
An XML Framework for Integrating
Continuous Queries, Composite Event
Detection, and Database Condition Monitoring
for Multiple Data Streams

Susan D. Urban1, Suzanne W. Dietrich 1, 2, and Yi Chen1
Arizona State University
1School of Computing and Informatics
 Department of Computer Science and Engineering
 Tempe, AZ 85287-8809
2Department of Mathematical Sciences and Applied Computing
 Phoenix, AZ 85069-7100
s.urban@asu.edu dietrich@asu.edu yi@asu.edu

Extended Abstract

Current, data-driven applications have become more dynamic in nature,
with the need to respond to events generated from distributed sources or to
react to information extracted from incoming data streams. Event process-
ing and stream processing have traditionally developed as two separate ar-
eas of research. Event processing has its roots in research with active rule
processing (Widom and Ceri, 1996) as well as distributed systems (Muhl
et al., 2006), with a focus on composite event specification languages and
execution issues for detecting, broadcasting, and consuming streams of
events. More recently, data stream processing has developed as a new form
of data management, with a focus on the continuous execution of queries
over data generated from sensors or other sources that emit streams of data
that must be quickly analyzed (Golab and Ozsu, 2003; Arasu et al., 2003).
Research on data streams mainly focuses on continuous (and potentially
infinite) sequences of data, investigating query processing techniques that
can be “localized” to recently received streaming data using sliding win-
dows to handle the temporal aspects of the stream. Continuous queries for
streaming data are similar to past work with condition monitoring for per-
sistent data (Rosenthal et al., 1989). Condition monitoring has been used in
the context of condition-action rules in rule processing environments to de-
termine data changes, known as deltas, that affect the truth value of the
condition and to incrementally evaluate the query of the condition for effi-
ciency.

Dagstuhl Seminar Proceedings 07191
Event Processing
http://drops.dagstuhl.de/opus/volltexte/2007/1142

2

There are many complementary and synergistic relationships among
these different but related areas of research. In fact, it is our belief that the
future of dynamic, data-driven applications is found in the integration of
techniques from composite event processing, continuous query processing
for data streams, and condition monitoring over persistent data. As motiva-
tion for the integration of these research areas, consider the following ap-
plication scenarios from the medical and financial domains:

Medical Scenario: Medical monitoring devices often suffer from a condi-
tion know as alert fatigue, where too many false alarms are generated. As a
result, clinicians may ignore the alarms that are generated by such devices.
Since a patient can be given an agent intravenously that causes transient
physical properties, the monitoring process can be improved through the
use of contextual information. For example, chemotherapy patients are
sometimes given chemotherapeutic agents that will cause the white blood
cell counts, red blood cell counts, or platelet counts to drop two to four
weeks after the treatment. The decreases in these counts, however, should
not last for more than six weeks. Alert fatigue can potentially be avoided
by coupling the monitoring of streaming data from physiological monitors
with appropriate contextual queries over a patient’s electronic medical re-
cord.

Shopping and Credit Card Monitoring Scenario: Monitoring consumer
activity can provide a wealth of information to suppliers, retail businesses,
banks, and credit card companies. Suppliers could monitor streams of in-
formation about sales of specific items from clients. Coupled with client
history and rules about seasonal sales, this information can be used to plan
for future supply chain demand. Department stores can monitor the types
and frequency of customer purchases to offer customers special deals at
the point of sale or to assist call centers and service desks with information
about customer history and preferences. Businesses, banks, and credit card
companies can also work together to monitor sales, complaint, and return
activity that could indicate fraudulent behavior.

These are two different applications, and yet we can extract and gen-

eralize several similar requirements from each scenario. Both applications
involve the analysis of multiple streams of data. In one case, the data is ar-
riving from sensors attached to a patient; in the other the data is arriving
from multiple streams of events that are generated by application software.
Both applications require extracting information (i.e., events) from one or
more, possibly distributed, data streams. The extracted information must
be analyzed and possibly combined with other events in meaningful ways.

3

In both applications, however, the application context is extremely impor-
tant. In the medical scenario, we can avoid alert fatigue by combining the
analysis of sensor data with application rules that are coupled with infor-
mation stored in a patient’s persistent, electronic medical record. In the
shopping and credit card monitoring scenario, we can assist call processing
centers, employees at service desks, or point-of-sale cashiers in rewarding
good customers or detecting fraudulent behavior by analyzing events in the
context of queries and application rules against customer preferences, his-
tory, and credit card data. Furthermore, there are temporal aspects to each
application scenario, where the timeframe for the analysis of the data and
the composition of events is important.

As illustrated by the above application scenarios, ideally, research in
the areas of event and stream processing must converge to provide a more
effective way of extracting meaningful events from multiple, distributed
data streams. In response to this need, our research is addressing the de-
velopment of Distributed Event Processing Agents (DEPAs) that support
streaming, event-driven applications in the context of application knowl-
edge. DEPAs provide a conceptual language for the expression of compos-
ite events, an underlying XML framework for filtering and processing
composite events, and a distributed execution environment for processing
events from multiple streams.

The DEPA conceptual language framework is based on our past work
with the Composite Event Definition Language (CEDL) (Biswas, 2005;
Urban et al., 2006), which provides expressive filtering capabilities on
both primitive and composite events. The event operators of CEDL include
the OR, AND, SEQ, and TIMES operators (Chakravarthy and Mishra, 1994;
Gatziu and Dittrich, 1993). CEDL uses the recent (latest) and continuous
selection modes from (Chakravarthy and Mishra, 1994) for use with the
AND, OR, and SEQ event operators. The cumulative selection mode is auto-
matically provided with the use of the TIMES event, where all parameter
values of the same event type are formed into a collection associated with
a single occurrence of the TIMES event. The unique aspect of CEDL is the
support it provides for filtering of primitive events as well as filtering of
composite events and their associated aggregate values and timelines (Ur-
ban et al., 2006). CEDL supports the specification of basic parameter fil-
ters on primitive events; basic parameter filters on composite events, with
the ability to compare parameter values from the different events that
compose a composite event; time filters that limit the lifetime of composite
event detection; and indexed, aggregate and quantifier filters on cumula-
tive composite event parameter values. Composite events can also be com-
posed in a nested fashion to create more complex composite events.

4

As the underlying query execution framework, we are extending
XQuery to create Composite XQuery (CXQ), which supports the expres-
sive event filtering features of CEDL. An advantage of extending XQuery
in the design of CXQ is that input data streams and databases can export
an XML view, and queries on these various types of data can be expressed
in XQuery. Therefore we can seamlessly query streams in relational tuple
form and streams in XML form, as well as persistent relational databases
that add application context in the filtering process. The CXQ engine is be-
ing designed as an extension of ViteX, a streaming XPath engine (Chen et
al., 2006; Chen et al., 2005; Chen et al., 2004; Chen et al., 2002). The
CXQ engine will integrate continuous queries with condition monitoring
over persistent databases based on our past work with materialized view
maintenance and condition monitoring in the deductive data model (Harri-
son and Dietrich, 1992; Harrison, 1992) and condition monitoring in the
object-oriented data model (Sundermier et al., 1997; Sundermier, 1999).
Our work also includes the development of an architecture for communica-
tion among multiple DEPAs for sharing events, filters, and context data
sources.

Our approach to the integration of stream processing and event proc-
essing is essential to the support of applications such as those in the medi-
cal field for health monitoring, the financial domain for executive
dashboards, supply chain and other B2B applications for monitoring con-
sumer activity, or for autonomic behavior within computer systems and
embedded systems. With XML becoming a standard for data representa-
tion, our research will provide extensions to XQuery that will allow the
uniform framework of time-based composite event detection to streams of
data and events in different formats. On a broader scale, our research will
enhance the analysis of data and event streams through the use of database
context filters and through the correlation of multiple streams, thus provid-
ing a way of extracting more meaningful, application-oriented events from
streams of data in the support of dynamic, data-driven applications.

References

Arasu, A., B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein and J.
Widom. (2003) STREAM: The Stanford Stream Data Manager. In Proc. of the 2003
ACM SIGMOD Intl. Conf. on Management of Data.

Biswas, I. (2005) A Composite Event Definition Language and Detection System for the In-
tegration Rules Environment. M.S. Thesis, Department of Computer Science and Engi-
neering, Arizona State University.

5

Chakravarthy, S. and D. Mishra. (1994) SNOOP: An Expressive Event Specification Lan-
guage for Active Databases, Knowledge & Data Engineering Journal, vol. 14, no. 10,
(October), 1-26.

Chen, Y., S.B. Davidson and Y. Zheng. (2002) XKvalidator: A Constraint Validator for
XML. In Proceedings of 11th ACM Conference on Information and Knowledge Man-
agement (CIKM), pp. 446-452.

Chen, Y., G. A. Mihaila, S. B. Davidson and S. Padmanabhan. (2004) EXPedite: A System
for Encoded XML Processing. In Proceedings of 13rd ACM Conference on Information
and Knowledge Management (CIKM), pp. 108-117.

Chen, Y., S.B. Davidson and Y. Zheng. (2005) ViteX: A Streaming XPath Processing Sys-
tem. Demonstration description. In Proceedings of 21st International Conference on
Data Engineering (ICDE), pp. 1118-1119.

Chen, Y., S.B. Davidson and Y. Zheng. (2006) An Efficient XPath Query Processor for
XML Streams. In Proceedings of 22nd International Conference on Data Engineering
(ICDE).

Gatziu, S. and K. Dittrich. (1993) Events in an Active Object-Oriented Database System. In
Proceedings of the 1st International Workshop on Rules in Database Systems, (Springer,
September).

Golab, L. and T. Ozsu. (2003) Issues in Data Stream Management, ACM SIGMOD Re-
cord. 32(2).

Harrison, J. (1992) Condition Monitoring in an Active Deductive Database, Ph.D. Disserta-
tion, Arizona State University, Department of Computer Science and Engineering,
Summer.

Harrison, J. and S. W. Dietrich. (1992) Maintenance of Materialized Views in Deductive
Databases: An Update Propagation Approach. Proceedings of the Deductive Database
Workshop in conjunction with the Joint International Conference and Symposium on
Logic Programming, Washington, D. C., November 1992, pp. 56-65.

Muhl, G., L. Fiege,and P.Pietzuch. (2006) Distributed Event Based Systems. Springer (Ger-
many).

Rosenthal, A., U. S. Chakravarthy, B. Blaustein, and J. Blakely. (1989) Situation monitor-
ing for active databases. In Proceedings of the 15th international Conference on Very
Large Data Bases (Amsterdam, The Netherlands). Very Large Data Bases. Morgan
Kaufmann Publishers, San Francisco, CA, pp.455-464.

Sundermier, A., T. B. Abdellatif, S. W. Dietrich and S. D. Urban. (1997) Object Deltas in
an Active Database Development Environment. ''In Proceedings of the 5th international
Conference on Deductive and Object-Oriented Databases'' (December 08 - 12, 1997). F.
Bry, R. Ramakrishnan, and K. Ramamohanarao, Eds. Lecture Notes In Computer Sci-
ence, vol. 1341. Springer-Verlag, London, 211-228.

Sundermier, A. (1999) ''Condition Monitoring in an Active Deductive Object-Oriented Da-
tabase.'' M.S. Thesis, Arizona State University.

Urban, S., Ingrid Biswas, Suzanne W. Dietrich. (2006). Filtering Features for a Composite
Event Definition Language. Proceedings of the International Symposium on Applica-
tions and the Internet, Phoenix, Arizona.

Widom, J. and S. Ceri. (1996) Active Database Systems: Triggers and Rules for Advanced
Database Processing, Morgan Kaufmann Publishers, San Francisco.

