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Abstract. Integrity constraints play a major role when the quality of spatial data 
is checked by automatic procedures. Nevertheless the possibilities of checking 
the internal consistency of the integrity constraints themselves are hardly 
researched yet. This work analyses the applicability of reasoning techniques 
like the composition of spatial relations and constraint satisfaction in networks 
of relations to find conflicts and redundancies in sets of spatial semantic 
integrity constraints. These integrity rules specify relations among entity 
classes. Such relations must hold to ensure that the data complies with the 
semantics intended by the data model. For spatial data, many semantic integrity 
constraints are based on spatial properties described for example through 
qualitative topological or metric relations. Since integrity constraints are 
defined at the class level, the reasoning properties of these spatial relations can 
not directly be applied at that level. Therefore a set of class relations has been 
defined which, combined with the instance relations, enables for the 
specification of integrity constraints and logical reasoning on them. 
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1   Introduction 

Semantic integrity constraints specify relations which refer to the semantics of the 
concepts represented by the data model. Unlike domain or key and relationship 
constraints, which are usually inherently or implicitly specified through the data 
model constructs, semantic integrity constraints have to be explicitly specified. This is 
mostly done by programming checking procedures for database transactions or 
through the declaration via an assertion specification language. [3] 

Semantic integrity constraints play a major role when the logical consistency of a 
data set has to be evaluated. For spatial data in particular constraints which 
comprehend the spatial peculiarities are of interest. Therefore spatial semantic 
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integrity constraints restrict the spatial properties of the modelled concepts. These 
restrictions are mostly defined through qualitative constraints. While quantitative 
constraints rely on quantitative measurements or calculations, qualitative relations are 
non-numerical descriptions of a situation. Thereby continuous properties are 
represented by discrete sets of relations. Qualitative representations are characterized 
by making only as many distinctions in the domain as necessary in a given context 
[5]. Thus qualitative descriptions are less precise than the quantitative. A typical 
example of qualitative spatial relations used for the definition of integrity constraints 
are the topological relations between areal entities shown in figure 1.  

 

 
Fig. 1. Set of topological relations between areal entities 

For the formalisation of integrity constraints this abstraction is sufficient, since 
they mostly restrict an infinite set of possible situations through the definition of a 
single abstract rule. Verbal descriptions of semantic integrity constraints are usually 
also not numerically precise and for users the abstract qualitative descriptions are 
easier to understand than numerical information. Examples of such natural language 
descriptions of spatial semantic integrity constraints are for topological restrictions: 
“contour lines are not allowed to intersect with a lake”, directional restrictions: “the 
backyard should always be in the back of a house” and metric restrictions: “a petrol 
station must be at least 300 meters away from a school”. 

For the quality assurance of a geodata set many of such spatial integrity constraints 
can be defined. At present, the formalisation of contents and restrictions of semantic 
integrity constraints are not sufficiently researched. Thus their definition and 
management is mostly reserved to specialists since inexperienced users are likely to 
define redundant or conflicting constraints. This paper aims to contribute to a solution 
of these problems. It investigates reasoning algorithms which can be used to check the 
internal consistency of a set of spatial semantic integrity constraints. Focus is on 
semantic integrity constraints on binary spatial relations between entity classes.  

Integrity constraints are defined at the level of the entity classes, but must be linked 
to the instance relations which are proved for all instances during quality assurance. 
As extensively argued in [1] and [6] these instance relations do not correctly represent 
the semantics of class relations. Therefore the formalisation of semantic integrity 
constraints requires specific class level relations. In the following chapter, the main 
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properties of class relations are analysed and based on these properties a set of 17 
abstract class relations is defined. Chapter 3 reviews logical properties of those 
properties and shows how they can be used to find conflicts and redundancies in sets 
of semantic integrity constraints. 

2   Class Relations for Integrity Constraint Definition  

2.1   Properties of Class Relations 

As demonstrated in [1] and [6] the logical properties of instance relations do not hold, 
if they are directly applied at the class level. To overcome this problem a set of class 
level relations has to be defined. For the definition of integrity constraints the class 
relations should represent existential and universal quantifiers for the corresponding 
instance relations. In the following four basic properties of class relations are defined 
and later on combined for the definition of a set of class relations. For the validity of 
these definitions the involved classes must conform to the following two 
requirements. First, they must have at least one instance, i.e. empty classes are not 
valid. As stated before class relations are linked to instance relations. Thus the second 
condition specifies that if a class relation is defined, there must be at least one 
corresponding instance relation existent among the instances of the involved classes. 
 

x,y,z Denote variables for individuals / instances. Every 
instance must be associated with a class. 

A, B, C Denote variables for classes. Every class must have at 
least one instance. 

Inst(x,A) Means individual x is an instance of class A. 
r(x,y) Means individual x has the relation r to individual y; x 

and y are said to participate in the relationship 
instance r. The meta-variable r can stand for any 
relation of individuals (e.g. topological relations). 
Every relationship instance r can be associated to a 
class relation R. 

R(A,B) Denotes that R relates the classes A and B. The meta-
variable R can stand for any class relationship. Every 
R is related to an instance relation r. If a class relation 
R(A,B) is defined at least one r must exist between the 
instances of A and B. 

 

LT(A, B, r) : x(Inst(x, A) y(Inst(y, B) r(x, y))).= ∀ → ∃ ∩  (1) 

RT(A, B, r) : y(Inst(y, B) x(Inst(x, A) r(x, y))).= ∀ → ∃ ∩  (2) 
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LD(A, B, r) : x, y, z(Inst(x, A) Inst(y, B) Inst(z, A)
r(x, y) r(z, y) x z) ex(A, B, r).

= ∀ ∩ ∩ ∩
∩ → = ∩

 (3) 

RD(A, B, r) : x, y, z(Inst(x, A) Inst(y, B) Inst(z, B)
r(x, y) r(x, z) y z) ex(A, B, r).

= ∀ ∩ ∩ ∩
∩ → = ∩

 (4) 

ex(A, B, r) : x y(Inst(x, A) Inst(y, B) r(x, y)).= ∃ ∃ ∩ ∩  (5) 

 
Equations (1) and (2) define left totality and right totality of a class relationship, 
respectively. (1) holds if every instance of A has a relation r to some instance of B. (2) 
holds if for each instance of B there is some instance of A which stands in relation r to 
it. This means that every instance of B has the inverse relation of r to some instance of 
A. These constraints define a total participation for the classes A or B, respectively.  

Equations (3) and (4) restrict the cardinality ratio of the class relation. (3) specifies 
that there is no instance of B that has more than one instance of A which stands in 
relation r to it. This relation restricts the number of R relations an instance of B can 
participate in; the instances of A are not restricted. Class relations, for which (3) 
holds, are left-definite. (4) holds for a class relation if no instance of A participates in 
a relationship instance of R to more than one instance of B. When this relation is 
defined, all instances of A are restricted while the instances of B are not affected. 
Equation (5) is used in (3) and (4) to ensure that at least one instance relation r does 
exist between the instances of A and B. 

Such properties of class relations are well established in data modelling, for 
example when total participation and cardinality ratio constraints are described using 
the Entity-Relationship notation. In such models a total participation is represented by 
a double line for the relation and cardinality ratio for example by a N:1 next to the 
relation signature (see figure 2). In this example all buildings are restricted to be 
contained by exactly one parcel, while the parcels are allowed to contain an undefined 
number of buildings. 

 
Fig. 2. Constraints in an Entity-Relationship Model 
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2.2   Definition of Class Relations 

As the example in figure 2 illustrates, the properties defined in the previous 
subsection can be combined for the definition of a class relation. The four properties 
are independent, which means none of the properties implies or precludes one of the 
others. The class relation in the example is based on the topological instance relation 
contains and the properties left definite and right total. The other two properties are 
not valid. The corresponding class relation CONTAINSLD.RT(Parcel, Building) is based 
on the abstract class relation defined in equation (6). 

RD.LTR (A,B) : LD(A,B, r) RT(A,B, r) RD(A,B, r) LT(A,B, r).= ∩ ∩¬ ∩¬  (6) 

In analogy to equation (6) the four properties can be used to define a set of 15 abstract 
class relations, where for each relation at least one of the four properties holds and the 
others are excluded, respectively.  

For a better description of integrity constraints and to allow for reasoning two 
additional cases are considered in this approach. First an abstract class relation is 
defined for the situation that none of the four properties is valid and nevertheless 
some instances of A stand in relation r to some instances of B (equation (7)). An 
example is shown in figure 3a. Here the arrows link instances, which are related by 
the same instance relation. The class relation is neither total nor definite for the 
classes A or B. This case must be considered to achieve a jointly exhaustive set of 
relations. Second, an additional abstract class relation is defined for the case that all 
instances of A have a relationship instance of R to all instances of B (Equation (8)). 
As illustrated in figures 3b to 3d this is a special case of a left total and right total 
relation (RLT.RT(A,B)). The corresponding integrity constraints are very restrictive, 
which is for example useful, when all instances of two classes are not allowed to 
intersect: DISJOINT LT.RT-all (Streets, Lakes). 

someR (A, B) : ex(A, B, r) LD(A, B, r) RD(A, B, r)
LT(A, B, r) RT(A, B, r).

= ∩¬ ∩¬
¬ ∩¬

∩  (7) 

LT.RT allR (A,B) : x y(Inst(x,A) Inst(y,B) r(x, y)).− = ∀ ∀ ∩ →  (8) 

 
Fig. 3. Examples of class relations 
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The set of 17 class relations enables the definition of integrity constraints based on 
any kind of instance relation. The detailed definitions of the abstract class relations 
can be found in [6]. It is possible to define more than one class relation between two 
classes, even when the applied instance relations are part of the same jointly 
exhaustive and pair wise disjoint (JEPD) set of instance relations. Nevertheless it can 
be proven that for a JEPD set of instance relations the corresponding class relations 
are also JEPD. 

3   Reasoning on Integrity Constraints 

The application of reasoning algorithms for checking consistency and discovering 
redundancies in networks of instance relations has for example been demonstrated in 
[2] and [7]. This approach applies these reasoning concepts to the class level relations. 
The proof of consistency of a network of binary relations is a constraint satisfaction 
problem. In a consistent network of JEPD relations the following three constraints are 
fulfilled: node consistency, arc consistency and path consistency. 

Node consistency is satisfied if every node has an identity relation. For the class 
relation networks this means that every class must have a relation to itself. This 
requirement is fulfilled if a corresponding identity instance relation is available, for 
example for the topological relations in figure 1 the identity class relation is 
EQUALLD.RD.LT.RT (A, A). 

A network of relations is arc consistent if every edge of the network has an edge in 
the reverse direction, i.e. every relation has an inverse relation. For class relations this 
is only possible, if the corresponding instance relations have an inverse relation or are 
symmetric. Most spatial relations fulfil this requirement. The symmetry properties of 
the class relations can be derived from the symmetry of the applied instance relations 
and the definitions of their properties (equations (1)-(5), (7) and (8)). The inverse of a 
class relation is also based on the inverse of the applied instance relation. If a class 
relation is left total / left definite the inverse relation is right total / right definite and 
vice versa. The following two examples demonstrate the derivation of inverse class 
relations. Here the class relations are based on the symmetric instance relation disjoint 
and the inverse relations contains and inside: 
 

(DISJOINT RD.LT (A, B) )i  =  DISJOINT LD.RT (B,A). 
(CONTAINS LD.RD.LT (A, B) )i  =  INSIDE LD.RD.RT (B,A). 

 
Therewith it can be proven that if an instance relation is symmetric or has an 

inverse relation, there is also an inverse relation for each of the corresponding class 
relations. If there are more than one integrity constraints defined between two classes 
the consistency of these constraints has to be additionally proven for the arc 
consistency.  

For the proof of path consistency the compositions of all possible node triples must 
be checked. The composition of binary relations enables for the derivation of implicit 
knowledge about a triple of entities. If two binary relations are known the 
corresponding third one can be inferred or some of the potential relations can be 

6



excluded. This knowledge can also be used to find conflicts if all of the three relations 
are known. The compositions of a set of relations are usually stored in a composition 
table like it has been done for the topological relations between areal entities in [4].  

In general, the composition of class relations is not independent of the composition 
of the applied instance relations. The composition is only possible if the applied 
instance relations belong to the same set of JEPD relations and this set allows for 
compositions at the instance level. Using for example the 17 class relations together 
with the 8 topological relations between regions (see figure 1) results in 136 
topological class relations and almost 18500 compositions. Since such an amount of 
compositions is hardly manageable, a two level reasoning formalism is proposed here. 
This approach separates the compositions of the abstract class relations from those of 
the instance relations (see figure 4). Therewith the composition of class relations can 
be defined independently of a certain set of instance relations.  

 
Fig. 4. Two levels composition of class relations 

The following example illustrates the two levels composition. With the class 
relations MEETLT.RT-all(A,B) and COVERSLT.RT-all(B,C) given, the relation between the 
classes A and C can be derived. Such a situation is schematically represented in figure 
5. All instances of A have a meet relation to all instances of B and all instances of B 
have a covers relation instances of C. Therewith the composition of the abstract class 
relations can be derived: since all instances of A have the same kind of relation to all 
instances of B and all instances of B participate in same kind of relation to all 
instances of C, it is obvious that all instances of A must have the same relation to all 
instances of C. In other words, every possible triple of instances of A, B and C is 
related by the same relations. Thus the composition of the abstract class relations 
must be:  

LT.RT all LT.RT all LT.RT allR1 (A,B) R2 (B,C) R3 (A,C).− − −∩ ⇒  
 

The composition at the instance level is (taken from the composition table in [4]): 
 

meet(a, b) covers(b, c) disjoint(a, c) meet(a,c).∩ ⇒ ∪  
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The combination of the compositions of the two levels results in: 
 

[ ]LT.RT all LT.RT all LT.RT all
MEET (A, B) COVERS (B,C) DISJOINT MEET (A,C).− − −

∩ ⇒ ∪  
 
This conclusion is obvious, because the given class relations constrain all relations 
among the instances of the three classes. Nevertheless this example shows that the 
composition of the defined class relations is possible and the compositions of other 
class relations can be derived in a similar way.  
 

 
Fig. 5. Scene defined by the class relations MEETLT.RT-all(A,B) and COVERSLT.RT-all(B,C) 

With the described logics it is possible to find conflicts and redundancies in 
networks of class relations. This can for example be applied to prove consistency of 
sets of integrity constraints. 

4   Conclusion 

In this paper, 17 abstract class level relations are defined, which enable a formalised 
specification of semantic integrity constraints. The investigated reasoning concepts 
can be used to find conflicts and redundancies in sets of spatial semantic integrity 
constraints. The introduced two levels composition of class relations allows for a 
separate analysis of instance relations and abstract class relations. Therewith the 
overall reasoning formalism can be used with any spatial or non-spatial JEPD set of 
instance relations.  

There are many different kinds of semantic integrity constraints, but not all of them 
can be covered by this approach. The framework presented in this paper covers 
constraints based on binary instance relations. Semantic integrity constraints, which 
constrain three or more classes or attributes, are not considered. Further on, only total 
participation and a cardinality ratio of 0..1 are included. Nevertheless this framework 
provides a basis, which can be extended for other possibly more complex types of 
semantic integrity constraints.  
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