
BiCEP
Benchmarking Complex Event Processing Systems

Pedro Bizarro

University of Coimbra, DEI-CISUC
3030-290 Coimbra, Portugal

bizarro@dei.uc.pt

Abstract. BiCEP is a new project being started at the University of Coimbra to
benchmark Complex Event Processing systems (CEP). Although BiCEP is still
in the early stages, we list here some of the design considerations that will drive
our future work and some of the metrics we plan to include in the benchmark.

Keywords: Complex Event Processing, benchmark, synthetic benchmark,
events, response time, throughput, scalability, adaptivity, query processing

1 Introduction

A Complex Event Processing (CEP) system is a relatively new kind of software
system that is being cast as a fundamental central piece in a variety of scenarios that
deal with the detection of complex patterns within series of in-coming events (or
tuples or messages). Typically, the events come from many distributed sources, at
very high rates and possibly out-of-order. While it processes the in-flight events, the
CEP engine may have to analyze large amounts of historical data to be able to detect
the patterns of interest [10]. Examples of complex events are: atypical heart
sequences, interesting stock value patterns (e.g, the triple-bottom pattern [13]),
computer network intrusion, suspicious credit-card purchases, unsafe airplane flight
paths. Frequently, detecting an event represents very valuable information and
requires immediate follow-up action by another system or by a human. As such,
applications may require very short response times (e.g., sub-second or less) from the
moment the events arrive to the system until the CEP engine notifies the complex
event detection.

However, although CEP applications share common requirements, there is wide
variability in many others: some require 2D and 3D space operations, others require
the probabilistic prediction of future events, some require transactional guarantees,
some need millisecond response times while others can accept minute or hour
response times, some deal with just a few events per second while others analyze
millions or billions of events per second.

In spite of the lack of common CEP requirements, many existing software
companies, new startups, open-source groups and research groups are developing
their own CEP engines. Many of these new CEP engines have different architectural

Dagstuhl Seminar Proceedings 07191
Event Processing
http://drops.dagstuhl.de/opus/volltexte/2007/1143

2 Pedro Bizarro

heritages or inspirations: some are derived from rule-engines, others from data stream
management systems, still others from active or temporal database research, others
from messaging and queuing systems, while still others are being built from scratch.
These architectures seem to be too far apart: currently there are no agreed upon
terminology, semantic, query language, data formats, APIs, standards, or benchmarks
in the CEP community.

From a research point of view, the lack of common models, semantics, standards
and benchmarks makes the comparison of the existing approaches hard and hinders
the development of new algorithms and solutions.

The goal of the BiCEP project is to identify some of the core CEP requirements
and develop a synthetic benchmark (or possibly a set of benchmarks) to allow a
comparison of products and algorithms in spite of their architectural and semantic
differences. In the next two sections we describe some of the design considerations
and metrics we are planning to include in the benchmark.

2 Benchmark Design Considerations

A good benchmark should be relevant (or representative), portable, scalable, and
simple [8]. To be representative, a synthetic benchmark like BiCEP needs to mimic
the typical characteristics of the applications it models. In the 1st and 2nd Event
Processing Symposiums [4, 5], at the Dagstuhl Event Processing Seminar [6], and at
the International Conference on Distributed Event-Based Systems in June 2007 [9]
many use cases have been presented. Most fall into the following categories:
• Business activity monitoring
• RFID applications
• Event processing in workflows
• Risk and compliance applications
• Financial trading
• Health monitoring
• Telecommunications
• Military
• Transportation and assignment
• Scientific computations
• Intrusion and fraud detection

Although all users would prefer CEP engines that can cope with high event

throughputs and have shorter response times, applications for the different domains
above have very different performance requirements. Response time requirements can
range from milliseconds (e.g., for financial trading) to seconds (e.g., health
monitoring) to minutes or more (e.g., fraud detection). Likewise, throughput can
range from a hundreds of events per second (e.g., in health monitoring) to billions of
events per second (e.g., scientific computations). It is unlikely that a single-domain
synthetic benchmark is able to explore this wide range of performance requirement
scales. We expect that, even if delivered as a single benchmark, BiCEP will turn out

BiCEP
Benchmarking Complex Event Processing Systems 3

to be a set of small single-domain synthetic benchmarks with different data sets and
different queries.

The variety of CEP domains and the lack of standards in query languages and data
formats poses more benchmark design challenges. For example, unlike the exact
semantic meaning of SQL queries in TPC benchmarks [14], BiCEP will describe
queries in a meta-language or in English. Likewise, events may be produced in simple
formats (e.g., XML) and it will be left as a responsibility of the CEP engine being
benchmarked the transformation of the incoming events into its own data format and
the transformation of output events back into the benchmark format.

To properly measure all the event processing activity by the CEP engine system,
BiCEP will be designed to interface with the CEP engine as shown in Figure 1:
BiCEP will produce all the input to, and consume the result output from the CEP
engine being benchmarked. This model will guarantee that any buffering, event
cleaning or event transformation activity that happens at the CEP engine is taken into
account in the overall performance numbers. Given the lack of query language
standards, it is not clear yet which system should orchestrate query generation (shown
as a dotted rectangle in Figure 1).

Figure 1. The interface between BiCEP modules and the CEP engine

The benefits of synthetic benchmarks are well understood: data availability,
experimental control, and scalability. The main challenge will be to develop a
synthetic benchmark that is representative of such a wide range of CEP applications
and at the same time is simple to understand and is widely accepted by users,
developers, and researchers.

3 Benchmark Metrics

In this section we describe some of the metrics we believe a CEP benchmark should
assess:
• Sustainable throughput: the steady-state number of events per unit of time that a

(warmed-up) CEP engine can process while performing query processing. Even

CEP Engine

Event
Generation

Module

Answer
Validation

Module

Query
Generation
Module

BiCEP

4 Pedro Bizarro

within the same system, sustainable throughput can vary widely depending on the
amount of work to be done during query processing.

• Response time: the time since the last event of some event pattern is fed into the
system until the system notifies the event pattern detection.

• Scalability: Unlike other benchmarks that considerer scalability only as a variation
of the benchmark with more data and more users, in BiCEP we would like
scalability to be a first-class metric. That is, while it is useful to compare systems
at different scale levels, it is also very interesting to assess how well a given system
scales. Thus, we plan to devise experiments that, e.g., significantly increase the
load (events and queries) and measure how well the CEP engine copes with the
load-up. The development of new techniques (e.g., virtualization techniques used
by Amazon Elastic Compute Cloud [1] and Enomalism Elastic Computing [3]) that
allow a system to grab hardware resources on demand makes, in our opinion,
scalability experiments especially interesting. We are planning scalability
experiments along three directions: i) scale-up: increase the system and increase
the load, ii) speed-up: increase the system and maintain the load, and iii) load-up:
maintain system but increase the load.

• Adaptivity: Typically, systems are benchmarked after they are “warmed-up” and
in a steady state. However, while it seems that there will be periods where CEP
systems are in steady states, it also appears likely that, due to the very
unpredictable nature of the real-world events being processed by CEP engines,
there will be frequent disruptive moments, when the system should adapt its query
processing to be more efficient. We are planning a series of experiments that
measure how well a CEP system copes with sources of change. Some of these
planned experiments include: changing the event/query arrival rate from a steady
state to different steady state, insert a short bursty arrival of events, produce a long
system overload, and introduce disconnects, network delays, and buffering.

• Computation Sharing: Many CEP applications process tens, hundreds, millions
of similar queries concurrently. For example, a CEP engine in a financial trading
company may be processing thousands of rules for each stock ticket: many
customers may be monitoring the same stock but each customer may have slightly
different buy or sell values. If the CEP engine can devise query processing
techniques such that different queries are able to share computation, then the
scalability potential of the system is greatly improved. We plan to have scenarios
in the benchmark that test this situation.

• Similarity search and precision and recall: As far as we know, no CEP engine
uses any kind of similarity search: the patterns being searched are always precisely
specified by a query language. Thus, we expect no false positives and no false
negatives. However, if CEP users demand more and more complex patterns, we
expect CEP engines to start using similarity search. If similarity search is used,
then CEP engines may occasionally produce incorrect results by way of false
positives and false negatives. We also expect false positives and false negatives if
CEP engines use past events to forecast real-world future events. Although we do
not plan to include them in the first BiCEP version, we expect that soon CEP
benchmarks will include information retrieval metrics (e.g., precision and recall
[11]) in addition to the other performance oriented metrics.

BiCEP
Benchmarking Complex Event Processing Systems 5

4 Other Issues Affecting Performance

Besides the primary benchmark metrics listed above, there are a number of other
issues that will likely affect performance significantly. Some of these issues led us to
raise the following questions:
• Will the CEP engine provide transactional guarantees? If yes, is the user allowed to

trade some of the performance guarantees switching them off in exchange for
performance improvements? What is the impact of coupling modes on
performance? (Coupling modes determine when the Action part of an ECA rule is
fired: immediately upon event detection, before transaction commit, or in a
separate transaction [7].)

• What is the impact of out-of-order events in performance? How much out-of-order
can the events be without affecting throughput?

• What is the impact of event record size on performance? Will the system behave as
well with a 2-field event record as with a 200-field event record?

• What is the impact of query complexity on, say, maximum throughput? What is the
maximum throughput for simple event aggregation and counting? What is the
maximum throughput for very complex pattern and correlation detection rules?

• When comparing current events with past history, how far back in the past can the
CEP engine look up without visible performance impact?

• Are all the queries the same priority? For example, if a query in a military CEP
scenario is searching for a “incoming missile: 10-second to impact” pattern and at
the same time the CEP engine is collecting and aggregation temperature values
from battlefield sensors, what query should have processing priority when the
system is overloaded? Will there be ways to specify query priority? Will the
priority scheduler work as expected?

• What types of communication (push, pull, scheduled) are allowed and what is the
impact on performance, and what queries benefit from which mechanism?

5 Summary and Related Work

There are at least three other benchmarks that are relevant to CEP and that we will use
as partial inspiration and guidelines when designing BiCEP: the BEAST benchmark
for Object-Oriented Active Database Systems [7], the Linear Road benchmark for
Data Stream Systems [2], and the soon to be released, SPECjms2007 benchmark for
Message-Oriented Middleware [12]. Although any of these benchmarks measures
activities that BiCEP will also measure (e.g., event detection, window-based tuple
aggregation, and the underlying message passing and queuing layer), BiCEP will
more comprehensively focus on modern CEP engines, applications, and requirements.
Specifically, our project’s main goal is to identify the core CEP requirements and
develop a benchmark to compare and assess the merits of CEP products and
algorithms in spite of their architectural and semantic differences.

BiCEP will be designed to measure sustainable throughput, response time,
scalability, adaptivity, and the ability to share computation between different queries.

6 Pedro Bizarro

BiCEP tests will include a variety of scenarios considering different transactional
properties, different levels of pattern complexity, in order and out-of-order events,
different history lookup windows and different communication mechanisms.

The most recent BiCEP developments can be found from the project’s web page at:
http://bicep.dei.uc.pt.

Acknowledgements

The BiCEP project is a 3-year project funded by a European Commission FP6 Marie
Curie International Reintegration Grant. The project officially starts June 2007.

References

[1] Amazon Elastic Compute Cloud – Amazon EC2. Available at http://www.amazon.com/.

[2] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier, Anurag Maskey, Esther
Ryvkina, Michael Stonebraker, Richard Tibbetts. Linear Road: A Stream Data
Management Benchmark. In Proc. of the Intl. Conf. on Very Large Data Bases
(VLDB’2004), Toronto, Canada. August 2004.

[3] Enomalism Elastic Computing. Available at http://enomalism.com/.

[4] Opher Etzion (General Chair). 1st Symposium on Event Processing. IBM Research,
Yorktown Heights, NY. March 2006. Presentations available at
http://complexevents.com/?page_id=87.

[5] Opher Etzion (General Chair). 2nd Symposium on Event Processing. Oracle, San Mateo,
CA, USA. November 2006. Presentations available at
http://www.complexevents.com/?page_id=129.

[6] Opher Etzion (General Chair). Dagstuhl Event Processing Seminar. Dagstuhl, Germany.
May 2007. http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=2007191.

[7] Andreas Geppert, Mikael Berndtsson, Daniel Lieuwen, Claudia Roncancio. Evaluation of
Active Database Management Systems Using the BEAST Benchmark. Theory and
Practice of Object Systems, Vol. 4(3), 135–149 1998.

[8] Jim Gray (Editor). The Benchmark Handbook for Database and Transaction Processing
Systems. Morgan Kaufmann. 1993.

[9] Hans-Arno Jacobsen (General Chair). The Inaugural Intl. Conf. on Distributed Event-
Based Systems (DEBS2007), Toronto, Canada. June 2007.

[10] David Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Professional; 1st edition. May 8, 2002.

[11] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, 1st edition, June 1999.

[12] Kai Sachs, Samuel Kounev, Jean Bacon, and Alejandro Buchmann. Workload
Characterization of the SPECjms2007 Benchmark. To appear.

[13] The Stock Bandit. Triple Bottom Pattern. Available at
http://www.thestockbandit.com/Triple-bottom.htm, accessed July 2007.

[14] Transaction Processing Performance Council. http://www.tpc.org/.

