p0,0,0,0 + p0,0,0,1 + p0,0,1,0 + p0,0,1,1

p0,0,0,0 + p0,0,0,1 + p0,0,1,0 + p0,0,1,1 + p0,1,0,0 + p0,1,0,1 + p0,1,1,0 + p0,1,1,1

and in terms of the hierarchical model parameters pBA00 = (1 + T)−1 where T
is:

pAB01pBC10pCD00pAD00 + pAB01pBC10pCD01pAD01 + pAB01pBC11pCD10pAD00 + pAB01pBC11pCD11pAD01

pAB00pBC00pCD00pAD00 + pAB00pBC00pCD01pAD01 + pAB00pBC01pCD10pAD00 + pAB00pBC01pCD11pAD01

It is clear that each Bayesian network parameter can be expressed as a function
of the hierarchical model parameters in this way. To check that the same distri-
bution is defined by both sets of parameters it suffices for each of the 16 target
probabilities:

1. To find its expression in terms of BN parameters (these are all monomials
of 4 terms, see (6)).

2. and then to replace each BN parameter in this expression by the corre-
sponding expression in terms of hierarchical model parameters (e.g. each
occurrence of pBA00 is replaced by the expression described immediately
above).

3. and then prove that this expression is equivalent to the one used to define
the target probability in the hierarchical model.

If a rational function is used to map between parameter spaces this check
can be done using ideals. From such a map a collection of polynomials can be
generated. For example, from above we have that:

(X + Y)pBA00 − Y = 0

where

X = pAB01pBC10pCD00pAD00+pAB01pBC10pCD01pAD01+pAB01pBC11pCD10pAD00+pAB01pBC11pCD11pAD01

and

Y = pAB00pBC00pCD00pAD00+pAB00pBC00pCD01pAD01+pAB00pBC01pCD10pAD00+pAB00pBC01pCD11pAD01

So a polynomial can be generated for each BN parameter. Recall that each
such polynomial can be interpreted as a constraint between the indeterminates
involved. To do the check above we add each of these polynomials to the hi-
erarchical model ideal Ihm and then see if the resulting ideal contains the BN
ideal whose basis is given in (6). In essence, we just check that the constraints
on BN parameters are sufficiently strong so that they define exactly the same
distribution as the hierarchical model parameters.

20 J. Cussens

6 Future work

Hopefully, the current report provides sufficient evidence that algebraic statistics
is at least worth exploring as a mathematical tool for the analysis of PRISM
programs and closely related formalisms such as SLPs and ICL. Due to the
generality of the approach it is likely that it will be useful in the analysis of
other SRL formalisms too.

However, there are serious problems to address. Firstly, the approach taken
here threw away the compactness which a first-order representation affords. By
effectively ‘grounding out’, large numbers of structurally similar polynomials
(with many indeterminates) were produced. In the infinite case no satisfactory
solution was found. Since there exists work connecting algebraic geometry (and
Gröbner base computation in particular) with first-order (and propositional)
theorem proving [10,11,12] there is hope that a ‘more first-order’ approach can
be found. On a related point, the second problem is that structure of the ideals
produced was not really exploited. Our two running examples were both PRISM
encodings of graphical models and as such their ideals are toric ideals [13] which
have special properties. Although PRISM programs are such a general class it
will be possible to construct models with little exploitable structure, when struc-
ture is there it should be exploited. A third issue is that no proper connection
between the structure of the logic program and the nature of the ideals produced
has been given.

References

1. Adams, W.W., Loustauna, P.: An Introduction to Gröbner Bases. Volume 3 of
Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, USA (1994)

2. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15 (2001) 391–454

3. Sato, T., Kameya, Y., Zhou, N.F.: Generative modeling with failure in PRISM.
In: Proceedings of the Nineteenth International Joint Conference on Artificial In-
telligence (IJCAI-05), Edinburgh (2005)

4. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)
5. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-

gence 64 (1993) 81–129
6. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press

(2000)
7. Muggleton, S.: Stochastic logic programs. In De Raedt, L., ed.: Advances in

Inductive Logic Programming. Volume 32 of Frontiers in Artificial Intelligence and
Applications. IOS Press, Amsterdam (1996) 254–264

8. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning
44 (2001) 245–271

9. Pistone, G., Riccomagno, E., Wynn, H.P.: Algebraic statistics: computational
commutative algebra in statistics. Chapman & Hall, New York (2001)

10. Wu, J.: First-order polynomial based theorem proving. In Gao, X.S., Wang, D.,
eds.: Mathematics Mechanizations and Applications. Academic Press, San Diego,
USA (2000) 273–294

Model equivalence of PRISM programs 21

11. Kapur, D., Narendran, P.: An equational approach to theorem proving in first-
order predicate calculus. SIGSOFT Softw. Eng. Notes 10 (1985) 63–66

12. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the groebner basis algorithm to
find proofs of unsatisfiability. In: STOC ’96: Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, New York, NY, USA, ACM
Press (1996) 174–183

13. Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models. The
Annals of Statistics 34 (2006) 1463–1492

	Model equivalence of PRISM programs
	James Cussens

