
Dagstuhl Seminar on Event Processing

May 6 – 11, 2007, Schloss Dagstuhl

Organizers: Mani Chandy, Opher Etzion, Rainer von
Ammon.

Summary of the presentations was done by Peter
Niblett.

During the week of May 6-11, the event processing Dagstuhl seminar took place;
In this seminar there were 43 participants from the following countries: Canada,
Germany, Holland, Ireland, Israel, Korea, New-Zeeland, Portugal, Spain, Sweden,
Switzerland, UK, and USA. The seminar had unusual proportion of industrial
participants and included participants from: CITT, Cordys, Gartner, IBM, IDS Scheer,
Microsoft, SoftwareAG, Oracle, RuleCore, and WestGlobal.

The seminar also consisted of people with several core disciplines such as:
distributing computing, databases, software engineering, business process
management, sensor networks, simulation and verification.

One of the participants commented that it seems that both academic and industrial
people are interested in languages and implementation issues of complex event
processing (either by rules or queries), in addition the academic people only were
interested in the fundamental middleware issues (maybe since the industry people
view it as engineering topics and not as research topic), while the industry people
were interested on locating event processing in the buzzword-oriented universe (SOA,
BI, BAM), a discussion that lacks research content, in the view of the academic
people. Everybody though that the participants of the industry people had major
contribution to this seminar. At the concluding session, the industry people compiled
a list of research topics that the industry wishes to see, and the research people
produced their wish list from the industry.

The seminar held deliberations (with some evening sessions in the wine cellar) on:
what is event processing – use cases and classifications, is it a paradigm shift?
Positioning EP relative to industry buzzwords (SOA, BAM, BI…), Semantics issues,
modeling issues, and implementation issues.

Dagstuhl Seminar Proceedings 07191
Event Processing
http://drops.dagstuhl.de/opus/volltexte/2007/1148

The First Day: Monday

Session 0: Topics for the week
The first session discussed issues for inclusion in the week’s agenda:
1. SOA and EDA overlap loose coupling, relationship to EAI
2. Rule management, Evolution of rules. Visualization of rules
3. Streams and Event management
4. Scalability of all aspects (very high volumes, number of rules, number of recipients
etc)
5. Operational characteristics, “ilities”, system guarantees, security
6. Approaches to distributed event brokering, aspects, timing
7. Benchmarks, good benchmarks, design points
8. Differing models for event processing, what is appropriate to what applications.
Also models for events and modeling notation
9. Semantics of events, temporal uncertainty, programmatic semantics
10. Characteristic application space for EP - scenarios, current and future
11. Relationship between Events and BI. "Event pattern mining"
12. Spam and false positives
13. Vertical markets
14. Standards - what do we need?
15. Event acquisition. Control of sensor networks, Identification of time-critical
events

Three Meta issues from Roy Schulte
a) What areas should research focus on?
b) What should industry do?
c) Is this a Paradigm shift?

Assignment of these topics to agenda sessions:

- Taxonomy/Classification of event applications (Monday)
- Models, semantics (Tuesday)
- Programming models (Tuesday)
- Implementation: Performance, Benchmarks, “ilities” (Wed/Thu)

Session 1: Taxonomy of event applications

Opher Etzion started the discussion with a description of 5 classifications of
application:

� Event processing as part of Business Logic: In this class of application the
event system needs the same reliability / transactionality and other qualities
that the business logic has.

� Event processing as Business Observation. In this class, the events are not
actually part of the business logic, but sit alongside it and are used for

2

monitoring, management and compliance. Examples include Business Activity
Monitoring (BAM) and fraud detection.

� Event Processing as part of Information Delivery. In this class of application
the events are primarily used to stream information, such as stock prices and
news feeds. Many traditional publish/subscribe applications fall into this
category.

� Event Processing as part of Problem Determination. Events are generated
when a problem symptom is detected. Applications in this class may then need
to do some retrospective analysis to determine the actual problem cause.

� Event Processing as part of Prediction Systems. In this class raw events are
examined (and possibly compared with historical data) in order to predict
future situations of interest.

There was a brief discussion of what was special about Event Processing as opposed
to other approaches, and whether it was possible/useful to have a general purpose
platform and tooling for Event Processing. To help shed some light on this, the
meeting then discussed 22 scenarios:

1. Airline baggage (Opher Etzion); Survey shows that 1.5% of all airline bags

don‘t arrive with the passenger, and 15% of those are never delivered. This
scenario involves use of RFID and event processing to detect situations that lead
to bag loss and also help track bags when they are lost.

2. Patient health monitoring (Opher Etzion, Annika Hinze); Many health
monitoring systems “fail safe” and generate more alerts than are required (i.e.
many false positives). These results in information overload for the healthcare
workers and consequently the workers run the risk of ignoring something
important. This scenario involves correlating events from multiple monitors and
also applying knowledge of the individual patient’s condition in order to filter out
as many false positives as possible. The scenario was extended by Annika to
include input from multiple stakeholders (patient, nurse, doctor), and the
language/tools used needs to be able to accommodate these differing users.

3. Rose bowl (Mani Chandy); Protection against terrorist threat against a major
sporting event. The threat is a suicide bomber exploding a radioactive “dirty
bomb”. A physical check at entry to the arena is impractical, so instead the
approach is to have agents with Geiger counters patrolling the crowd. Event
processing is used to correlate data returned from these detectors. This scenario
illustrates the trade-off between false positives and the catastrophic effect of a
false negative.

4. Particle Physics (Tore Risch); Use Event processing to analyze the results from
CERN as part of the search for the Higgs Boson. The raw events are analyzed to
detect information about the types of particles, their positions and speeds. There is
a huge amount of data to be processed, so processing is triaged into several steps
(Cuts). The order in which these Cuts are performed is very significant (a good
order can be over 1000x better than a poor order). The project involved use of
SQL queries to do the analysis, as opposed to using bespoke C++ filters.

5. Radio astronomy (Tore Risch); aggregating data from 13000 radio detectors.
Each detector produces 100 Million Events per second, giving a total of 30 TB/s
of raw data. It is not feasible to store all this data and then mine it in a
conventional fashion. There is so much data that it has to be processed as it comes
in; it is impractical to store it first. Also it is impractical to do all the processing

3

for each raw event, so the processing to be done is conditioned by previous events
that were detected.

6. Traffic monitoring (Sharma Chakravarthy); a traffic monitoring system in
California gathers GPS data transmitted by cars (Car Id, position, and speed).
Each car transmits a packet of data every 20 seconds. The monitoring system uses
Event Processing to correlate this data and detect traffic problems, routing alerts
upstream and downstream from the actual problem.

7. Spread of infectious diseases (Sharma Chakravarthy); Use of Event
processing to predict the spread of viral infections across a large country, such as
the United States. The raw data is already gathered and is held by the US Center
for Disease Control, but it isn’t really being used to predict disease spread at
present.

8. Monitoring of queries (Vijay Dialani); Continuous queries are used to monitor
events. Queries by themselves can be queried upon and help provide the richer
context. Queries could be mined to discover patterns of interest, and make
inferences about preferences of the users/applications. This blurs the line between
data and queries and also imparts adaptivity to queries.

9. Intelligent matchmaking (Vijay Dialani); Potential publishers and consumers of
events (for example potential buyers and sellers of a stock) register with a service
that does smart matchmaking. Smart matchmaking includes detecting the patterns
of events that actually occur so that events are routed to the optimal consumers.

10. Mobile Location-based services (Annika Hinze); Use of Event processing in
conjunction with services delivered to mobile users. There are several types:

a) Travel information systems. A mobile user travels around a country and
the idea is to deliver information that is relevant to the location that he or
she is in.

b) Attendance at events. In this context “event” means something that
someone attends, such as a meeting or concert (there may be hundreds of
attendees). This time the idea is to deliver information that is relevant to
the event(s) that he or she is attending. Note that this does not necessarily
involve a particular geographical location, as we can have events that take
place in multiple physical locations simultaneously.

c) Data collection. Gathering of data from mobile users, e.g. Nature surveys
(counting trees or Kiwis), farming (recording yield from a particular sheep
after shearing).

d) Traffic data. Information about plane or train data is streamed to an event
process. Needs to be processed with a read-out of other data relative to the
local area.

11. Physical Intrusion detection via sensors (Kirsten Terfloth); Use of ten sensors
attached to a fence to detect a physical intruder. The system has to distinguish
between someone climbing over the fence (positive result) from negative ones (e.g.
someone banging into the fence) this decision may need to take into account data
from multiple sensors. Challenges include limited CPU in each device. There is a
design trade-off question, as to whether it is better to filter in the devices or in the
network.

12. Avalanche prediction (Katharina Hahn); as with the intrusion detection this
scenario involves multiple sensors. They are based at different places on the
mountain-side, and the prediction needs to take into account several influential
parameters. Some of these parameters are static, for example the steepness of the
mountain at the place where the sensor is positioned. Other parameters are

4

dynamic, for example temperature, air pressure and snow depth. It is not just the
current value of these dynamic parameters that matters, the history is also
important. The question studied was to find the most cost-efficient deployment,
whether it is better to have lightweight sensors streaming raw data to a base
station, or to do more processing in the sensors themselves. Where the historical
data should be kept? Factors to consider include the cost and reliability of the
sensors, and the power that they consume, against the data transmission costs and
latency requirements of the application.

13. Use of EP as an alternative to Request/Reply in software engineering (Claudi
Paniagua Macia); The conventional request/reply paradigm can be recast into
Event Processing terms. This will make software design more adaptable and
flexible and will avoid problems caused by statefull services. Current OO
approaches are too low-level, exposing things like threads and instance variables.

14. Business Activity Monitoring (Tobias Blickle); A business process (written in
BPEL or similar) is instrumented to generate events as it transitions between steps
and these events are analyzed in order to drive a dashboard. The dashboard can
offer a number of perspectives

a) Exceptional situations
b) Historical process performance
c) Track and Trace
d) Organizational view

Events flow into the monitoring system which then tracks status (for example
KPIs). Some of the perspectives (e.g. the Exceptional situations) involve
generation of alert events based on observation of this status. The rules used to
define these exceptional conditions need to be specifiable by business analysts.
Timeliness of information and alerts is critical.

15. Governance, Risk and Compliance (Tobias Blickle); this scenario is about
compliance applied to Business Process. Monitoring is performed in a manner
similar to scenario 14, except that now the system has to perform pro-active
detection rather than retrospective detection. One use of this is to detect fraud.

16. Smart City “Ambient Intelligence” (Alex Buchmann); providing seamless
event processing capabilities across spaces and domains is one of the main
challenges of Ambient Intelligence. The vision of AmI calls for the vanishing of
the computational infrastructure and pervasively available, context-aware services.
This in turn requires from the infrastructure to provide event detection and
composition, reactive capabilities, support for indoor and outdoor positioning,
context and user-profile management and matching, support for privacy and
security, and support for mobility and event delivery with controllable quality of
service. Because of the heterogeneous environment and the different life cycles of
the technologies involved, support for heterogeneity and multiple technology
stacks is a must. Event processing is also at the heart of the Self-X properties these
systems must exhibit, since any solution depending on manual and/or centralized
management, configuration and adaptation will fail.
Rich context definition is necessary since context must include, besides location,
semantic annotations, user preferences, time, resource availability and even social
context. Many of the challenges for event processing in this scenario also stem
from the scale of such a system, for example, if the infrastructure is to cover a
whole city, including public spaces and means of transportation. The necessity to
provide context-aware services independently of location and in a seamless
manner may provide us with the killer application for event-based processing.

5

17. Detection of money-laundering (Dean Jacobs); Banks now have a regulatory
requirement to install money-laundering detection software. This looks for
unusual transfers of funds (e.g. an atypically large amount of money moving into
an account and then straight out again). Each alert causes significant cost to the
bank as it has to be investigated by humans, and with a false negative there is the
possibility of annoying an innocent customer. Banks are really only concerned
about meeting regulatory requirements. There is a high amount of data (every
transaction has to be examined) but speed of detection is not critical.

18. Tailored internet search across heterogeneous providers (Dean Jacobs);
Internet users currently use a variety of information sources, e.g. Google,
del.icio.us, Yahoo each with different search languages. In this scenario we use
EP to analyze peoples’ searches so as to get a view of their interests and
preferences to give them a more tailored experience. The issue here is the mixed
nature of the information sources which have to be adapted - we assume that these
sources are not modified.

19. Supply chain visibility (Henry Chang); this scenario concerns optimal
management of a physical supply chain. Events that affect the chain (e.g.
purchases) are captured and analyzed with reference to three types of data:
Historical Supply Data, Historical Demand Data and Reference Data (e.g. part-
number catalogs). The aim of the analysis is to detect possible problems (e.g.
shortages) and allow the manager to take steps to condition supply and/or demand.
Some of the events are periodic (e.g. end-of-day stock check) and others a-
periodic (exceptional conditions such as a large order cancellation). The number
of rules is quite small (about 10) and most of the complexity is in deriving KPIs.
An automated system reduces the amount of human involvement required.
Timeliness is not absolutely critical.

20. Algorithmic trading; Well-known application of event processing. It is worth
noting that major Wall Street firms have had bespoke C++ implementations for
some time.

21. Fraud detection; Similar to money-laundering, except that this time the banks
have a very clear interest in detecting as many frauds as possible and as quickly as
possible.

22. Massive Multiplayer Online Games; These games typically have proprietary
event-driven architectures that give a shared playing environment to 10s or 100s
of users (out of a total of 100,000+ players). Throughput is not excessive, but
responsiveness is critical.

Classification questions
1. Which “ilities” are significant?
a) Scalability - Ultra High throughput, Scenarios 4, 5, 20
 - High throughput 8, 9,10,13,18, 19, 22
 - Medium throughput 1, 15
b) Recoverability - Important 1,2,11,15,20,22
c) Privacy 10
d) Security 17
e) Cheat detection 22

2. What requirements on Timeliness? Is it sub-second?
 Order of 10 seconds or more: 1,4,5,7,8,12,14,15,17,19

6

 Order of 1 second: 3, 10, 11
 Sub-second 20, 21
 [Algorithmic trading 1ms is equivalent to $100m per year]

2a. is this scenario distributed in nature?
 Yes: 1, 4, 5, 6, 9, 11, 20

3. What value-add does this solution provide?
 End-user productivity 2.3,8,9,10,11,12,14,19,20
 Application was not done before 4.5,6,17,21,22

4. What is the complexity of the detection logic?
 Very High 3, 4,5,6,7,12,13,19
 High 1,11,17,21
 Medium 8, 9, 10, 14

5. What is the relative cost of false positives and negatives?
 High 2, 3, 7, 11, 12, 15 (sometimes)
 Low 19

6. What amount of work is required to integrate EP with existing systems?
High 1, 2, 7, 11, 14, 15, 17, 19, 21
Medium 3, 10 (building specific, can GPS be used)

7. What is the special value-add of Event Processing (if any)?
This question was not addressed

This analysis is summarized in the following table:

Through-

put
Recover-

ability

Security
Integrity
Privacy Latency Distributed Value add

Complexity
of detection

Cost of
false
+ves

Patient health
monitoring Needed Productivity Low High
Mobile
Location-
based svcs High Needed 1 Productivity Medium
Monitoring of
queries High 10+ Medium
Business
Activity
Monitoring 10+ Productivity Medium
Business
Process
Compliance Medium Needed 10+ Medium

High
 (some)

Intelligent
matchmaking High Yes Productivity Medium
Tailored
internet
search High Medium
Fraud
detection 0.1 New app High
Physical
intrusion
detection Needed 1 Yes Productivity High High

7

Smart City
(Ambient
intelligence) High Needed Needed 1 Yes New app High High
Airline
baggage Medium Needed 10+ Yes High
Detection of
money
laundering Needed 10+ New app High
Multiplayer
games
(MMORGs) High Needed Needed New app High
"Rosebowl"
security 1 Productivity Very High High
Infectious
disease 10+ Very High High
Avalanche
prediction 10+ Productivity Very High High
Supply chain
visibility High 10+ Productivity Very High Low
Traffic
monitoring Yes New app Very High
Algorithmic
trading Ultra Needed 0.1 Yes Productivity Very High
Particle
physics Ultra 10+ Yes New app Very High
Radio
astronomy Ultra 10+ Yes New app Very High

Monday Evening Session. Will we see an EP/EDA paradigm
shift?

Roy Schulte posed the question “Will Event Processing (EDA) become a paradigm
shift in the next few years or not?”
Examples of technologies that have resulted in Paradigm Shifts include Databases,
GUIs, and OLTP. Examples that haven’t seen the widespread general adoption that
would be entailed by a paradigm shift include Artificial Intelligence, Distributed
Objects/CORBA, and Open Systems. We have seen things like EDA before (e.g.
Message Driven Processing) - so is the time now right for EDA?
Points made during the discussion included:

1. We need to decide whether we are talking about Asynchronous Processing, e.g.

triggering transitions in business applications via events, or full Complex Event
Processing. The answer might be different for the two. Some people thought that
an Asynchronous Programming paradigm shift is already underway.

2. Paradigm shifts can’t happen if there are too many barriers. Historically the

barriers to EP/EDA have included:
a) The “flow-chart” style synchronous programming is easier to teach, learn

and debug.

8

b) The non-deterministic (anarchic?) nature of EDA does not necessarily
make it attractive as a way to design repeatable business processes.

c) Variety of different proprietary tools and languages. It is hard for non-
technical people to use them.

d) General purpose EDA platforms don’t have enough function, so
developing applications is costly (people have to code a lot of additions as
part of their applications)

e) Lack of awareness of EDA in the business, analyst and programming
communities

3. Paradigm shifts are more likely to happen when adopters decide they need a

whole new avenue of applications; they are less likely to happen as a way of re-
engineering existing systems. New applications might include automated health
care (for example the German population will reach 1:2 old: young ratio by 2020
so today’s model of health care will not be viable), and intelligent cities.

4. Paradigm shifts usually happen as a result of some external change, not just

because of innate strengths of the technology itself. Possible changes that might
help EP/EDA include

a) Emergence of machine-born data. In the “old days” data had to be entered
into computer systems by humans. Now there is much greater deployment
of sensors, RFID readers etc. and therefore much larger amounts of data
available. It isn’t economical to store it all in static databases and write
traditional database-oriented applications.

b) Multi-core processors will force a rethink of traditional application design.
The concurrency issues with conventional request/reply applications make
it hard to exploit 64-way machines effectively

c) Massively Multiplayer Online Realtime Games are training a new
generation of programmers to think in an asynchronous, event-driven way.

d) Growth in computer-computer interactions (as opposed to human-
computer interactions)

e) Convergence of physical and digital worlds

5. Standardization is not necessary for a paradigm shift, but good, appropriate

standards (de facto or otherwise) certainly help

Conclusion (Roy). There will be a paradigm shift, but it might not be called Event
Processing.

9

The Second Day: Tuesday

Session 2 – Semantics

1. Opher Etzion gave an introductory talk outlining various areas of the subject

a) Event Semantics. This is concerned with
i. What is an event?

ii. What general properties do events have?
iii. What relationships are there between events and between events

and other entities?
iv. What do we need to specify about event context?

b) EP Network Semantics or semantics in the large. This includes
v. the nodes and edges in the network

vi. Is context a distinct semantic entity?
c) EP Agent Semantics, semantics in the small.

vii. specific nodes in the network

2. Graph Transformation approach to EP (Claudi Paniagua Macia); Claudi

proposed that Event Processing can be viewed as graph transformation. If you
take a partially ordered set of events and view them as a graph, then an Event
Processing agent is in effect transforming that graph (by executing a set of
transformation rules) into another graph. This transformation involves adding or
removing nodes from the graph. The Event Processing agent may need to keep
state in order to do this transformation.
He then went on to illustrate with an example where he took a conventional
request/reply message exchange (push and pop operations on a stack) and
analyzed it as 8 events (1 event for client sending push request, 1 for server
receiving push request, 1 for server sending push response, 1 for client receiving
push response; another 4 events for the pop operation). The graph containing these
events could be transformed into a graph containing complex events derived from
these raw events, for example the 4 raw push events could we combined into a
single complex Push event. One application would be for a monitoring application
to check operational correctness; a graph collected from runtime operation could
be analyzed to check that the various types of events were correctly related (e.g.
pop responses contained expected values).
Francois Bry commented that this kind of verification was not novel. Claudi
responded that verification was not the goal, just an example or test of how graph
transformation could be used.

3. Analysis of the new SQL extensions (Carlo Zaniolo); Carlo’s presentation
covered the EP-related extensions recently added to SQL by Oracle, IBM,
Streambase and others. He focused on the Regular Expression based pattern
matching capability. When you are executing a SQL expression over a stream of
events, this new Regular Expression capability can be used as a way of defining
certain complex events. Carlo’s impression was that the new function was very
expressive and easy to understand.

10

There have been previous attempts to do event pattern matching languages, what
is new this time is its integration with SQL, so you get the same query language
for pushing and pulling events. Also SQL query optimizations are possible and it
is possible to do more advanced semantics, like Snoop’s chronicle context.
Opher commented this was useful but that there were other more expressive
languages and we shouldn’t assume that all CEP languages had to be extensions
of SQL.

4. EP models in high-energy physics (Tore Risch); Tore went into greater depth

on the CERN application. The application has a large volume of data, organized
into reasonably large events. Each event is subject to a battery of filtering tests to
identify the types of particles involved and determine their positions and velocities.
These filters, referred to as Cuts, operate on one event at a time and are written by
reluctant C++ programmers. They can be nested and get quite complex. Tore’s
project had examined two questions

a. Could this be done using a Query Language rather than C++ (the
advantage of a Query language would be its flexibility and adaptability)

b. How to determine a good order to run the various cuts (experience from
the C++ code was that the order could affect performance by 1000x)

They were able to use an SQL-like query language, but found that traditional cost-
model based optimization approaches didn’t work - the data was too complex. In
fact choosing a random order of cuts often worked quite well. The approach they
took was to try random orders across a large body of sample data and measure
performance so as to find a good ordering.

5. Snoop and its semantics (Sharma Chakravarthy); Sharma gave a review of

the Event Condition Action paradigm from its origins in 1980s applications,
through Object Oriented systems in the 1990s, such as HiPAC. The important step
was the separation of event from condition (previously the difference had been
blurred). ECA had been incorporated into relational databases as database triggers,
but these had not been widely used. A general discussion on database triggers
ensued, observations were that they weren’t supported the same way by all
vendors, their semantics were unhelpful, there was poor guidance to users, they
had performance problems and they didn’t scale up - the conclusion was that
people shouldn’t attempt to use them.
Sharma then gave a brief taxonomy of events. He divided them into Primitive
events (point in time) and Complex/Composite (interval-based). He then outlined
the Snoop expression language and its operators. This can be used to create
composite events out of other events. Simple use of operators can yield too many
composite events, so the language also includes a Context concept. The Context
can be used to specify conditions on when composite events are generated. E.g. a
Fixed or Sliding window.
Opher commented that HiPac and Snoop deserved credit as being the ancestors of
modern EP work, but asked why it was that Active databases hadn’t been
successful in the 1990s, and wondered if things were different now. His
observations were that the industry wasn’t ready then, and the close association
with the database (and triggers) was a problem.

6. Filters and Composite Events (Susan Urban); Susan took the ECA model used

by Snoop and suggested that some of the composition aspects of a CEP rule

11

could be pushed down into the Filtering layer, and treated as Filters. The idea
would be to define a Composite Event declaratively and let the filter (network)
layer produce these events - they could then be subject to more complex
processing by rules in the conventional fashion. The advantage of this approach is
that it could do more aggressive filtering of data, and would reduce the generation
of unneeded events (if no-one subscribes to a particular complex event then the
“rule” to generate it never gets run). Her project had successfully implemented a
subset of Snoop operators (SUM, MIN, MAX, COUNT, and AVG). There was
some discussion of whether something that computes a new event should be called
a Filter or not. Susan argued that the name was correct, as it resulted in the
underlying raw messages disappearing from the stream.

7. Stream semantics (Jonathan Goldstein); Conventional window-based stream
processing semantics have problems when system overloads occur or when
recipients require data in order. If you are computing a function that requires a
certain amount of data, your options are to a) wait for all the events to arrive (high
latency) or b) provide a partial answer quickly (low consistency). The principal
idea was to provide a third option (medium consistency) in which the processor
generates an answer quickly, and if further data arrives which modifies the result
it then generates a “retraction” followed by a new answer. Since “answers” are
interval-based events, the retraction need only cover a portion of the interval of
the original answer. This is appropriate for many applications, since in many real-
world scenarios applications have to be able to cope with business-level
retractions anyway. The database community has conflated window size with the
time someone is prepared to wait for an answer. This approach separates these
concerns.

8. Classification of Uncertainly (Avi Gal); Uncertainty exists in many EP
applications. An event is subject to:

a. Uncertainty as to whether a given event actually occurred or not, for
example imprecision in a sensor detecting a physical event such as
temperature threshold crossing

b. Uncertainty regarding the accuracy of attributes of an event
c. Uncertainty of the origin of an event

Composite (derived) events are subject both to uncertainties in the ingredient
events and, in some cases, to uncertainties in the inferencing rules. For example a
CEP rule to detect illegal trading can yield false positives or false negatives, i.e.
Uncertainty over Occurrence. Event Processing needs to allow for this uncertainty,
and in some applications it is appropriate to assign uncertainty probabilities -
possibly even carrying them in event instance messages.

9. Closing comments (Opher Etzion); Opher proposed semantics for events,
including metadata (such as source, timepoint/interval, spatial coordinates, and
uncertainty). Defining the timepoint of a complex event has some challenges.
He described an Event Processing network being made up of Nodes and Channels
and presented a list of possible Event Processing node types. There was some
discussion of the distinction between Translator and Aggregator nodes - are they
distinguished from each other by state holding or by the cardinalities of their
inputs/outputs?

12

A concept such as Context is needed to partition an event cloud, either by time,
space or some other property.
Alex Buchmann asked how/when events are “retired” i.e. disappear from the
cloud. Opher suggested it was a property of the channel. Peter Niblett questioned
whether EP systems had to provide explicit “delete” operations, or whether it was
possible to avoid them. Experience with distributed OO systems suggested it
would be good if we could avoid having explicit delete. He suggested that the
question of event lifecycles was a topic for further discussion - possibly
appropriate as a research topic.
Francois Bry commented that there was a very wide range of EP applications and
that finding a common set of semantics would be difficult - much harder than for
static database queries.

Session 3 - Modeling
1. Methods and Tools (Mikael Berdtsson); Mikael observed that there was a

pressing need to develop methods and tools for EP programming, otherwise the
subject would not progress, as happened to Active databases in the 1990s. He
asked a number of questions:

a) Do we go for an implicit modeling approach, where you use traditional
modeling diagrams and simply infer rules from them, or instead go for an
explicit approach where events and rules are modeled as first class things?
If we go for the explicit approach, what kind of UML diagrams do we
extend?

b) Do we need a Rule Markup Language?
c) What guidance do we give an engineer as to when to use rules, and when

not to use them?
Audience discussion:

Harald Schoning: Are we at a position where we can answer these questions?
Mikael: No
Antonio Carzaniga: Why do we need to give advice? Why not let people
choose the most appropriate approach?
Mikael: They are asking for help. Of course it’s up to them in the end, but we
should give advice
Tore Risch: If it’s a simple database query or if they want to use a stored
procedure then they don’t need events/triggers. But now suppose they have a
master database and several people interested in observing changes to it.
That’s a case where triggers are appropriate.
Alex Buchmann: People have been trapped into thinking that event
processing requires rules. You can do simple event processing without rules;
events can be consumed by applications, not just by rules. We should decouple
the idea of events from the idea of rules.

2. Business Activity Monitoring (Tobias Blickle); Tobias discussed requirements

for modeling from the BAM perspective; we need to consider how to model rules
and events in a way that makes sense for Business users, not just software
engineers. For example in an IT helpdesk dashboard the users understand things
like Exceptions and KPIs, they need to be able to specify rules in a way they can
understand.
Tobias provided a Process view example. The user establishes a KPI, say the

13

average time taken to handle a customer call, and wishes to track when that KPI
exceeds a threshold. Another example is where the user wishes to detect if
structural requirements are being violated. Today the user has to program such
rules in a programming language. This may be Visual Basic, but it is still a
programming language and not really sufficiently abstract to be given to
customers. Processes themselves are modeled using EPC (Event Process Change).

We need to decide what kinds of things to model, and if there is a large number of
rules how we can express them in way that users can understand the rules and all their
interactions.
3. WS-Topics (Peter Niblett); Peter reviewed the OASIS WS-Topics specification,

as a way of grouping different kinds of event, and classifying them. It is part of
the WS-Notification standard and can be used when formulating subscriptions, or
when advertising ones ability to emit certain kinds of events. It is assumed that
event types can be described via XML schema (though the event instances
themselves do not have to be represented as XML messages). The relationship
between Topics and types of event isn’t necessarily 1-1, a particular event type
can be classified under more than one Topic, and a given Topic can contain
multiple event types. Also a Topic can contain an XPATH predicate to constrain
an event instance more precisely than the XML Schema type can.

4. Event Algebra (Annika Hinze); Annika proposed an abstract event composition

meta-language that could describe any of today’s composition languages. The idea
would be not to displace these languages but rather produce a modeling language
into which all the existing languages could map without losing precision. This
required understanding the detailed semantics of all these languages, and making
sure that meta-language was rich enough to express all the different ways these
languages handled things. She has defined such a meta-language and is now
working on a Meta Event Processing Network definition. There was much interest
and discussion. Two of the points raised

a) In a nested expression, should attributes of the top level be inherited by the
sub-expressions?

b) The usefulness of the system would be improved if it didn’t assume a
global clock.

5. Business Performance Observation Model (Henry Chang); Henry described a

model for monitoring and dynamically managing business processes. A manager
wants to make sure that everything is running ok, and also achieve continual
process improvement. Events are used in two places. Firstly events from the
business process system itself (either state changes or current status summary
events) are monitored and used to update the monitoring context. This contains a
set of metrics (things like KPIs are included here). XPATH 2.0-based maps are
used to define this mapping of events to metrics. This mapping can include current
metric state as well as the incoming event data. There is a special kind of Boolean
metric to represent a Situation. A Situation triggers a Decision Map which decides
how to react to the situation. Status reporting (e.g. Dashboards) report on the
values of metrics and also list significant events that have happened (what is
counted as “significant” can depend on the current state). Relationships are
modeled in UML. Henry suggested that Event specifications should also include
metric definitions

14

The Third Day: Wednesday

Continuation of Session 3 – Modeling

6. Challenges in forming meaningful rules (Vijay Dialani); Vijay outlined 3

challenges:
a) Are the rules observing meaningful data? When designing rules you want

them to exclude outliers from the input data, but how do you distinguish
interesting data from outliers? When formulating a rule you often have
some preconception of what the data is like and you design the rule using
that assumption about the data. If the actual data fits that assumption then
everything is all right, but if it doesn’t then static rules may not produce
useful results - a more adaptive rule approach is required.

b) How can we tell whether the rules are sufficient to warrant the results they
produce?

c) How can we find new rules? Classical data mining provides ways of
examining a data set to discover common patterns. Can we apply a
Markov data cube approach to Event Streams?

Opher commented that you cannot infer causality just because you detect a
correlation in data. Would this approach allow you do detect causality?
Vijay replied that just looking at the cube would not tell you about causality,
but you could also look at the timing of events.

7. Filters and Composite Events (Susan Urban); Susan discussed the modeling

aspects arising from her Tuesday talk (which described pushing some event
processing down into the event definition). She argued that Event Processing
should be modeled using a higher level of abstraction than SQL expressions (or
other query languages) provide. She posed two questions

a) How much of the Filter should be pushed down into the Event definition
or Stream query? Things like the SEQ operator probably should not be

b) What is the separation between event filters and rule conditions?
She outlined two desirable features of rules

� Termination. Where rules are allowed to call other rules you get the
possibility of infinite cycles

� Determinism (confluence)
These issues still exist when processing is pushed down into the Event definition.
Susan then outlined 3 challenges:

i. How to create meaningful composite events? We need to be able to
involve domain experts, but this is not sufficient. We also need to
mine historical events in order to formulate new composite events
(rules)

ii. Assuring termination and confluence
iii. Developing useful and meaningful dashboards

15

Finally she commented on the paradigm shift question. In her opinion the real
shift would be the emergence of pro-active, reactive and interactive computation.
Event Processing will be an enabling technology for this shift.
Alex Buchmann commented that Termination and Confluence problems occur if
you allow rules to trigger other rules, and can be avoided if we limit actions so
that they just operate on incoming event streams (i.e. if you just do monitoring not
activation).
Susan replied that this might be an interesting research area. Termination and
confluence had been problems with active databases, so might be issues here as
well.
David Luckham and Peter Niblett expanded on Susan’s challenge a). There are
three parts to the problem

� Is the “language” used rich enough to be able to express all the kinds of
composite events/rules we need?

� How can we make the composite event definitions (rules) adaptive? In
some applications (for example fraud detection) the system needs to be
able to react to changing circumstances and adapt the rules. Can this be
done if we embed the rules inside composite event definitions? A
particularly interesting case is intrusion detection, where you might want
to allow intruders a certain amount of access for a limited time in order to
gather evidence about them before blocking them.

� How do we best involve domain experts in the definition of rules? For
example in the Patient Health Monitoring (scenario 2 from the Monday
session) we need to involve patients, nurses and doctors. What kinds of
user interface are appropriate?

8. Classification of Uncertainly (Avi Gal)

Avi discussed the modeling aspects arising from his Tuesday talk. He proposed
the following research goal “A language and execution model for the inference of
uncertain events in active systems”.
Avi then reviewed some work in progress to apply Bayesian networks and
probabilistic queries to unreliable/noisy sensor networks. We start with the
definition of an Event History as a time ordered set of Events, bounded by a start
and stop time. The uncertainty surrounding the events means that we cannot be
certain whether the events actually occurred, and if they did occur we can be
certain when they occurred or whether the reported attributes of the events are
accurate or not. So instead of considering just one event history we are faced with
a set of possible event histories. We refer to each of these as a “Possible World”,
each of which can be assigned a probability. The problem is that as time
progresses the number of possible worlds increases rapidly. To ease the
computational problem that this poses, we instead assign a Random Variable to
represent the uncertainty associated with each specific event, and then represent
the Event History as the set of the RVs of all the Events that could occur. We then
build a Bayesian network, however this is also computationally challenging. The
basic idea is to take each rule and mark it up with a “with probability p” factor to
be applied in event histories where the condition holds
Avi also outlined the issues that applied to this probabilistic inferencing:

� Indeterminism (confluence). This can be resolved by defining an order
of rule evaluation;

16

� Termination Can be solved by allowing each rule to be triggered only
once

� Correctness. How can you be sure that the overall probability space
adheres to specified semantics? This is done by adding semantics to
the Bayesian network

� Efficiency. How can you maintain efficiency given that the Bayesian
network is being constantly updated?

Avi discussed two approaches to the efficiency question. One is to do smart
updating of the network, the other is to use a Monte Carlo sampling technique that
bypasses construction of the network.
Jonathan Goldstein commented that the non-deterministic sampling approach
was interesting; he wondered how it would work with Join and other operators. He
thought that you wouldn’t be able to use a Monte Carlo approach with a Top-k
aggregation.
David Luckham said he could see an application in the area of fraud detection.
He asked how quickly probabilities declined to a point where the event could be
ignored. Avi said this would partly depend on the input event probabilities.
Francois Bry observed that causality should be built into the system, since this
would help with probabilities. For example we might know that a given sensor
always sent a pair of events (the original event and a confirmation) and this
knowledge should be used - Bayesian networks aren’t an appropriate way to deal
with that kind of knowledge.

9. Applications of the Snoop framework (Sharma Chakravarthy); Sharma had

looked at a number of novel applications and to see if they could be handled by
the Snoop framework. The application scenarios were

a) Clean room manufacturing. The University of Texas has a manufacturing
facility for teaching purposes. However technology change means that this
has to be replaced every 5 years, which is very costly. The idea here was to
do a software simulation instead of buying real machines. This simulation
had worked well.

b) Distributed plans. In this scenario military plans were held in 3 databases,
but the plans needed to be changed once the military operation was
underway due to some external circumstance, for example a change in the
weather, and these changes needed to be propagated across the databases.
This scenario required flexible transactions, and the ability to monitor both
the user data in the database and system data such as utilization. Snoop
was used to add additional transaction semantics that were needed (for
example nested transactions) to the database. To do this they intercepted
things that happened in the database (begin transaction, commit transaction,
acquire lock. release lock etc) and turned them into Events that were
handled by the Snoop framework.

c) Traffic monitoring. The application here is to look at incoming traffic data
and trying to spot accidents. One marker for an accident might be a car
becoming immobile and other cars in the same segment reducing speed by
more than 30%. They had tried using just Continuous Query, but found
that it was better to use it in combination with CEP style event processing.
To do this you split the processing into three stages, with a reduction of
data at each stage. The first stage uses Continuous Query style Stream
Processing to look at the incoming streams of data and generate events

17

when it detects significant situations - in this case when it detects a car that
has stayed in the same road segment for 2 minutes, or a car that has
reduced speed by more than 30% in 2 minutes. The second stage takes
these events and uses Snoop-style ECA to detect complex events (in this
case "accident happened"). The third stage is then to use Rules processing
to determine an appropriate action.

d) Hospital Hygiene. The application here is to enforce hospital hygiene
policies by tracking the movements of hospital workers and controlling
door locks. For example the hospital might want to prevent a worker
moving from an infectious disease ward to a maternity ward without first
passing through a disinfection station. They found that Snoop could not
handle this application without some extensions, for example to emit
events part-way through the detection of a composite event. Opher thought
that you would need to add attributes to events and this went beyond
traditional ECA.

Session 4 – Implementation

1. Introduction (Alex Buchmann); Alex outlined four things that implementations
had to contend with:

a. Dealing with heterogeneous Events
b. Event delivery and composition in a (multi-server) distributed system
c. Transactional semantics - in traditional transactions systems there is a

central server that manages transactions, in Event Processing the consumer
of the events needs to control the transaction and mediations need to be
involved as well.

d. Management scopes
He then discussed the last 3 of these

� Distributed systems:
There are problems of time stamping, ordering and clock synchronization in
distributed systems. These things are important to applications, but in a
distributed system there is always a degree of uncertainty. For example we
cannot guarantee both timeliness and absolutely correct ordering of messages.
In many cases these things can be resolved at the application level, and the
problem when designing generic middleware is that the middleware cannot
absorb the semantics of all its applications - so how do we make the split
between the application and the middleware? Alex proposed the dictum that
“the middleware must not lie” and that it should leave the application to sort
things out in a way that is suitable to the given application. If we know that
there is a guaranteed upper bound on latency in our network then things
become easier - we can use a “2-g precedence” approach. However we can’t
make such latency assumptions about large-scale networks like the Internet.
The best you can do in these scenarios is to ensure that two events from the
same source stay in the same order. You can also have a global time service
which sends out “sweeper” heartbeat events to all participants. To handle
different kinds of deployment, then we need a more flexible kind of timestamp.
Alex proposed a Timestamp object that had before () and after () methods on it.

18

The implementation of such a timestamp could then be different, depending on
the accuracy of the clocks available in the system.

1. If the system has a single clock, then implementing before() and
after() is easy

2. If the system has 2-g precedence then again the Timestamp can
implement before() and after() without difficulty

3. If there is known accuracy interval then the methods can return a
definite answer in some cases, but if the time is unstable then the
method have to return indeterminacy.

� Transactional Semantics
In publish/subscribe systems the producers and consumers of events aren’t
directly connected, but instead are decoupled by mediation. In many cases we
wish to control the transaction used to consume the event from the consumer
itself (in contrast to a normal object request where the transaction is generally
controlled by the issuer of the request). So we need to extend the atomicity
sphere to include the consumer. There are several possible transaction
patterns, formed from combinations of the following:

a. The Visibility of the Event. The event could become visible to
consumers as soon as it has been published, only when the
producer has committed its transaction, only when the producer has
aborted its transaction, or "deferred" which means when the
producer starts to commit its transaction.

b. Propagation of the publisher’s transaction. The choices here are to
propagate it (so that the consumer receives in the same transaction)
or not. If the transaction is not propagated then there is a choice of
whether to start a separate transaction for the consumer or not.

c. Forward Dependency, this can be None, Commit or Abort. Commit
means that the Consumer’s transaction can only commit if the
Producer’s transaction commits, and Abort means only if the
Producer’s transaction aborts.

d. Backward Dependency, this constrains when the producer’s
transaction can commit based on the consumer state. It can be
None, Vital, or Mark-rollback

e. Production of the Event could be included in the Producer’s
transaction or not

f. Consumption of the Event could be included in the Consumer’s
transaction or not.

These have been implemented by Stefan Tai of IBM Research in the X2TS
middleware service.

� Scopes
Publish/subscribe systems sometimes need to provide scoping arrangements
such that certain consumers can only receive events from certain other
producers. An example would be a wireless sensor network that is monitoring
cargo containers. Each container might have many sensors reporting
conditions in the container, but you don’t want everyone to be able to receive
that information. Scopes need to be hierarchical in nature, and each scope
contains a set of producer and consumer nodes. The scope defines visibility of
events and the ability to run certain tasks. Alex described an experimental
system where each node was given a set of static and dynamic properties

19

which determined its scope - the dynamic properties allowed membership
changes to occur.

2. Oracle’s Event Technologies (Dieter Gawlick); Dieter gave a review of the
various technologies that relate to Event Processing in the Oracle database

a. The first of these is the database Trigger mechanism. This has strange
transactional behavior and wasn’t designed for EP. Dieter’s recommendation
was not to use database Triggers for EP.

b. Messaging. The Oracle database provides a messaging system that is like JMS
but with extensions. It is suitable for business messages, but not for everything
- for example it shouldn’t be used for high volume messages like stock ticks.
The extensions beyond JMS include multi-consumer queues, delayed delivery
and SQL access. The advantage of using Messaging in the database is that you
avoid 2pc when combining a messaging operation with a database update, and
you inherit the database’s reliability, security and management models. SMP
exploitation allows it to scale to 4000 messages/second. There were some
technical challenges implementing this messaging such as index balancing and
timing issues with multi-processors. Also the database needed to implement
Skip Lock.

c. Rules. The messaging system allows subscriptions that include SQL rules
selectors, and they also have an explicit PL/SQL-based subscription interface
that applications can use directly. SQL only allows structures to be defined
that are contained within tables in the database, and to support event structures
that don’t appear as rows in a table required 6 month’s re-engineering. They
now support Expressions as a data type and you can express subscriptions as
rows in a table. This was highly scalable - a table can contain a million such
subscription rules. These Expressions can refer to Data within the Event
Message or data within other tables, and they allow subscriptions that are
much more powerful than regular pub/sub, e.g. “Select consumer within a 5
mile radius”. Dieter mentioned some other things that you could do with
Oracle messaging that you can’t do in standard pub/sub. These included
ordering of subscribers and the ability to define Mutual Filters.

d. Rules Manager. Expressions in the database can be used to do ECA-style
Complex Event Processing. There are expressions for Conjunction,
Disjunction, Sequencing, and Non-Occurrence. These rules can be grouped
into hierarchies and can be nested and re-used.

e. Flashback. This is a feature of the database which has been there for twenty
years, but which has uses for EP. Each time an update is made, or a timer tick
occurs the database state is logically saved (you can choose what is actually
archived). A Flashback Query allows a query to be executed as if it were at
some time in the past, a Flashback Version Query allows you to see all
versions of a row between two specified times, and a Flashback Transaction
Query allows you to see the changes made by a transaction.

f. Continuous Query Notification. Users and applications can register Queries in
the database in a completely declarative manner, and receive in-memory
notifications. These are transactional but not persistent. However they can be
used against historical data using the Flashback capability. This allows you to
try out a new Query against historical data before deploying it against live
input streams.

20

The fourth Day: Thursday

Session 5 - Positioning of SOA/EDA/BPM/CEP

1. David Luckham; David stated that SOA/EDA/BPM/CEP are all complementary.

Here is a rough transcript of his words:
“What we are talking about here are Design Philosophies. Design Philosophies are
important because they persuade people in business that hold the purse-strings that
it is time to dip into their pockets again. These people have heard many promises
over the last 20 years and each time they have been disappointed. Now we need to
persuade them to dip into their pockets one more time, for Event Processing. Our
story has been complicated, fuzzed up one might say, by all the buzzwords that
are bandied about in the industry. For example there is much argument at
conferences about the definition of SOA - even Wikipedia admits that there is no
agreement about what SOA is. So let us start with the definition of a Service as a
Function with two top-level concepts: Modularity as defined in Computer Science
and Remote Access. Modularity means that Services have Interfaces and Metadata,
and they can be logically grouped together to form Modules. The separation of
implementation from interface means that, in theory, a user of the service does not
need to know details of its implementation; indeed the implementation can be
changed without affecting the users.”

“Remote Access has typically meant access by Request/Reply message exchange
patterns (also referred to as Remote Procedure Call). This is the 2001 version of
SOA, based on CORBA. We all know that this is inefficient and waiting for
replies leads to long delays. A better approach is to use Event-Driven remote
access, where all interactions are via messages - let us call this ED-SOA (Event-
Driven SOA). The downside of ED-SOA is that it opens up a lot more
opportunities for crooks, and the fact that it enables much higher volumes of
events brings scalability challenges for implementers.”

“You can think of SOA as a design methodology for EDA applications, or putting
it another way an EDA is a SOA in which all services are reactive event-driven
processes and all communications between services is via events. SOA can be
applied to Business Processes to make them easier to build, and Business Process
Monitoring (BPM) systems are examples of ED-SOAs, where CEP is used to
monitor the Business Processes. But you can go further and collapse the
monitoring and feedback bits of BPM into the Business Processes themselves to
make autonomous Business Processes.”

Alex Buchmann asked about the role of data. Does data flow with events, or is it
another service?

2. A perspective from the field (Marc Peters); Marc, an IBM software IT architect,
gave his impressions on how EDA is being viewed by the Energy company customers
he works with. Events are used to start services or processes. Services are used to

21

capture, react to, or process events, and can themselves generate Events. Events are
often stored and also are used to trigger human activity. At present many events are
confined within closed - often proprietary - systems e.g. SCADA systems or IT event
monitoring systems.
Customers today have a mixture of different infrastructures, some use message
oriented middleware, some have started with Service Orientation, and some haven’t.
Most have Business Intelligence systems. The only common factor is that they all
store data. Going forward they are looking to gain flexibility by using SOA and
applying BI principles to streamed data as well as stored data. They are also interested
in integrating events from sensor networks with their business systems.
Comparing SOA and EDA, Marc thought that both were architectural styles which
handled separation of concerns and lifecycle/governance, and which could be
implemented separately or together. EDA is often referred to as decoupled, as
opposed to SOA which is loosely coupled - but things aren’t as simple as that.
Marc concluded that the value of EDA, BAM, SOA could bring value to customers,
but the value had to be proven before we would see widespread adoption. EDA needs
an Entry Point - BAM is the most promising but RTE (Real Time Enterprise) is also a
possibility.
Dieter Gawlick commented that we need to consider data and its consistency;
otherwise this is a house of cards.

3. Roy Schulte; Roy started by saying that, to the analyst, SOA was Business Process
Re-engineering 2.0. The key issue was aligning the IT design with the business
architecture. In SOA we replace monolithic applications with multiple services owned
by different autonomous business units. However the definition of SOA depends on
who you talk to. It has been applied to
� Any distributed application
� Any system with well-defined interfaces
� Anything with WSDL
Roy suggested 5 principles for SOA

i) Modular design
ii) Modules can be distributed onto different servers
iii) Interfaces that specify explicit contracts, a third party can find out

about a service by examining its contract
iv) Separation of interface from implementation
v) Services are serially reusable

Events can appear in several contexts. They can be passed as Messages in their own
right, they can be passed as arguments in a RPC-like Request/Reply message
exchange, or they can be stored in a file or database (Events at Rest). Roy suggested
that we use the term EP to refer to all processing connected with Events, and use the
term EDA to refer to Events passed as Messages. In traditional Request/Reply the
interaction is initiated by the Producer and the Service responding to the request is
known to the producer; in EDA neither of these is true, the interaction is initiated by
the Consumer, and the Consumer is unknown to the Producer.
Roy also suggested that we should use the terms SEP (Simple Event Processing) and
CEP to refer to the processing applied to Events, regardless of whether they are
passed as Messages, passed as RPC parameters, or stored in databases.

4. Shared Model - Mani Chandy; Mani started by saying that one of the objectives
of Dagstuhl was to achieve coherence, and interestingly the idea of achieving

22

coherence is important in event-driven communications. If two people have been
married for a long time they develop a common shared model of the world, which
forms an implicit contract between them and they only need to communicate if
something untoward happens that affects that model. In the same way if you take a
network of intelligent servers you can consider them as all sharing a common model
and each server only needs notify the others if it detects something that deviates from
that model.
Mani applied this to Katherina Hahn’s avalanche prediction scenario. If the base
station and the sensors were to have a shared model for what the air pressure should
be, then it would not be necessary for each sensor to notify the base station every time
it detected a change in pressure, it would only need to notify it if it detected a change
that deviated from this model. Similarly in the healthcare scenario; where the problem
is information overload and a flood of false positives, the system needs to make sure it
only communicates events to the end-user that deviate from that user’s model. In this
scenario you can observe a progressive filtering of events as you go from the sensors
themselves, to the monitoring equipment, to the nursing staff, and then to a succession
of more highly paid doctors. At each stage the receiver of events has a more
sophisticated model and a lower tolerance of false positives. So you would expect a
large number of false positives at the early stages of the filtering process, and a much
reduced number at the final stage when the most senior doctor is called in. Security of
the shared model is also important, particularly in military applications. We often
think about protecting the events and information but it is also important to protect the
model.
He then turned to the discussion of SOA and EDA, and asked what is different now.
He thought the many difference is that Enterprises are now looking outside. From
1960 to 2000 the focus of ERP systems was on managing things inside the enterprise
where things were more or less under control. Data was reasonably reliable and the
enterprise could choose the schemas used to represent it. Now enterprises are
becoming more reliant on data supplied by partners - for example an energy trader
needs data from its suppliers. This means the data is going to be less reliable so
probabilistic approaches like those discussed by Avi Gal are becoming more and
more important. The probability issue is related to the partial data question discussed
by Jonathan Goldstein. Under what circumstances should you notify someone of a
compound event if you have only got partial input data? This depends on the tolerance
of the consumers towards false positives, and their ability to handle later retractions.
This brings us back to the idea of producers and consumers sharing a common model.
We can apply the shared model idea to the SOA/EDA question. In a Request/Reply
paradigm the caller has complete control. It submits a request and gets a well-defined,
deterministic result. This is easy to understand, explain and teach to people who are
learning to program. However it is not the paradigm used in Multiplayer Online
Games, which instead use the shared model approach (avatars only signal events that
affect the shared model, just as a frog’s eye doesn’t return everything it sees to the
frog’s brain) - and as we can expect more new programmers to be familiar with such
games it should become easier to explain the shared model approach. You can view
BAM as using a shared model – it’s the set of KPIs that constitutes the model.
Mani related the idea of the shared model to the idea of Topics as discussed by Peter
Niblett. You can view a Topic as a set of models, and by subscribing to a Topic you
indicate that you understand those models and therefore wish to receive events that
relate to it. These could either be events that deviated from/change the model, or
“continuation events”. He thought that the WS-Topics specification presented by

23

Peter had some problems, as it didn’t enforce a relationship between a Topic and a
SubTopic. It also tied Topics to Event Schemas.
There has been a lot of theory on data models, and we now need to move forward to
Reality models. Vijay Dialani had talked about Statistical models, Reality Models
and BI models, so we can see there could be a stepwise refinement of models with a
separation of concerns between these models. Given the success of data models it is
possible that adding time into the model might give a useful Reality model, when
taken with some of the capabilities discussed by Dieter Gawlick such as Flashback.
Mani concluded by saying that several of the talks had shown there is a confluence of
Event-Condition-Action with sensor networks and messaging. The idea of a shared
model is central to this convergence as it is all about how you understand reality.

Continuation of Session 4 – Implementation

1. Sensor networks and Grid-based EP (Eui-Nam Huh); Eui-Nam described a

project involving wireless sensors (connected to the human body), realtime
processing and Web 2.0. Wireless sensor networks (using 802.15.4) are fairly
mature, but suffer from errors and lost data. What they needed was integrated
technology for sharing real-time events efficiently. It has to be capable of
handling large volumes of events and provide functionality such as storage,
transformation, aggregation and derived events (periodic or a-periodic). They had
looked at Grid standards, and selected OGSA-DAI (an extensible framework for
data access and integration) and the INFO-D dissemination service, with the EAQ
event aggregator. The hardest thing to implement was the matching between
publishers and subscribers, and they had to develop their own algorithms for this.
They used a Class Group Matching approach, where each subscription were
described using ranges, and then the matching process was optimized by grouping
subscribers together. They did a three pass match, the first pass being a course one,
the second a dynamic fine-level match and the third step being an exact match.
Doing the process this way saved 2/3 of the matching time, when compared with a
sequential match process.

2. Denial of Information Attacks in Event Processing (Calton Pu); Calton said

that his aim in this talk was to make us all feel insecure. Spam and Denial of
Information is a real problem for email, and we can’t assume that Event
Processing will be immune from the same kinds of attack. He started by
quantifying the email problem. In the first quarter of 2006, the Messaging Anti-
Abuse Working Group analyzed 390 Million mailboxes and found that they had
blocked 370 billion emails out of total of 460 billion - i.e. 80% of all emails. A
fair number of the 20% that get through are still Spam, In Calton’s case he
reckoned that was another 80% so that meant that only 4% of the mail addressed
to him is legitimate. The problem is that it is easy and cheap to generate Spam;
Moore’s law helps the spammers. The problem is not restricted to email. There’s
also Web Spam (20% of static pages are spam), Blog Spam and Spit (Spam Voice
over IP). He then gave a brief history of the arms race between Spammers and the
Spam filters - simple keyword filtering had been circumvented by spelling
mistakes, blacklists circumvented by spoofed headers, use of image to defeat text-
based anti-spam filters, use of wavy text in images to defeat OCR anti-spammers.
One of the problems is that Spammers are able to register their own accounts with
mail providers and so they can spam themselves - continually tuning their spam

24

until it gets through. The time lag between a spammer finding a way through a
filter and that way through being blocked off is sufficiently large that spamming is
profitable.
There is no end in sight to this arms race, but some spam filter approaches can be
quite successful. The most promising is to look for emails which contain
deliberate misspellings of keywords (such misspellings would never appear in
legitimate messages), and simply block these regardless of how much innocuous
camouflage the email contains.
In answer to questions, Calton said it was thought that were only about 100
spammers in the world, mostly in Florida, but it was very hard to prove that
someone was a spammer so catching them wasn’t a viable option. There was a
discussion of whether there was a way to remove the financial incentive.

3. Content-based subscriptions in distributed networks (Antonio Carzaniga);

Antonio discussed approaches to implement content-based publish/subscribe
using a network of brokers. The quality of service to be provided is "best-efforts".
Each consumer provides a filter expression and the idea is to distribute the
filtering among the brokers to achieve the desired result in an efficient fashion.
The challenges faced in the general case are

1. Matching between producers and consumers when they use different terms
in their filter to refer to the same content (e.g. Soccer and Football)

2. If the network consists of multiple autonomous regions, that the owner of
each region is unlikely to allow internal routing information to be
disclosed to other regions

3. Complexity of the content-based selection
4. Choice of routing protocol
5. Consumer privacy. A consumer’s selection filter might reveal sensitive

information about that consumer. The owner of the filter might not want it
propagated to other servers.

6. Criteria for evaluating the efficiency of the system
Antonio showed results of a couple of routing schemes. He evaluated them by
looking at the time to achieve stability if there was a change of subscribers,
amount of false positives, e.g. messages delivered to consumers that did not match
their filters, and memory consumption at each node. Another criterion would be
time taken to do the match. In particular he was concerned about the memory
usage as the number of producers, consumers and network nodes increased.

4. High Performance BPM (Lingzhao Zeng); Zeng talked about techniques to

improve BPM performance - in BPM we take events and use them to update
metrics, we then analyze the metrics to detect Situations. The individual event
filters are quite simple, but there can be a large number of them and there is also
the requirement to persist data. He examined three techniques

a) Model driven transformation - The idea here is to refactor the observation
model at deployment time in order to optimize runtime access. You can
rearrange the data to make the access more efficient. You can also
generate custom Java code and pre-compile it rather than using general
purpose evaluation engines. At the same time you can generate the SQL
statements needed to persist the data, and generate an in-memory
materialized view.

25

b) Cluster exploitation - Distribute the queries across a network of processors.
The difficulty here is partitioning the work so that rules that update the
same metric don’t execute concurrently. It is also hard to maximize CPU
usage at each node.

c) Execution optimization - Henk de Man asked for more details, Zeng
indicated that he would be publishing a paper in the IBM Systems Journal.

5. Twelve theses for Reactive Rules (Francois Bry); Francois Bry is a member of

the W3C Rule Interchange Format working group (part of the W3C semantic web
activity). He started by saying that a lot of people had been dreaming of a
universal rules language. The idea of this was that you could translate into this
universal language from any existing language without loss of information. He
was dubious about whether this was possible, but said that reactivity was
important, especially in adaptive Web services, and so instead focused on
characteristics that such languages should possess (we are talking here about high
level languages which are abstracted away from any communications or
implementation details). He presented 12 theses which are available in his
presentation at
http://kathrin.dagstuhl.de/files/Materials/07/07191/07191.BryFrancois.Slides.pdf
Opher commented that we had fixed on ECA back in 1994, but it was now time
to move on. Dieter Gawlick said that CEA was important as well. There was then
a discussion about whether there was a real difference between Event and
Condition.

6. Event Processing and Publish/Subscribe (Arno Jacobsen); Arno’s main thesis

was that Event Processing should be based around content-based
publish/subscribe. This could be implemented either as a centralized broker or as a
network of distributed pub/sub agents - the choice of implementation topology
was immaterial to the pub/sub abstraction. He gave an example based on
shopping at a website like Amazon. During the course of your normal shopping
the website builds a profile about your shopping habits. When you visit a new city
the website could push you a message telling you about books in stock at a local
bookshop. He classified publish/subscribe systems into four types: Channel-based,
Topic-based, Type-based, Content-based, and State-based. There’s now a variety
of hardware implementations of publish/subscribe available. Arno is researching
into expressive subscription languages, matching algorithms and routing protocols.
He also has a project called PADRES which is looking at using publish/subscribe
in connection with Business Processes. The idea is to take business processes
expressed in BPEL and execute them over a publish/subscribe infrastructure (it
needs a database as well of course). The same infrastructure can be used both for
the Business Process itself and for any Monitoring of that process. The main
challenge is ensuring that it is robust. The administrator sets up an overlay
network of pub/sub brokers and the BPEL engine sends control messages to these
brokers to establish subscriptions - it translates dependencies between business
processes into subscriptions. This allows the processes to run concurrently on
different systems.

7. Parallel processing in Scientific EP (Tore Risch); Tore discussed some of the

implementation challenges arising from the LOFAR telescope project. The basic
approach is to define Continuous Queries running over windows in the streamed

26

data; these queries are continuous in that they continue to run until explicitly
stopped or until they detect a specific stop condition. The incoming data is time
stamped and the query functions are typically computing aggregates over the data.
There are several strategies for parallelizing this in a shared-nothing multi-
processor network, depending on the type of query

i) Window Distribution. Allocate different windows to different
processors on a round-robin basis

ii) Window Split. Distribute a single (large) window across multiple
processors. This works for some kinds of aggregation (e.g. FFT)

iii) PCC, a combination of the other two patterns where the stream
processing is split into separate steps and different partitioning can be
used at each step.

When deploying this to the IBM BlueGene with 100,000 processors the problem
becomes very dynamic. Finding processors becomes a database problem. The
Windows Distribution approach seems to work OK regardless of the number of
processors.
The processing has to be reactive, in that the processing required can vary
depending on the results being returned by the processing.

8. Event Processing in wireless sensor networks (Kirsten Terfloth); Kirsten

described the implementation of the Fence monitoring example. In doing this
implementation they had tried to achieve

a) Suitable abstraction from the particular hardware chosen
b) A modular design that could be reused in other application areas
c) A resource-aware implementation

She had designed some rule-based middleware called FACTS which provided an
event-centric language, based on named tuples (Facts) and algorithms (Rules).
There is a repository of Facts and Rules are triggered when a new Fact enters the
repository.
The processing in each sensor is split into several steps. The first step is to filter
the raw data via thresholds to generate raw events when a threshold is crossed. In
the second step they look at the number of raw events generated in a given time
(this step uses the FACTS language) and generates a new event if a sufficient
number of raw events were detected. In the third step the sensor node asks its
neighbors if they can confirm this observation. If they can then the sensor reports
the event back to the base station. It does this via multi-hop through the other
sensors.
The objective of the exercise was to validate the FACTS language, rather than
produce the ultimate physical intrusion detection system. The implementation of
the rules engine used 8kb of code in the sensors

27

The fifth Day: Friday

Final Session:

Recommended Research directions:

The organizers will provide a white paper about the research directions of what
agreed to be the most important topics to promote the state of the art in event
processing, with more details about each of them;
 Table 1 provides short description of the various in titles only.

Table 1:

Num Topic Short Explanation
1. Event Processing

Algebra
and meta-language

Unify all concepts from different industrial
implementation in a single algebra that will provide a
unified formal basis, and be a source of a common meta-
language that will be taken to standard: the different
vendors will be able to support it using various
implementations

2 Software
Engineering and
Modeling issues

Software engineering models and practices around event
processing will have crucial role in the practical success
of the EP disciplines; research topics include – model-
driven approach to EP logic specification, modeling
semantics in UML, design methodology, debug and
validation tools, non-technical people enablement (model
and visualization)

3 Implementation
issues

Optimization for various cases, parallel processing,
handling of high throughput, support in real-time
constraints, security issues, transactionality and
transaction models, inter-operability issues, hardware
acceleration

4 Pragmatic issues Involve academic people in common terminology;
getting use cases from industry (functional and non-
functional requirements) to academia, to help tune up the
research, teaching event processing courses, awareness
cross core research disciplines, clear positioning with

28

respect to “business rules”.
5 Various issues Event retention and vacuuming, handling of out-of-order

events, handling of uncertain event (various types of
uncertainty).

Short term action items:

1. Publish seminar material:
2. Advertising more EP oriented conferences/workshops:

a. DEBS - http://debs.msrg.toronto.edu/index.shtml Toronto, June 20-22.
b. ICDCS workshop (DEPSA) -

http://www.cs.uga.edu/~laks/depsa/index.htm Toronto, June 29
c. Third EPTS event processing symposium – tentative – Orlando,

September 17-19.
d. Gartner Event Processing summit –

http://www.gartner.com/it/page.jsp?id=502259&tab=overview,
Orlando, September 19-21

e. VLDB workshop (EDAPS) -
http://www.cc.gatech.edu/projects/disl/conferences/EDAPS/ Vienna,
September 24. Call for papers is still valid: May 18 – deadline for
abstracts; May 25 – deadline for Paper. Your next opportunity to
submit your work.

3. Publishing the seminar summary in ACM SIGMOD RECORD – get
awareness in the database community. The organizers are responsible – call
for volunteers to help will be issued

4. Participation in EPTS workgroups - calls will be issued.
5. Establishing Network of Excellence – EU: Alex Buchmann, Francois Bry,

Avi Gal – will make the initial approach and notify all interested parties.
6. Encyclopedia of Database Systems – solicit volunteers for event processing

terms. A call will be issued.
7. ACM SIG – there has been a long discussion for and against trying to establish

an ACM SIG in the current point. A (small) majority decided to proceed with
the application for ACM SIG. A call for support letters will be issued.

Long Term Actions – some of the initial actions are
short term:

1. Book of articles: A book that contains important articles in the state of the art
(both new and old, with copyright permission) has been proposed. A call for
editors will be issued short-term to jump-start this activity.

2. Teaching event processing: some courses already exist, typically in the level
of advanced/elective courses. A textbook is needed, but probably premature,
until we’ll advance in the common algebra/meta-language. Meanwhile, a
teaching portal with collection of teaching materials that already exists will be
constructed. A call for material will be issued.

3. Federated Conference: There has been a discussion about the need to have a
single annual conference, which may be a federation of several existing

29

conferences and workshops, but not associated with any major core-discipline
conference. Discussion among organizers of this year’s conferences and
workshops will be set.

4. Special issue of journals: Two proposals – a popular magazine (e.g. ACM
CACM or IEEE Computer) and scientific journal --- ACM/IEEE
Transaction… -- call for volunteers to pursue these journals will be issued.

5. Summer school: There was a proposal to do summer school on EP, an EU
network of excellence may be a way to fund such a summer school, thus this
item is tabled until further progress in the network of excellence is achieved.

6. Event processing journals: newsletter and transactions type journal – will be
proposed as part of the ACM SIG proposal.

30

