
An analytic solution to the alibi query in the
bead model for moving object data

Walied Othman and Bart Kuijpers ?

Theoretical Computer Science Group
Hasselt University & Transnationale Universiteit Limburg, Belgium

Abstract. Moving objects produce trajectories, which are stored in da-
tabases by means of finite samples of time-stamped locations. When also
speed limitations in these sample points are known, beads [1, 6, 9] can
be used to model the uncertainty about the object’s location in between
sample points.
In this setting, a query of particular interest, that has been studied in
the literature of geographic information systems (GIS), is the alibi query.
This boolean query asks whether two moving objects can have physically
met. This adds up to deciding whether the necklaces of beads of these
objects intersect. This problem can be reduced to deciding whether two
beads intersect. Since, existing software to solve this problem fails to
answer this question within a reasonable time, we propose an analytical
solution to the alibi query, which can be used to answer the alibi query
in constant time, a matter of milliseconds or less, for two single beads
and in time proportional to the product of their lengths for necklaces of
beads.

1 Introduction and summary

The research on spatial databases, which started in the 1980s from work in
geographic information systems, was extended in the second half of the 1990s
to deal with spatio-temporal data. In this field, one particular line of research,
started by Wolfson, concentrates on moving object databases (MODs) [2, 12],
a field in which several data models and query languages have been proposed
to deal with moving objects whose position is recorded at discrete moments in
time. Some of these models are geared towards handling uncertainty that may
come from various sources (measurements of locations, interpolation, ...) and
several query formalisms have been proposed [5, 11]. For an overview of models
and techniques for MODs, we refer to the book by Güting and Schneider [2].

In this paper, we focus on the trajectories that are produced by moving
objects and which are stored in a database as a collection of tuples (ti, xi, yi),
i = 0, ..., N , i.e., as a finite sample of time-stamped locations in the plane. These
samples may have been obtained by GPS-measurements or from other location
aware devices.
? Contact author. Address: Hasselt University, dept. WNI, 3590 Diepenbeek, Belgium;

phone: +32 11 26 82 45; fax: +32 11 26 82 99; mail: Bart.Kuijpers@uhasselt.be.

Dagstuhl Seminar Proceedings 07212
Constraint Databases, Geometric Elimination and Geographic Information Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1286

One particular model for the management of the uncertainty of the moving
object’s position in between sample points is provided by the bead model. In this
model, it is assumed that besides the time-stamped locations of the object also
some background knowledge, in particular a (e.g., physically or law imposed)
speed limitation vi at location (xi, yi) is known. The bead between two consec-
utive sample points is defined as the collection of time-space points where the
moving objects can have passed, given the speed limitation (see Figure 2 for an
illustration). The chain of beads connecting consecutive trajectory sample points
is called a lifeline necklace [1]. Whereas beads were already conceptually known
in the time geography of Hägerstrand in the 1970s [3], they were introduced in
the area of GIS by Pfoser [9] and later studied by Egenhofer and Hornsby [1, 4],
Miller [6], and in a query language context by the present authors [5].

In this setting, a query of particular interest that has been studied, mainly by
Egenhofer and Hornsby [1, 4], is the alibi query. This boolean query asks whether
two moving objects, that are given by samples of time-space points and speed
limitations, can have physically met. This question adds up to deciding whether
the necklaces of beads of these moving objects intersect or not. This problem
can be considered solved in practice, when we can efficiently decide whether two
beads intersect.

Although approximate solutions to this problem have been proposed [1], also
an exact solution is possible. We show that the alibi query can be formulated
in the constraint database model by means of a first-order query [5, 8]. It is
well-known that first-order constraint queries can be effectively evaluated and
there exists implementations of quantifier-elimination algorithms for first-order
logic over the real numbers that can be used to evaluate queries [8]. Experiments
with software packages such as QEPCAD [10] and Mathematica [7] on a variety
of beads show that deciding if two concrete beads intersect can be computed
on average in 2 minutes (running Windows XP Pro, SP2, with a Intel Pentium
M, 1.73GHz, 1GB RAM). This means that evaluating the alibi query on the
lifeline necklaces of two moving objects that each consist of 100 beads would
take around 100× 100× 2 minutes, which is almost two weeks. Clearly, such an
amount of time is unacceptable.

Another solution within the range of constraint databases is to find a formula,
in which the apexes and limit speeds of two beads appear as parameters, that
parametrically expresses that two beads intersect. We call this problem the para-
metric alibi query. A quantifier-free formula for this parametric version could, in
theory, also be obtained by eliminating one block of three existential quantifiers
using existing quantifier-elimination packages. We have attempted this approach
using Mathematica and QEPCAD, but after several days of running (with the
above processor) described above, we have interrupted the computation, without
successful outcome. It is known that these implementations fail on complicated,
higher-dimensional problems. The benefit of having a quantifier-free first-order
formula that expresses that two beads intersect is that the alibi query on two
beads can be answered in constant time. The problem of deciding whether two

2

lifeline necklaces intersect can then be done in time proportional to the product
of the lengths of the two necklaces of beads.

The main contribution of this paper is the description of an analytic solu-
tion to the alibi query. We give a quantifier-free formula, that contains square
roots, however, and that expresses the (non-)emptiness of the intersection of two
parametrically given beads. Although, in a strict sense, this formula cannot be
seen as quantifier-free first-order formula (due to the roots), it still gives the
above mentioned complexity benefits. At the basis of our solution is a geometric
theorem that describes three exclusive cases in which beads can intersect. These
three cases can then be transformed into an analytic solution that can be used
to answer the alibi query on the lifeline necklaces of two moving objects in less
than a minute. This provides a practical solution to the alibi query.

This paper is organized as follows. In Section 2, we describe a model for
trajectory (or moving object) databases with uncertainty using beads. In Sec-
tion 3, we discuss the alibi query. An analytic solution to this query is given in
Section 5.

2 A model for moving object data with uncertainty

In this paper, we consider moving objects in the two-dimensional (x, y)-space
R2 and describe this movement in the (t, x, y)-space R ×R2, where t is time.
Although it is more traditional to speak about moving object databases, we
will use the term trajectory databases, to emphasize this particular aspect of a
moving object.

2.1 Trajectories and trajectory samples

Moving objects, which we assume to be points, produce a special kind of curves,
which are parameterized by time and which we call trajectories. More formally, a
trajectory T is the graph of a mapping I ⊆ R → R2 : t 7→ α(t) = (αx(t), αy(t)),
i.e., T = {(t, αx(t), αy(t)) ∈ R×R2 | t ∈ I}, where I is the time domain of T .

In practice, trajectories are only known at discrete moments in time. This
partial knowledge of trajectories is formalized in the following definition. If we
want to stress that some t, x, y-values (or other values) are constants, we will
use sans serif characters.

Definition 1. A trajectory sample is a finite set of time-space points {(t0, x0,
y0), (t1, x1, y1), ..., (tN , xN , yN)}, on which the order on time t0 < t1 < · · · < tN ,
induces a natural order. ut

For practical purposes, we may assume that the (ti, xi, yi)-tuples of a trajec-
tory sample contain rational values.

A trajectory T , which contains a trajectory sample {(t0, x0, y0), (t1, x1, y1), ...,
(tN , xN , yN)}, i.e., (ti, αx(ti), αy(ti)) = (ti, xi, yi) for i = 0, ..., N , is called a
geospatial lifeline for this trajectory sample [1]. A common example of a life-
line, is the reconstruction of a trajectory from a trajectory samples by linear
interpolation [2].

3

2.2 Modeling uncertainty with beads

Often, in practical applications, more is known about trajectories than merely
some sample points (ti, xi, yi). For instance, background knowledge like a phys-
ically or law imposed speed limitation vi at location (xi, yi) might be available.
Such speed limits that hold between two consecutive sample points, can be used
to model the uncertainty of a moving object’s location between sample points.

More formally, we know that at a time t, ti ≤ t ≤ ti+1, the object’s distance to
(xi, yi) is at most vi(t− ti) and its distance to (xi+1, yi+1) is at most vi(ti+1− t).
The object is therefore somewhere in the intersection of the disc with center
(xi, yi) and radius vi(t − ti) and the disc with center (xi+1, yi+1) and radius
vi(ti+1 − t). The geometric location of these points is referred to as a bead [1]
and defined, for general points p = (tp, xp, yp) and q = (tq, xq, yq) and speed
limit vmax as follows.

�
�
�
�

�
�
�
�

��

��

Fig. 1. A bead and a lifeline necklace.

Definition 2. The bead with origin p = (tp, xp, yp), destination q = (tq, xq, yq),
with tp ≤ tq, and maximal speed vmax ≥ 0 is the set of all points (t, x, y) ∈ R×R2

that satisfy the following constraint formula1

ΨB(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := (x− xp)2 + (y − yp)2 ≤ (t− tp)2v2
max

∧ (x− xq)2 + (y − yq)2 ≤ (tq − t)2v2
max ∧ tp ≤ t ≤ tq

1 Later on, this type of formula’s will be refered to as FO(+,×, <, 0, 1)-formulas.

4

We denote this set by B(p, q, vmax) or B(tp, xp, yp, tq, xq, yq, vmax). ut

Figure 2 illustrates the notion of bead in time-space. Whereas a continuous
curve connecting the sample points of a trajectory sample was called a geospatial
lifeline, a chain of beads connecting succeeding trajectory sample points is called
a lifeline necklace [1].

2.3 Trajectory databases

We assume the existence of an infinite set Labels = {a, b, ..., a1, b1, ..., a2, b2, ...}
of trajectory labels, that serve to identify individual trajectory samples. We now
define the notion of trajectory database.

Definition 3. A trajectory (sample) database is a finite set of tuples (ai, ti,j , xi,j ,
yi,j , vi,j), with i = 1, ..., r and j = 0, ..., Ni, such that ai ∈ Labels cannot appear
twice in combination with the same t-value, such that {(ti,0, xi,0, yi,0), (ti,1, xi,1,
yi,1), ..., (ti,Ni , xi,Ni , yi,Ni)} is a trajectory sample and such that the vi,j ≥ 0. ut

3 Trajectory queries and the alibi query

3.1 Trajectory queries

A trajectory database query has been defined as a partial computable function
from trajectory databases to trajectory databases [5]. Often, we are also inter-
ested in queries that express a property, i.e., in boolean queries. More formally,
we can say that a boolean trajectory database query is a partial computable
function from trajectory databases to {true, false}.

When we say that a function is computable, this is with respect to some fixed
encoding of the trajectory databases (e.g., rational numbers are represented as
pairs of natural numbers in bit representation).

3.2 A constraint-based query language

Several languages have been proposed to express queries on moving object data
and trajectory databases (see [2] and references therein). One particular lan-
guage for querying trajectory data, that was recently studied in detail by the
present authors, is provided by the formalism of constraint databases. This query
language is a first-order logic which extends first-order logic over the real num-
bers with a predicate S to address the input trajectory database. We denote this
logic by FO(+,×, <, 0, 1, S) and define it as follows.

Definition 4. The language FO(+,×, <, 0, 1, S) is a two-sorted logic with label
variables a, b, c, ... (possibly with subscripts) that refer to trajectory labels and
real variables x, y, z, ..., v, ... (possibly with subscripts) that refer to real numbers.
The atomic formulas of FO(+,×, <, 0, 1, S) are

5

– P (x1, ..., xn) > 0, where P is a polynomial with integer coefficients in the
real variables x1, ..., xn;

– a = b; and
– S(a, t, x, y, v) (S ia a 5-ary predicate).

The formulas of FO(+,×, <, 0, 1, S) are built from the atomic formulas using the
logical connectives ∧,∨,¬, ... and quantification over the two types of variables:
∃x, ∀x and ∃a, ∀a. ut

The label variables are assumed to range over the labels occurring in the
input trajectory database and the real variables are assumed to range over R.
The formula S(a, t, x, y, v) expresses that a tuple (a, t, x, y, v) belongs to the
input trajectory database. The interpretation of the other formulas is standard.

For example, the FO(+,×, <, 0, 1, S)-sentence

∃a∃b(¬(a = b) ∧ ∀t∀x∀y∀vS(a, t, x, y, v) ↔ S(b, t, x, y, v))

expresses the boolean trajectory query that says that there are two identical
trajectories in the input database with different labels.

When we instantiate the free variables in a FO(+,×, <, 0, 1, S)-formula ϕ(a,
b, ..., t, x, y, ...) by concrete values a, b, ..., t, x, y, ... we write ϕ[a, b, ..., t, x, y, ...] for
the formula we obtain.

3.3 The alibi query

The alibi query is the boolean query which asks whether two moving objects,
say with labels a and a′, that are available as samples in a trajectory database,
can have physically met. Since the possible positions of these moving objects
are, in between sample points, given by beads, the alibi query asks to decide if
two lifeline necklaces of a and a′ intersect or not.

More concretely, if the trajectory a is given in the trajectory database by the
tuples (a, t0, x0, y0, v0),, (a, tN , xN , yN , vN) and the trajectory a′ by the tuples
(a′, t′0, x

′
0, y

′
0, v

′
0),, (a

′, t′M , x′M , y′M , v′M), then a has an alibi for not meeting a′

if for all i, 0 ≤ i ≤ N − 1 and all j, 0 ≤ j ≤ M − 1,

B(ti, xi, yi, ti+1, xi+1, yi+1, vi) ∩B(tj , xj , yj , tj+1, xj+1, yj+1, vj) = ∅. (†)

We remark that the alibi query can be expressed by a formula in the logic
FO(+,×, <, 0, 1, S), which looks as follows. To start, we denote the subformula

S(a, t1, x1, y1, v1) ∧ S(a, t2, x2, y2, v2) ∧
∀t3∀x3∀y3∀v3(S(a, t3, x3, y3, v3) → ¬t1 < t3 < t2),

that expresses that (t1, x1, y1) and (t2, x2, y2) are consecutive sample points on
the trajectory a by σ(a, t1, x1, y1, v1, t2, x2, y2, v2).

6

The alibi query on a and a′ is then expressed as ϕalibi[a, a′] =

¬∃t1∃x1∃y1∃v1∃t2∃x2∃y2∃v2∃t′1∃x′1∃y′1∃v′1∃t′2∃x′2∃y′2∃v′2
(σ(a, t1, x1, y1, v1, t2, x2, y2, v2) ∧ σ(a′, t′1, x

′
1, y

′
1, v

′
1, t

′
2, x

′
2, y

′
2, v

′
2) ∧

∃t∃x∃y(t1 ≤ t ≤ t2 ∧ t′1 ≤ t ≤ t′2 ∧
(x− x1)2 + (y− y1)2 ≤ (t− t1)2v2

1 ∧ (x− x2)2 + (y− y2)2 ≤ (t2 − t)2v2
1 ∧

(x−x′1)
2 +(y−y′1)

2 ≤ (t−t′1)
2v′21 ∧(x−x′2)

2 +(y−y′2)
2 ≤ (t′2−t)2v′21)).

It is well-known that FO(+,×, <, 0, 1, S)-expressible queries can be evaluated
effectively on arbitrary trajectory database inputs [8, 5]. Briefly explained, this
evaluation can be performed by (1) replacing the occurrences of S(a, t, x, y, v) by
a disjunction describing all the sample points belonging to the trajectory sample
a; the same for a′; and (2) eliminating all the quantifiers in the obtained formula.
In concreto, using the notation from above, each occurrence of S(a, t, x, y, v)
would be replaced in ϕalibi[a, a′] by

∨N−1
i=0 (t = ti ∧ x = xi ∧ y = yi ∧ v = vi), and

similar for a′. This results in a (rather complicated) first-order formula over the
reals ϕ̃alibi[a, a′] in which the predicate S does not occur any more. Since first-
order logic over the reals admits the elimination of quantifiers (i.e., every formula
can be equivalently expressed by a quantifier-free formula), we can decide the
truth value of ϕ̃alibi[a, a′] by eliminating all quantifiers from this expression. In
this case, we have to eliminate one block of existential quantifiers.

We can however simplify the quantifier-elimination problem. It is easy to see,
looking at (†) above, that ¬ϕ̃alibi[a, a′] is equivalent to

N−1∨

i=0

M−1∨

j=0

ψalibi[ti, xi, yi, vi, ti+1, xi+1, yi+1, vi, t
′
j , x

′
j , y

′
j , v

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j],

where the restricted alibi-query formula ψalibi(ti, xi, yi, vi, ti+1, xi+1, yi+1, vi, t
′
j ,

x′j , y
′
j , v

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j) abbreviates the formula

∃t∃x∃y(ti ≤ t ≤ ti+1 ∧ t′j ≤ t ≤ t′j+1 ∧ (x− xi)2 + (y − yi)2 ≤ (t− ti)2v2
i ∧

(x− xi+1)2 + (y − yi+1)2 ≤ (ti+1 − t)2v2
i ∧

(x− x′j)
2 + (y − y′j)

2 ≤ (t− t′j)
2v′2j ∧ (x− x′j+1)

2 + (y − y′j+1)
2 ≤ (t′j+1 − t)2v′2j)

that expresses that two beads intersect.
So, the instantiated formula ψalibi[ti, xi, yi, vi, ti+1, xi+1, yi+1, vi, t

′
j , x

′
j , y

′
j , v

′
j ,

t′j+1, x
′
j+1, y

′
j+1, v

′
j] expresses (†). To eliminate the existential block of quantifiers

(∃t∃x∃y) from this expression, existing software-packages for quantifier elimina-
tion, such as QEPCAD [10] and Mathematica [7] can be used. We used math-
ematica to decide if several beads intersected. The computation of ψalibi[0, 0,
0, 1, 2, 2,

√
8, 0, 3, 3, 1, 2, 2, 2] took 6 seconds,ψalibi[0, 0, 0, 1, 2, 2,

√
8, 0, 3, 4, 1, 2, 2,

2] took 209 seconds and ψalibi[0, 0, 0, 1,−1,−1, 1, 0, 1, 1, 2,−1, 1, 2] took 613 sec-
onds. Say this quantifier elimination can be computed on average in about 2
minutes (running Windows XP Pro, SP2, with a Intel Pentium M, 1.73GHz,

7

1GB RAM). This means that evaluating the alibi query on the lifeline neck-
laces of two moving objects that each consist of 100 beads would take around
100 × 100 × 2 minutes, which is almost two weeks. Clearly, such an amount of
time is unacceptable.

There is a better solution, however, which we discuss next, that can decide
if two beads intersect or not in a couple of milliseconds or less.

3.4 The parametric alibi query

The uninstantiated formula ψalibi(ti, xi, yi, vi, ti+1, xi+1, yi+1, vi, t
′
j , x

′
j , y

′
j , v

′
j , t

′
j+1,

x′j+1, y
′
j+1, v

′
j) can be viewed as a parametric version of the restricted alibi query,

where the free variables are considered parameters. This formula contains three
existential quantifiers and the existing software-packages for quantifier elimina-
tion could be used to obtain a quantifier-free formula ψ̃alibi(ti, xi, yi, vi, ti+1, xi+1,
yi+1, vi, t

′
j , x

′
j , y

′
j , v

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j) that is equivalent to ψalibi. The formula

ψ̃alibi could then be used to straightforwardly to answer the alibi query in time
linear in its size, which is independent of the size of the input and therefore
constant. We have tried to eliminate the existential block of quantifiers ∃t∃x∃y
from ψalibi using Mathematica and QEPCAD. After several days of running on
the configuration described above, we have interrupted the computation.

The main contribution of this paper is a the description of a quantifier-
free formula equivalent to ψalibi(ti, xi, yi, vi, ti+1, xi+1, yi+1, vi, t

′
j , x

′
j , y

′
j , v

′
j , t

′
j+1,

x′j+1, y
′
j+1, v

′
j). This is not a quantifier-free first-order formula in a strict sense,

since it contains root expressions. However, it serves the purpose of efficiently
answering the alibi query. It answers the alibi query on the lifeline necklaces of
two moving objects that each consist of 100 beads in less than a minute. This
description of this quantifier-free formula is the subject of the next section.

4 Preliminaries on the geometry of beads

Before, we can give an analytic solution to the alibi query and prove its correct-
ness, we need to introduce some terminology concerning beads.

4.1 The geometry of beads

Various geometric properties of beads have already been described [1, 5, 6]. Here,
we need some more definitions and notations to describe various components
of a bead. These components are illustrated in Figure 2. In this section, let
p = (tp, xp, yp) and q = (tq, xq, yq) be two time-space points, with tp ≤ tq and
let vmax be a positive real number.

The set of the two apexes of B(p, q, vmax) is denotes τB(p, q, vmax), i.e., τB(p,
q, vmax) = {p, q}. The bead B(p, q, vmax) is the intersection of two cones: its
bottom cone is the set of all points (t, x, y) that satisfy

ΨC−(t, x, y, tp, xp, yp, vmax) := (x− xp)2 + (y − yp)2 = (t− tp)2v2
max ∧ tp ≤ t

8

and is denoted by C−(p, vmax) or C−(tp, xp, yp, vmax); and its upper cone is the
set of all points (t, x, y) that satisfy

ΨC+(t, x, y, tq, xq, yq, vmax) := (x− xq)2 + (y − yq)2 = (tq − t)2v2
max ∧ t ≤ tq

and is denoted by C+(q, vmax) or C+(tq, xq, yq, vmax).
We call the topological border of the bead B(p, q, vmax) its mantel and denote

it by ∂B(p, q, vmax). It can be easily verified that the mantel consists of the set
of points (t, x, y) that satisfy

Ψ∂(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := tp ≤ t ≤ tq ∧(
2x(xp − xq) + x2

q − x2
p + 2y(yp − yq) + y2

q − y2
p ≤ v2

max2t(tp − tq) + t2q − t2p ∧
(x− xp)2 + (y − yp)2 = (t− tp)2v2

max ∨ (x− xq)2 + (y − yq)2 = (tq − t)2v2
max

∧ 2x(xp − xq) + x2
q − x2

p + 2y(yp − yq) + y2
q − y2

p ≥ v2
max

(
2t(tp − tq) + t2q − t2p

))
.

The first conjunction describes the lower half of the mantel and the second
conjunction describes the upper half of the mantel. The upper and lower half
of the mantel are separated by a plane. The intersection of this plane with the
bead is an ellipse, and the border of this ellipse is what we will refer to as the
rim of the bead. We denote the rim of the bead B(p, q, vmax) by ρB(p, q, vmax)
and remark that it is described by the formula

Ψρ(t, x, y, tp, xp, yp, tq, xq, yq, vmax) :=
(x− xp)2 + (y − yp)2 = (t− tp)2v2

max ∧ tp ≤ t ≤ tq ∧
2x(xp − xq) + x2

q − x2
p + 2y(yp − yq) + y2

q − y2
p = v2

max

(
2t(tp − tq) + t2q − t2p

)
.

The plane in which the rim lies splits the bead into an upper-half bead and a
bottom-half bead. The bottom-half bead is the set of all points (t, x, y) that satisfy

ΨB−(t, x, y, tp, xp, yp, tq, xq, yq, vmax) :=
(x− xp)2 + (y − yp)2 ≤ (t− tp)2v2

max ∧ tp ≤ t ≤ tq ∧
2x(xp − xq) + x2

q − x2
p + 2y(yp − yq) + y2

q − y2
p ≤ v2

max

(
2t(tp − tq) + t2q − t2p

)

and is denoted by B−(tp, xp, yp, tq, xq, yq, vmax).
The upper bead is the set of all points (t, x, y) that satisfy

ΨB+(t, x, y, tp, xp, yp, tq, xq, yq, vmax) :=
(x− xq)2 + (y − yq)2 ≤ (tq − t)2v2

max ∧ tp ≤ t ≤ tq ∧
2x(xp − xq) + x2

q − x2
p + 2y(yp − yq) + y2

q − y2
p ≥ v2

max

(
2t(tp − tq) + t2q − t2p

)

and is denoted by B+(tp, xp, yp, tq, xq, yq, vmax).

4.2 The intersection of two cones

Let C−(t1, x1, y1, v1) and C−(t2, x2, y2, v2) be two bottom cones. A bottom cone,
e.g., C−(t1, x1, y1, v1), can be seen as a circle in 2-dimensional space (x, y)-space
with center (x1, y1) and linearly growing radius (t− t1)v1 as t1 ≤ t.

9

(tq, xq, yq)

t

y

x

ρB

C+

C−

τB

(tp, xp, yp)

B+

B−

Fig. 2. A dissection of the bead B(tp, xp, yp, tq, xq, yq, vmax).

Let us assume that the apex of neither of these cones is inside the other cone,
i.e., (x1 − x2)2 + (y1 − y2)2 > (t1 − t2)2v2

1 ∨ t1 < t2 and (x1 − x2)2 + (y1 − y2)2

> (t1− t2)2v2
2 ∨ t2 < t1. This assumption implies that at t1 and t2 neither radius

is larger than or equal to the distance between the two cone centers. So, at first
the two circles are disjoint and after growing for some time they intersect in one
point. We call the first (in time) time-space point where the two circles touch in a
single point, and thus for which the sum of the two radii is equal to the distance
between the two centers the initial contact of the two cones C−(t1, x1, y1, v1)
and C−(t2, x2, y2, v2). It is the unique point (t, x, y) that satisfies the following
formula

ΨIC−(t, x, y, t1, x1, y1, v1, t2, x2, y2, v2) := t1 ≤ t ∧ t2 ≤ t ∧
(x− x1)2 + (y − y1)2 = (t− t1)2v2

1 ∧ (x− x2)2 + (y − y2)2 = (t− t2)2v2
2 ∧

((t− t1)v1 + (t− t2)v2)2 = (x1 − x2)2 + (y1 − y2)2.

The initial contact of two cones C+(t1, x1, y1, v1) and C+(t2, x2, y2, v2) is given
by the formula ΨIC+(t, x, y, t1, x1, y1, v1, t2, x2, y2, v2) that we obtain from ΨIC−

by replacing in t1 ≤ t ∧ t2 ≤ t by t ≤ t1 ∧ t ≤ t2. We denote the singleton
sets containing the initial contacts by IC(C−(t1, x1, y1, v1), C−(t2, x2, y2, v2)) and
IC(C+(t1, x1, y1, v1), C+(t2, x2, y2, v2)).

From the last equation in of the system in ΨIC− and ΨIC+ , we easily obtain

t =
√

(x1−x2)2+(y1−y2)2+t1v1+t2v2

v1+v2
. To compute the other two coordinates (x, y) of

the initial contact, we observe that for in the plane of this time value t, it is on the
line segment bounded by (x1, y1) and (x2, y2) and that its distance from (x1, y1)
is v1(t− t1) and its distance from (x1, y1) is v2(t− t2). We can conclude that the
initial contact has (x, y)-coordinates (x1, y1)+v1(t−t1)

(x2−x1,y2−y1)√
(x2−x1)2+(y2−y1)2

. This

means that we can give more explicit descriptions to replace ΨIC− and ΨIC+ .

10

5 An analytic solution to the alibi query

In this section, we first describe our solution to the alibi query. Next, we prove
its correctness and transform it into an analytic solution and finally we show
how to construct a true quantifier-free formula out of our solution.

5.1 Geometric outline of the solution

Fig. 3. One in another.

This solution we are about to present was born out of the following obser-
vations. The two main distinctions of intersection you can make is that either
a bead is entirely contained in another or not. In the latter case their mantels
must intersect. To rule out that the first case occurs it is enough to verify that
there is an apex that is not contained in the other bead. If an apex of a bead
is inside another then we have intersection and know what we wanted to know
but that does not mean the entire bead is contained in the other. For ease of
exposition we eliminate this first case by verifying that none of the apexes are
inside the other bead and move on to the next case.

Next we assume there is no apex contained in another bead. If one assumes
there still is an intersection that means the mantels must intersect, as we prove
in lemma 1. The idea is to find a special point that is easily computable and
always in the intersection.

Consider two cones C−(t1, x1, y1, v1) and C−(t2, x2, y2, v2) where none of the
apexes is inside the other cone. One such special point is the initial contact
IC(C−(t1, x1, y1, v1),C−(t2, x2, y2, v2)). However, this point can not be guaran-
teed to be in the intersection if two mantels intersect, as we will show in the
following example. Consider two cones C−(0, 0, 0, 1) and C−(0, 2, 0, 1). The in-
tersection will be a hyperbola in the plane x = 1 with equation t2− y2 = 1. The

11

��

��
��
��
��

��

��

Fig. 4. Clean cut between cones.

initial contact is the point (1, 0, 1). The idea is to cut this point out of the inter-
section as follows. Suppose a bead has apexes, (0, 0, 0) and (a, b, c) and speed 1.
The plane in which it rim lies is given by −2ax+a2−2by+b2+2ct−c2 = 0. This
plane cuts the plane α ↔ x = 1 in a line given by −2by + 2ct− 2a + a2− c2 = 0.
Clearly we can choose (a, b, c) such that the line contains the points

(√
5

2 , 1, 1
2

)

and
(√

2, 1, 1
)
. Everything below this line will be part of the first bead and the

second cone, but the initial contact is situated above the line, effectively cutting
it out of the intersection. All this is illustrated in figure 5.

Notice how the plane in which the rim lies and the rim itself is the evil do-er.
If neither rim intersects the mantel of the other bead, then the intersection of
mantels is the same as an intersection of cones. In which case the initial contact
will not be cut out and can be used to determine if there is intersection in this
manner.

Using contraposition on the statement in the previous paragraph we get: if
there is an intersection and no initial contact is in the intersection then a rim
must intersect the other bead’s mantel.

To verify intersection with the apexes and initial contacts is straightforward.
Verifying if a rim intersects a mantel results in solving a quartic polynomial
equation in one variable and verifying the solution in a single inequality in which
the no variable appears with a degree higher than one.

5.2 Outline of the solution

Suppose, for the remainder of this section, we wish to verify if the beads B1 =
B(t1, x1, y1, t2, x2, y2, v1) and B2 = B(t3, x3, y3, t4, x4, y4, v2) intersect. Moreover,
we assume the beads are non-empty, i.e. (x2 − x1)2 + (y2 − y1)2 ≤ (t2 − t1)2v2

1

and (x4 − x3)2 + (y4 − y3)2 ≤ (t4 − t3)2v2
2 .

12

initial contact

α ↔ x = 1

α

−2by + 2ct− 2a + a2 − c2 = 0

Fig. 5. The initial contact cut out.

We first observe that an intersection between beads can be classified into
three, mutually exclusive, cases. The three cases then are:

(I) An apex of one bead is contained in the other, i.e.,

τB1 ∩ B2 6= ∅ or B1 ∩ τB2 6= ∅;
(II) Not (I), but the rim of one bead intersects the mantel of the other, i.e.,

ρB1 ∩ ∂B2 6= ∅ or ρB2 ∩ ∂B1 6= ∅;
(III) Not (I) and not (II) and the initial contact of the upper or lower cones is

in the intersection of the beads, i.e.,

IC(C−1 ,C−2) ⊂ B1 ∩ B2 or IC(C+
1 ,C+

2) ⊂ B1 ∩ B2.

13

If none of these three cases occur then the beads do not intersect, as we
show in the correctness proof below. First, we give the following straightforward
lemma.

Lemma 1. If B1∩B2 6= ∅, τB1∩B2 = ∅ and τB2∩B1 = ∅, then ∂B1∩∂B2 6= ∅.

Proof. We know that B2 intersects B1, that means there is a point p1 in B2, e.g.
an apex of B2, but not in B1, also there is a point p2 in B2 and in B1. The line
segment bounded by p1 and p2 lies in B2 since B2 is convex and cuts the mantel
of B1 since p2 is inside B1 and p1 is not. Let p be this point where the segment
bounded by p1 and p2 intersects ∂B1. This point lies either on the upper-half
bead B+

1 or on the bottom-half bead B−1 . Let r be the apex of this half bead.
Since p is inside B2 and r is not, the line segment bounded by p and r must
cut ∂B2 in a point q. This point lies of course on ∂B2 and on ∂B1 since the line
segment bounded by p and r is a part of ∂B1. Hence their mantels must have
a nonempty intersection if the beads have a nonempty intersection and neither
bead contains the apexes of the other. ut

We show that if B1 and B2 intersect and neither (I), nor (II) occur, then
(III) occurs.

Theorem 1. If B1 ∩ B2 6= ∅, τB1 ∩ B2 = ∅, B1 ∩ τB2 = ∅, ρB1 ∩ ∂B2 = ∅ and
ρB2 ∩ ∂B1 = ∅, then IC(C−1 , C−2) ⊂ B1 ∩ B2 or IC(C+

1 ,C+
2) ⊂ B1 ∩ B2.

Proof. Let us assume that the hypotheses of the statement of the theorem is true.
It is sufficient to prove that either C−1 ∩C−2 ⊂ B−1 ∩B−2 or C+

1 ∩C+
2 ⊂ B+

1 ∩B+
2 . We

will split the proof in two cases. From the fourth and fifth hypotheses it follows
that either (1) ρB1 ⊂ B2 or ρB2 ⊂ B1; or (2) ρB1 ∩ B2 = ∅ and ρB2 ∩ B1 = ∅.
Case (1): We assume ρB2 ⊂ B1 (the case ρB1 ⊂ B2 is completely analogous).
We prove C−1 ∩C−2 ⊂ B−1 ∩B−2 (the case for upper cones is completely analogous).

Since ρB2 ⊂ B1, we know that ρB2 is inside C−1 , and (t3, x3, y3) is outside.
We can show that v2 < v1. Consider the plane spanned by the two axis of
symmetry of both C−1 and C−2 . Both C−1 and C−2 intersect this plane in two half
lines each. Moreover, we know that C−1 intersects the axis of symmetry of C−2 .
Let t0 be the moment at which this happens. Obviously t0 > t1, but we know
also know t0 > t3 since (t3, x3, y3) is outside C−1 . We have that v1(t0 − t1) =√

(x1 − x3)2 + (y1 − y3)2. Since ρB2 is inside C−1 and (t3, x3, y3) is outside, that
means both half lines from C−2 intersect the half lines from C−1 . Let t′0 and t′′0 be
the moments in time at which this happens and let t′0 > t′′0 . We have again that
t′0 > t1 and t′0 > t3. Then v1(t′0 − t1) =

√
(x1 − x3)2 + (y1 − y3)2 + v2(t′0 − t3)

if and only if v1(t′0 − t0) = v2(t′0 − t3). Since t0 > t3, we get v2 < v1. This is
depicted in figure 6.

It follows that every straight half line starting in (t3, x3, y3) on C−2 intersects
C−1 between (t3, x3, y3) and ρB2, since ρB2 is inside C−1 , and (t3, x3, y3) is outside.
We also know that this line does not intersect C−1 beyond ρB2 since the cone C−2
is entirely inside C−1 beyond the rim ρB2. Therefore, C−1 ∩ C−2 ⊂ B−2 .

14

t′′0

t0

t′0

t1

t3

t

Fig. 6. Illustration to the proof.

Clearly, B−2 intersects B−1 since it can not intersect B+
1 . We know C−1 ∩ ∂B−2

is a closed continuous curve that lies entirely in C−1 . This curve is also contained
in B−1 . Indeed, if we assume this is not the case, then it intersects the plane in
which ρB1 lies, and hence it intersects ρB1 itself, contradicting the assumption
ρB1 ∩ ∂B2 = ∅.
Case (2): Now assume ρB1 ∩ B2 = ∅ = ρB2 ∩ B1. v1 can not be equal to
v2, otherwise the depicted intersection can not occur. So suppose without loss
of generality that v2 < v1. Now either B−2 intersects both B−1 and B+

1 or B+
2

intersects both B−1 and B+
1 . These cases are mutually exclusive because of the

following. If B+
2 intersects B+

1 then ρB2 is inside C+
1 , likewise if B−2 intersects B−1

then ρB2 is inside C−1 . Hence ρB2 ⊂ B1 which contradicts our hypothesis. If B+
2

intersects B−1 then ρB2 must be outside C−1 and thus B−2 must be as well, hence
B−2 intersects neither B−1 nor B+

1 . Likewise, if B−2 intersects B+
1 then B+

2 can not
intersect B1.

To prove that if B−2 intersects B−1 then it also intersects B+
1 and if B−2 in-

tersects B+
1 then it also intersects B−1 we proceed as follows. The case for B+

2 is
analogous. Suppose B−2 intersects B−1 , then B−2 ∩B−1 ⊂ B1, but ρB2 is outside B1,
that means B−2 must intersect B+

1 since it can not intersect B−1 anymore. This is
the ”what goes in must come out”-principle. Likewise, suppose B−2 intersects B+

1 ,
then B−2 ∩B+

1 ⊂ B1, but (t3, x3, y3) is outside B1, that means B−2 must intersect
B−1 since it can not intersect B−1 anymore.

So suppose now that B−2 intersects both B−1 and B+
1 . The case for B+

2 is
completely analogous. If B−2 intersects B−1 that means ρB2 is completely inside
C−1 and therefore that C−1 ∩C−2 ⊂ B−2 . We proceed like in the first case, we know
that C−1 ∩B−2 is a closed continuous curve. This curve lies entirely in C−1 . If this
curve is not entirely in B−1 that means it intersects the plane in which ρB1 lies,

15

and hence intersects ρB1 itself. But this is contradictory to the assumption that
ρB1 ∩ ∂B2 = ∅. ut

Fig. 7. Case II is not obsolete.

In theorem 1 we proved that if there is an intersection and neither rim cuts
the other bead’s mantel and neither apex of a bead is contained in the other
then there must be an initial contact in the intersection. Visualizing how beads
intersect might tempt one to think there is always an initial contact in the
intersection. There exists a counterexample in which there is an intersection and
no initial contact is in that intersection. That means case II is not obsolete. This
situation is depicted in figure 7.

Observe that the bottom apex, marked with an arrow, of the bottom cone is
inside the other bottom cone, that means there is no initial contact between the
bottom cones. There does however exist an initial contact between the upper
cones. By moving the bottom apex of the smallest bead into or out of the paper,
you can position the plane in which its rim lies such that the initial contact is
cut out. This concludes the outline.

5.3 A formula for Case (I)

Here we verify whether τB1 ∩ B2 6= ∅ or B1 ∩ τB2 6= ∅. To check if that is the
case we merely need to verify if one of the apexes satisfies the set of equations
of the other bead. In this way we obtain

ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=
(ΨB (t3, x3, y3, t1, x1, y1, t2, x2, y2, v1) ∨ ΨB (t4, x4, y4, t1, x1, y1, t2, x2, y2, v1) ∨
ΨB (t1, x1, y1, t3, x3, y3, t4, x4, y4, v2) ∨ ΨB (t2, x2, y2, t3, x3, y3, t4, x4, y4, v2)) .

For the following sections we assume that the apex sets of the beads are not
singletons, i.e. t1 < t2 and t3 < t4.

16

5.4 A formula for Case (II)

Now assume that ΦI failed in the previous section. Note that we can always apply
a speed-preserving [5] transformation to R×R2 to obtain easier coordinates. We
can always find a transformation such that (t′1, x

′
1, y

′
1) = (0, 0, 0) and that the

line-segment connecting (t′1, x
′
1, y

′
1) and (t′2, x

′
2, y

′
2) is perpendicular to the y-axis,

i.e. y′2 = 0. This transformation is a composition of a translation in R ×R2, a
spatial rotation in R2 and a scaling in R×R2 [5]. Let the coordinates without
a prime be the original set, and let coordinates with a prime be the image of
the same coordinates without a prime under an this transformation. Note that
we do not need to transform back because the query is invariant under such
transformations [5]. The following formula returns the transformed coordinates
(t′, x′, y′) of (t, x, y,) given the points (t1, x1, y1) and (t2, x2, y2):

ϕA(t1, x1, y1, t2, x2, y2, t, x, y, t′, x′, y′) := (y2 6= y1 ∧
t′ = (t− t1)

√
(x2 − x1)2 + (y2 − y1)2 ∧ x′ = (x− x1)(x2 − x1)

+(y − y1)(y2 − y1) ∧ y′ = (x− x1)(y1 − y2) + (y − y1)(x2 − x1))
∨ (y2 = y1 ∧ t′ = (t− t1) ∧ x′ = (x− x1) ∧ y′ = (y − y1)) .

The translation is over the vector (−t1,−x1,−y1), the rotation over minus
the angle that (t2− t1, x2−x1, y2−y1) makes with the x-axis, and a scaling by a
factor

√
(x2 − x1)2 + (y2 − y1)2. Notice that the rotation and scaling only need

to occur if y2 is not already in place, i.e. if (y2 6= y1).
The formula ψcrd(t′1, x

′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2, t

′
3, x

′
3, y

′
3, t3, x3, y3, t

′
4,

x′4, y
′
4, t4, x4, y4) is short for ϕA(t1, x1, y1, t2, x2, y2, t1, x1, y1, t

′
1, x

′
1, y

′
1) ∧ ϕA(t1,

x1, y1, t2, x2, y2, t2, x2, y2, t
′
2, x

′
2, y

′
2) ∧ ϕA(t1, x1, y1, t2, x2, y2, t3, x3, y3, t

′
3, x

′
3, y

′
3) ∧

ϕA(t1, x1, y1, t2, x2, y2, t4, x4, y4, t
′
4, x

′
4, y

′
4).

This transformation yields some simple equations for the rim ρB1:

ρB1 ↔




x2 + y2 = t2v2
1

2x(−x′2) + x′22 = v2
1(2t(−t′2) + t′22)

0 ≤ t ≤ t′2 .

Not only that, but with these equations we can deduce a simple parametriza-
tion in the x-coordinate for the rim,

ρB1 ↔





t = 2xx′2−x′22 +v2
1t′22

2v2
1t′2

y = ±
√

v2
1

(
2xx′2−x′22 +v2

1t′22
2v2

1t′2

)2

− x2

0 ≤ t ≤ t′2 .

Note that this implies t′2 6= 0 and v1 6= 0. If t′2 = 0 then B1 is a point,
hence degenerate. If v1 = 0 then B1 is a line segment, and again degenerate.
Next we will inject these parameterizations in the constraints for ∂B+

2 and ∂B−2
separately. The constraints for ∂B−2 are




(x− x′3)
2 + (y − y′3)

2 = (t− t′3)
2v2

2

2x(x′3 − x′4) + x′24 − x′23 + 2y(y′3 − y′4) + y′24 − y′23 ≤ v2
2

(
2t(t′4 − t′3) + t′24 − t′23

)
t′3 ≤ t ≤ t′4 .

17

We will explain how to proceed to compute the intersection with ∂B−2 and
simply reuse formulas for intersection with ∂B+

2 . First we insert our expressions
for x and y in the first equation. This is equivalent to computing intersections
of ρB1 with C−1 :

(x− x′3)
2 +


±

√
v2
1

(
2xx′2 − x′22 + v2

1t′22
2v2

1t′2

)2

− x2 − y′3




2

=
(

2xx′2 − x′22 + v2
1t′22

2v2
1t′2

− t′3

)2

v2
2

iff ± (
2v2

1t′2
)
2y′3

√
v2
1 (2xx′2 − x′22 + v2

1t′22)2 − (2v2
1t′2)

2
x2 =

(
2xx′2 − x′22 + v2

1t′22 −
(
2v2

1t′2
)
t′3

)2
v2
2 −

(
2v2

1t′2
)2

(x− x′3)
2

− (
2v2

1t′2
)2

y′23 −
(
v2
1

(
2xx′2 − x′22 + v2

1t′22
)2 − (

2v2
1t′2

)2
x2

)

iff ± (
2v2

1t′2
)
v12y′3

√
x24 (x′22 − v2

1t′22) + x4x′22 (v2
1t′22 − x′22) + (v2

1t′22 − x′22)2

= x24x′22
(
v2
2 − v2

1

)
+

x4
(−x′22 v2

2

(−x′22 + v2
1t′22 − 4v4

1t′22 t′3
)

+ 2v4
1t′22 x′3 + v2

1x′2
(
v2
1t′22 − x′22

))

+
(
v2
2

(−x′22 + v2
1t′22 − 4v4

1t′22 t′3
)2 − 4v4

1t′22
(
x′23 + y′23

)− v4
1

(−x′22 + v2
1t′22

))
.

By squaring left and right in this last expression we rid ourselves of the square
root and obtain the following polynomial equation of degree four.

Notice that if B1 is degenerate, i.e. x′22 = v2
1t′22 or v1 = 0, then the square

root vanishes and the polynomial in φ4 is the square of a polynomial of degree
two, yielding to at most two roots and intersection points as we expect. So the
following still works if one or both beads are degenerate,

φ4(x, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2) := ∃a∃b∃c∃d∃e ax4 + bx3 + cx2 + dx + e = 0

∧ a =
(
4x′22

(
v2
2 − v2

1

))2 ∧ b = −32x′42 v2
2

(
v2
2 − v2

1

) (−x′22 + v2
1t′22 − 4v4

1t′22 t′3
+2v4

1t′22 x′3 + v2
1x′2

(
v2
1t′22 − x′22

)) ∧ c = 8
(
x′22 − v2

1t′22
) (−4v4

1t′22
(
x′23 + y′23

)
+

+v2
2

(−x′22 + v2
1t′22 − 4v4

1t′22 t′3
)2 − v4

1

(−x′22 + v2
1t′22

))
+

(
8v3

1t′2y
′
3

)2 (
x′22 − v2

1t′22
)

+
(
4

(−x′22 v2
2

(−x′22 + v2
1t′22 − 4v4

1t′22 t′3
)

+ 2v4
1t′22 x′3 + v2

1x′2
(
v2
1t′22 − x′22

)))2

∧ d = 8
(−x′22 v2

2

(−x′22 + v2
1t′22 − 4v4

1t′22 t′3
)

+ 2v4
1t′22 x′3 + v2

1x′2
(
v2
1t′22 − x′22

))
(
v2
2

(−x′22 + v2
1t′22 − 4v4

1t′22 t′3
)2 − 4v4

1t′22
(
x′23 + y′23

)− v4
1

(−x′22 + v2
1t′22

))

+
(
8v3

1t′2y
′
3

)2 (
4x′22

(
v2
1t′22 − x′22

)) ∧ e =
(
8v3

1t′2y
′
3

)2 (
v2
1t′22 − x′22

)2
+

(
v2
2

(−x′22 + v2
1t′22 − 4v4

1t′22 t′3
)2 − 4v4

1t′22
(
x′23 + y′23

)− v4
1

(−x′22 + v2
1t′22

))2

.

18

The quantifiers we introduced here are only in place for esthetic considerations
and can be eliminated by direct substitution.

Note that if v1 = v2 the degree is merely two. This can be solved in an exact
manner using square roots [?] or Maple if you will. This gives us at most four
values for x. Let

φroots(xa, xb, xc, xd, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2)

be a formula that returns all four real roots, if they exist, that satisfy φ4(x, t′2, x
′
2,

v1, t
′
3, x

′
3, y

′
3, v2). We substitute these values in the parameter equations of ρB1.

By substituting these in the last equation above we can determine the sign of
the square root we need to take for y. A point (t, x, y) satisfies the following
formula is a point on ρB1, but instead of using the square root for y, we use an
expression from above to get the correct sign for the square root:

ψρ(t, x, y, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2) := t

(
2v2

1t′2
)

= 2xx′2 − x′22 + v2
1t′22 ∧

2y′3
(
2v2

1t′2
)2

y =
(
2xx′2 − x′22 + v2

1t′22 −
(
2v2

1t′2
)
t′3

)2
v2
2 −

(
2v2

1t′2
)2

(x− x′3)
2

− (
2v2

1t′2
)2

y′23 −
(
v2
1

(
2xx′2 − x′22 + v2

1t′22
)2 − (

2v2
1t′2

)2
x2

)
∧ 0 ≤ t ≤ t′2 .

The four roots give us four spatio-temporal points on ρB1 ∩ C−2 . In order for
these points (t, x, y) to be in ρB1 ∩ ∂B−2 , they need to satisfy

ψ−(t, x, y, t′3, x
′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) :=

2x(x′3 − x′4) + x′24 − x′23 + 2y(y′3 − y′4) + y′24 − y′23 ≤ v2
2

(
2t(t′3 − t′4) + t′24 − t′23

)
.

This formula returns true if (t, x, y) lies in the same half space as the bottom-half
bead; The formula ψ+ returns true if (t, x, y) lies in the same half space as the
upper-half bead; ψ+(t, x, y, t′3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) := ψ−(t, x, y, t′4, x

′
4, y

′
4, t

′
3, x

′
3,

y′3, v2). By combining ψρ(t, x, y, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2) and ψ−(t, x, y, t̂, x̂, ŷ, t̃, x̃,

ỹ, v) we get a formula that decides their intersection for a parameter x:

ψρ∩∂±(x, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2, t̂, x̂, ŷ, t̃, x̃, ỹ, v) :=

(
2x(x̂− x̃) + x̃2 − x̂2

+ỹ2 − ŷ2
)
2y′23

(
2v2

1t′2
)2

+ 2y′3
((

2xx′2 − x′22 + v2
1t′22 −

(
2v2

1t′2
)
t′3

)2
v2
2 −

(
2v2

1t′2
)2

(x− x′3)
2 − (

2v2
1t′2

)2
y′23 −

(
v2
1

(
2xx′2 − x′22 + v2

1t′22
)2 − (

2v2
1t′2

)2
x2

))
(ŷ − ỹ) ≤

v22y′23
(
2

(
2v2

1t′2
) (

2xx′2 − x′22 + v2
1t′22

)
(t̂− t̃) +

(
2v2

1t′2
) (

t̃2 − t̂2
)) ∧ 0 ≤ t′2(

2xx′2 − x′22 + v2
1t′22

) ≤ 2v2
1t′32 ∧

(
t̂
(
2v2

1t′22
) ≤ t′2

(
2xx′2 − x′22 + v2

1t′22
) ≤ t̃

(
2v2

1t′22
)

∨ t̃
(
2v2

1t′22
) ≤ t′2

(
2xx′2 − x′22 + v2

1t′22
) ≤ t̂

(
2v2

1t′22
))

.

We are ready now to construct the formula that decides if ρB1 and B−2 have
a nonempty intersection:

ϕρ1∩∂−2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) := ∃x∃xa∃xb∃xc∃xd ∧

φroots(xa, xb, xc, xd, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2) ∧ (x = xa ∨ x = xb ∨ x = xc ∨ x = xd)

∧ ψρ∩∂±(x, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v

′
2) .

19

The formula that decides if ρB1 intersects ∂B+
2 looks strikingly similar:

ϕρ1∩∂+
2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) := ∃x∃xa∃xb∃xc∃xd ∧

φroots(xa, xb, xc, xd, t
′
2, x

′
2, v1, t

′
4, x

′
4, y

′
4, v2) ∧ (x = xa ∨ x = xb ∨ x = xc ∨ x = xd)

∧ ψρ∩∂±(x, t′2, x
′
2, v1, t

′
4, x

′
4, y

′
4, v2, t

′
4, x

′
4, y

′
4, t

′
3, x

′
3, y

′
3, v

′
2) .

The quantifiers introduced here can also be eliminated in a straightforward
manner. Notice that φroots acts as a function rather than a formula that inputs
(t′2, x

′
2, v1, t

′
4, x

′
4, y

′
4, v2) to construct a polynomial of degree four and returns

the four roots (xa, xb, xc, xd), if they exist, of that polynomial. The existential
quantifier for the variable x is used to cycle through those roots to see if any of
them does the trick. Finally we are ready to present the formula for case II:

ΦII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=
¬ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)∧

∃t′1∃x′1∃y′1∃t′2∃x′2∃y′2∃t′3∃x′3∃y′3∃t′4∃x′4∃y′4
ψcrd(t′1, x

′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2, t

′
3, x

′
3, y

′
3, t3, x3, y3, t

′
4, x

′
4, y

′
4, t4, x4, y4)

∧
(
ϕρ1∩∂−2

(t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v

′
2) ∨

ϕρ1∩∂+
2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2)

)
∨

ψcrd(t′3, x
′
3, y

′
3, t3, x3, y3, t

′
4, x

′
4, y

′
4, t4, x4, y4, t

′
1, x

′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2)

∧
(
ϕρ1∩∂−2

(t′3, x
′
3, v2, t

′
1, x

′
1, y

′
1, t

′
2, x

′
2, y

′
2, v

′
1) ∨

ϕρ1∩∂+
2
(t′3, x

′
3, v2, t

′
1, x

′
1, y

′
1, t

′
2, x

′
2, y

′
2, v

′
1)

)
.

The reader may notice that a lot of quantifiers have been introduced in the
formula above. These quantifiers are merely there to introduce easier coordinates
and can be straightforwardly computed (and eliminated) by the formula ψcrd and
hence the formula ϕA(t1, x1, y1, t2, x2, y2, t, x, y, t′, x′, y′). The latter actually acts
like a function, parameterized by (t1, x1, y1, t2, x2, y2), that inputs (t, x, y) and
outputs (t′, x′, y′).

5.5 A formula for Case (III)

Here we assume that both ϕI and ϕII failed. So there is no apex contained in
the other bead and neither rim cuts the mantel of the other bead.

As we proved in theorem 1, the intersection between two half beads will
reduce to the intersection between two cones and that means there is an initial
contact that is part of the intersection. To verify if this is the case we compute
the two initial contacts and verify if they are effectively part of the intersection.

Using the expression for the initial contact IC(C−1 , C−2) we computed in 4.2 we
can construct a formula that decides if it is part of B−1 ∩B−2 . We will recycle the
formulas ψ− from the previous section to construct an expression without the

20

need for extra variables. The following formula that returns true if IC(C−1 , C−2) =
(t0, x0, y0) satisfies ψ−(t0, x0, y0, t

′, x′, y′, t̂, x̂, ŷ, v):

φ−(t1, x1, y1, v1, t3, x3, y3, v2, t
′, x′, y′, t̂, x̂, ŷ, v) :=

2(x′ − x̂)
(
(x1v2 + x3v1)

√
(x1 − x3)2 + (y1 − y3)2 + v1 ((t3 − t1)v2) (x3 − x1)

)

+ 2(y′− ŷ)
(
(y1v2 + y3v1)

√
(x1 − x3)2 + (y1 − y3)2 + v1 ((t3 − t1)v2) (y3 − y1)

)

+
√

(x1 − x3)2 + (y1 − y3)2(v1+v2)
(
x̂2 − x′2 + ŷ2 − y′2

) ≤ v2
((

t̂2 − t′2
)
(v1 + v2)

+2
(√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2

) (
t′ − t̂

))√
(x1 − x3)2 + (y1 − y3)2 .

The following formula expresses that the time coordinate t0 of IC(C−1 , C−2)
satisfies the constraints t′ ≤ t ≤ t′′ and t̂ ≤ t ≤ ť:

ψt

(
t1, x1, y1, v1, t3, x3, y3, v2, t

′, t′′, t̂, ť
)

:=

t′(v1 + v2) ≤
√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2 ≤ t′′(v1 + v2)

∧ t̂(v1 + v2) ≤
√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2 ≤ ť(v1 + v2) .

Now, IC(C−1 , C−2) ⊂ B−1 ∩B−2 iff ψIC−(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4,
v2) where ψIC−(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := ψt(t1, x1, y1, v1,
t3, x3, y3, v2, t1, t2, t3, t4) ∧ φ−(t1, x1, y1, v1, t3, x3, y3, v2, t1, x1, y1, t2, x2, y2, v1) ∧
φ−(t1, x1, y1, v1, t3, x3, y3, v2, t3, x3, y3, t4, x4, y4, v2) and IC(C+

1 , C+
2) ⊂ B+

1 ∩B+
2 iff

ψIC+(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := ψt(t2, x2, y2, v1, t4, x4, y4, v2,
t1, t2, t3, t4) ∧ φ−(t2, x2, y2, v1, t4, x4, y4, v2, t2, x2, y2, t1, x1, y1, v1) ∧ φ−(t2, x2,
y2, v1, t4, x4, y4, v2, t4, x4, y4, t3, x3, y3, v2).

The formula that expresses the criterium for case two then looks as follows:

ΦIII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=
¬ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) ∧
(ψIC−(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) ∨
ψIC+(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)) .

5.6 The final solution

The final formula that decides if two beads, B1 = B(t1, x1, y1, t2, x2, y2, v1) and
B2 = B(t3, x3, y3, t4, x4, y4, v2), do not intersect looks as follows

ψalibi (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := ¬ ((t1 < t2 ∧ t3 < t4) ∧
(ΦIII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)
∨ ΦII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2))
∨ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)) .

21

6 Conclusion

In this paper we proposed a method that decides if two beads have a non-empty
intersection or not. Existing methods could achieve this already through means
of quantifier elimination though not in a reasonable amount of time. Deciding
intersection of concrete beads took of the order of minutes, while the parametric
case could be measured at least in days. The parametric solution we laid out in
this paper only takes a few milliseconds or less.

The solution we present is a first order formula containing square root-
expressions. We claim that these can easily be disposed of using repeated squar-
ings and adding extra conditions, thus obtaining a true quantifier free-expression
for the alibi query.

Acknowledgments. This research has been partially funded by the European
Union under the FP6-IST-FET programme, Project n. FP6-14915, GeoPKDD:
Geographic Privacy-Aware Knowledge Discovery and Delivery, and by the Re-
search Foundation Flanders (FWO-Vlaanderen), Research Project G.0344.05.

References

1. M. Egenhofer. Approximation of geopatial lifelines. In SpadaGIS, Workshop on
Spatial Data and Geographic Information Systsems, 2003. Electr. proceedings, 4p.

2. R. Güting and M. Schneider. Moving Object Databases. Morgan Kaufmann, 2005.
3. T. Hägerstrand What about People in Regional Science? Papers of the Regional

Science Association vol.24, 1970, pp.7-21.
4. K. Hornsby and M. Egenhofer. Modeling moving objects over multiple granulari-

ties. Annals of Mathematics and Artificial Intelligence, 36(1–2):177–194, 2002.
5. B. Kuijpers, W. Othman Trajectory Databases: Data Models, Uncertainty and

Complete Query Languages. In Database Theory - ICDT 2007, 11th International
Conference, Barcelona, Spain, January 10-12, 2007, Proceedings, volume 4353 of
Lecture Notes in Computer Science, pages 224-238, 2007.

6. Harvey J. Miller A Measurement Theory for Time Geography Geographical Anal-
ysis, Vol. 37 Issue 1 Page 17, 2005

7. Mathematica http://www.wolfram.com
8. J. Paredaens, G. Kuper, and L. Libkin, editors. Constraint databases. Springer-

Verlag, 2000.
9. D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object represen-

tations. In Advances in Spatial Databases (SSD’99), volume 1651 of Lecture Notes
in Computer Science, pages 111–132, 1999.

10. QEPCAD http://www.cs.usna.edu/ qepcad/B/QEPCAD.html
11. J. Su, H. Xu, and O. Ibarra. Moving objects: Logical relationships and queries. In

Advances in Spatial and Temporal Databases (SSTD’01), volume 2121 of Lecture
Notes in Computer Science, pages 3–19. Springer, 2001.

12. O. Wolfson. Moving ob jects information management: The database challenge.
In Proceedings of the 5th Intl. Workshop NGITS, pages 75–89. Springer, 2002.

22

