
Maximizing the Minimum Load for Selfish Agents

Leah Epstein∗ Rob van Stee†

July 6, 2007

Abstract

We consider the problem of maximizing the minimum load for machines that are controlled by
selfish agents, who are only interested in maximizing their own profit. Unlike the regular load balancing
problem, this problem has not been considered in this context before.

For a constant number of machines,m, we show a monotone polynomial time approximation scheme
(PTAS) with running time that is linear in the number of jobs.It uses a new technique for reducing the
number of jobs while remaining close to the optimal solution. We also present an FPTAS for the classical
machine covering problem, i.e., where no selfish agents are involved (the previous best result for this case
was a PTAS) and use this to give a monotone FPTAS.

Additionally, we give a monotone approximation algorithm with approximation ratiomin(m, (2 +
ε)s1/sm) whereε > 0 can be chosen arbitrarily small andsi is the (real) speed of machinei. Finally
we give improved results for two machines.

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il.
†Department of Computer Science, University of Karlsruhe, D-76128 Karlsruhe, Germany.vanstee@ira.uka.de.

Dagstuhl Seminar Proceedings 07261
Fair Division
http://drops.dagstuhl.de/opus/volltexte/2007/1242

1 Introduction

In this paper, we are concerned with a fair allocation of jobsto parallel related machines, in the sense that
each machine should contribute a ’reasonable amount’ (compared to the other machines) to the processing of
the jobs. Specifically, we are interested in maximizing the minimum load which is assigned to any machine.
This problem has been studied in the past on identical [11, 10, 19] as well as related machines [7] and also
in the online setting where jobs arrive one by one and need to be assigned without information about future
jobs [6]. It is also closely related to the max-min fairness problem [9, 15, 8], where we want to distribute
indivisible goods to players so as to maximize the minimum valuation.

In our case, the players (machines) have negative valuations for the jobs, since there is a cost incurred
in running the jobs. So our goal becomes maximizing the minimum loss, i.e., make sure that the cost
of processing is not distributed too unfairly. Moreover, the machines are controlled by selfish agents that
only care about maximizing their individual profit (or minimizing their individual loss). The speeds of the
machines are unknown to us, but before we allocate the jobs, the agents will give us bids which may or may
not correspond to the real speeds of their machines.

Our goal in this paper will be to designtruthful mechanisms, i.e., design games in such a way that truth
telling is a dominant strategy for the agents: it maximizes the profit for each agent individually. This is done
by introducingside paymentsfor the agents. In a way, we reward them (at some cost to us) fortelling us
the truth. The role of the mechanism is to collect the claimedprivate data (bids), and based on these bids
to provide a solution that optimizes our desired objective,and hand out payments to the agents. The agents
know the mechanism and are computationally unbounded in maximizing their utility.

The seminal paper of Archer and Tardos [3] considered the general problem of one-parameter agents.
The class of one-parameter agents contain problems where any agenti has a private valueti and his valuation
function has the formwi · ti, wherewi is the work assigned to agenti. Each agent makes a bid depending on
its private value and the mechanism, and each agent wants to maximize its own profit. The paper [3] shows
that in order to achieve a truthful mechanism for such problems, it is necessary and sufficient to design
a monotoneapproximation algorithm. An algorithm is monotone if for every agent, the amount of work
assigned to it does not increase if its bid increases. More formally, an algorithm is monotone if given two
vectors of lengthm, b, b′ which represent a set ofm bids, which differ only in one componenti, i.e.,bi > b′i,
and forj 6= i, bj = b′j, then the total size of the jobs (the work) that machinei gets from the algorithm if the
bid vector isb is never higher than if the bid vector isb′.

Using this result, monotone (and therefore truthful) approximation algorithms were designed for several
classical problems, like scheduling on related machines tominimize the makespan [3, 5, 1, 17], shortest
path [4, 13], set cover and facility location games [12], andcombinatorial auctions [18, 2].

Formal definition Denote the number of jobs byn, and the size of jobj by pj (j = 1, . . . , n). Denote
the number of machines bym, and the speed of machinei by si (i = 1, . . . ,m). As stated, each machine
belongs to a selfish user. The private value (ti) of useri is equal to1/si, that is, the cost of doing one unit
of work. The load on machinei, Li, is the total size of the jobs assigned to machinei divided bysi. The
profit of useri is Pi − Li, wherePi is the payment to useri by the payment scheme defined by Archer and
Tardos [3]. Letb−i denote the vector of bids, not including agenti. We writeb (the total bid vector) also as
(b−i, bi). Then the payment function for useri is defined as

Pi(b−i, bi) = hi(b−i) + biwi(b−i, bi) −
∫ bi

0
wi(b−i, u)du,

1

wherewi(b−i, bi) is the work (total size of jobs) allocated to useri given the bid vectorb and thehi are
arbitrary functions.

Our goal is to maximizeminLi. This problem is NP-complete in the strong sense [14] even oniden-
tical machines. In order to analyze our approximation algorithms we use the approximation ratio. For an
algorithmA, we denote its cost byA as well. An optimal algorithm is denoted byOPT. The approximation
ratio ofA is the infimumR such that for any input,A ≤ R · OPT. If the approximation ratio of an offline
algorithm is at mostρ we say that it is aρ-approximation.

Previous results (non-selfish machines) For identical machines, Woeginger [19] designed a polynomial
time approximation scheme (PTAS). He also showed that the greedy algorithm ism-competitive. This is
optimal for deterministic online algorithms. Azar and Epstein [6] presented a randomizedO(

√
m log m)-

competitive online algorithm and gave an almost matching lower bound ofO(
√

m).
In [7], a PTAS was designed for related machines. For the semi-online case in which jobs arrive in

non-increasing order, [6] gave anm-competitive algorithm called BIASED-GREEDY and showed that no
algorithm could do better. For the case where jobs arrive in non-increasing order and also the optimal value
is known in advance, [6] gave a 2-competitive algorithm NEXT COVER.

For unrelated machines, Bezáková and Dani [9] give several algorithms. One gives a solution value
which is at mostOPT− pmax less than the optimum, wherepmax is the largest job size (on any machine).
Note that this result may be close to zero. Two other algorithms have performance guaranteen − m + 1.
Golovin [15] gave an algorithm which guarantees that at least a (1 − 1/k) fraction of the machines receive
jobs of total value at leastOPT/k, for any integerk. In the same paper, he also gave anO(

√
n)-approximation

for the case of restricted assignment (each job can only be assigned to a subset of the machines, and has the
same size on each allowed machine) where all job sizes are either 1 or some valueX.

For the case of restricted assignment (without further restrictions on job sizes), Bansal and Sviri-
denko [8] provided anO(log log m/ log log log m)-approximation. Bezakovi and Dani [9] showed that
no polynomial-time algorithm can have a performance guarantee better than 2 unless P=NP. In particular,
no PTAS is possible.

Our results We present amonotonestrongly polynomial time approximation scheme (PTAS) for acon-
stant number of related machines. Its running time is linearin the number of jobs,n.

We then give a new result for non-selfish related machines (the classical problem) by presenting an
FPTAS for it. We use this to give a monotone FPTAS with runningtime polynomial inn andε and the
logarithm of sum of job sizes.

Additionally, we present a monotone approximation algorithm based on NEXT COVER which achieves
an approximation ratio ofmin(m, (2+ε)s1/sm). This algorithm is strongly polynomial-time for an arbitrary
number of machines. It seems difficult to design a monotone approximation algorithm with a constant
approximation ratio for an arbitrary number of machines. Finally, we study two monotone algorithms for
two machines, and analyze their approximation ratios as a function of the speed ratio between them. These
algorithms are very simple and in many cases faster than applying the PTAS or FPTAS on two machines.

Sorting Throughout the paper, we assume that the jobs are sorted in order of non-increasing size (p1 ≥
p2 ≥ . . . ≥ pn), except in Section 2, and the machines are sorted in a fixed order of non-decreasing bids
(i.e. non-increasing speeds, assuming the machine agents are truthful,s1 ≥ s2 ≥ . . . ≥ sm).

2

2 PTAS for constantm

This section is set up as follows. First, we prove some lemmasabout the amount of different sizes of jobs.
Then we show how to design a constant time simple optimal monotone algorithm for an input where the
number of jobs is constant (dependent onm andε). We next show how to reduce the number of jobs to a
constant, allowing us to find the optimal value for this changed instance in constant time. We show that due
to this reduction, the optimal value is reduced by at mostε · OPT. Finally, we show that our algorithm has
linear running time in the number of jobs. Altogether, this proves the following theorem.

Theorem 1 There exists a monotone PTAS for machine covering on a constant number of related machines,
which runs in time linear in the number of jobs.

Amounts of jobs We are given a fixed (constant) number of machinesm of speedss1 ≥ . . . ≥ sm. (Since
our PTAS will turn out to be truthful, we may assume that we know the real speeds and can sort by them.)
Without loss of generality, we assume thats1 = 1. Note that the total size of all jobs may be arbitrarily
large. Letn0 be the number of jobs of size strictly larger thanOPT, the optimal value of the cover, in the
input. We begin by proving some auxiliary claims regardingn0.

Claim 1 n0 ≤ m − 1.

Proof Assume by contradiction that there are at leastm jobs that are all larger than sizeOPT. Assigning
one job per machine, we get a load larger thanOPT on all machines (since all speeds are at most 1), which
is absurd. �

Claim 2 The sum of sizes of all jobs that have size of at mostOPT is at most2OPT(m − n0 − 1) + OPT.

Proof Consider all jobs of size at mostOPT. Assume by contradiction that the total size of these jobs is
at least2OPT(m − n0 − 1) + OPT. Let A be an arbitrary set of jobs that some optimal algorithm puts on
some least loaded machinej ∈ 1, . . . ,m, and letB be all other jobs of size at mostOPT. By assumption,
the total size of the jobs inB is more than2OPT(m − n0 − 1). Since each job inB has size at mostOPT, it
is possible to partition these jobs into sets, so that the total size of the firstm−n0−1 sets is in(OPT, 2OPT],
and all remaining jobs are assigned to a setC (which must be nonempty). This can for instance be done by
sorting the jobs inB in order of decreasing size. Assign each of the firstm−n0−1 sets to its own machine.
Assign then0 job larger thanOPT to n0 machines, one per machine. AssignA andC to the remaining empty
machine. SinceC has nonzero size, we find an assignment with cover better thanOPT, a contradiction. �

Finding a monotoneOPT Let ε > 0 be a given constant. Without loss of generality we assumeε < 1. The
algorithm in the next sections modifies the input so that we end up with a constant number of jobs (at most
4(m + 2m2/ε2)). The reason is that for this input, it is possible to enumerate all possible job assignments
in constant time (there are at mostm4m+8m2/ε2

different assignments). Before enumeration, we define a
fixed ordering on the machines. This ordering does not need todepend on the speeds, and does not change
even if machine speeds are modified. Among all possible job assignments, we take the optimal assignment
which is lexicographically smallest among all optimal assignment (using the fixed ordering). The usage
of a fixed ordering to obtain a monotone optimal algorithm wasalready used for the makespan scheduling
problem [3].

We show that this gives a monotone algorithm. Suppose machine i claims to be faster, but it is not the
bottleneck, then nothing changes. The previous assignmentis still optimal. A hypothetical lexicographically

3

smaller optimal assignment with the new speed would also reach a cover of the old optimal value with the
old speed, because the old speed was lower, a contradiction.

If machinei is the bottleneck (it is covered exactly to optimal height),theni will only get more work.
This follows because there are two options:

1. The algorithm concludes that the original assignment is still the best (though with a smaller coverC ′

than before), then the amount allocated toi remains unchanged.
2. The algorithm concludes that another assignment is now better, theni clearly gets more work (to

reach a load aboveC ′, which is whati has with the old amount of work and the old, slower speed).

Reducing the number of jobs We construct an input for which we can find an optimal job assignment
which is the smallest assignment lexicographically, and thus monotone. We build it in a way that the value
of an optimal assignment for the adapted input is within a multiplicative factor of1 − 3ε from the value of
an optimal assignment for the original input. This is done byreducing the number of jobs of size no larger
thanOPT to a constant number (dependent onm andε), using a method which is oblivious of the machine
speeds.

Let ∆ = 2m2/ε2 + m. If the input consists of at most∆ jobs, then we are done. Otherwise, we keep
the∆ largest such jobs as they are. This set is denoted byJL. Let JS be the rest of the jobs.

Let A be the total size of the jobs inJS . Let a be the size of the largest job inJS . If A ≤ 3a∆,
we combine jobs greedily to create mega-jobs of size in the interval [a, 3a]. One mega-job is created by
combining jobs until the total size reaches at leasta, this size does not exceed2 · a. If we are left with a
remainder of size less thana, it is combined into a previously created job. The resultingnumber of mega-jobs
created fromJS is at most3∆.

Otherwise, we apply a “List Scheduling” algorithm with as input the jobs inJS and∆ identical ma-
chines. These machines are only used to combine the jobs ofJs into ∆ mega-jobs and should not be
confused with the actual (m) machines in the input.

List Scheduling (LS) works by assigning the jobs one by one (in some order) to machines, each job is
assigned to the machine with minimum load (at the moment the job is assigned). LS thus creates∆ sets
of jobs and the maximum difference in size between two sets isat mosta [16]. The jobs in each set are
now combined into a mega-job. Thus we get∆ mega-jobs with sizes in the interval[A

∆ − a, A
∆ + a]. Since

A
∆ ≥ 3a, we get that the ratio between the size of two such mega-jobs is no larger than2.

In all three cases we get a constant number of jobs and mega-jobs.

The optimal value of the modified instance If no mega-jobs were created then clearly we consider all
possible job assignments and achieve an optimal one for the original problem. Consider therefore the two
cases where we applied the jobs merging procedure. Note thatsince the total size of all jobs of size at
mostOPT is at most2mOPT by Claim 2, and given the amount of jobs inJL (and using Claim 1), we have
a ≤ ε2OPT/m.

First assumeA ≤ 3a∆. We use the following notations.OPT′ is the value of an optimal assignment using
the modified jobs.OPT′′ is the value of an optimal assignment using the modified jobs and only machines
of speed at least2a/(εOPT) (called fast, whereas all other machines are called slow). Thus for OPT′′ we
assume that the slow machines are simply not present. Clearly we haveOPT′′ ≥ OPT′ andOPT ≥ OPT′.

We show thatOPT′′ ≥ (1 − 2ε)OPT. Given an optimal assignment for the original instance, remove all
jobs assigned to slow machines. Remove all jobs that belong to Js (which are of size at mosta) that are
assigned to fast machines, and replace them greedily by mega-jobs. The mega-jobs are assigned until that
total size of allocated mega-jobs is just about to exceed thetotal size of jobs ofJs that were assigned to this

4

machine. Since all mega-jobs are of size at most4a, and each fast machine has load of at leastOPT and thus
a total size of assigned jobs of at least2a/ε (since it is fast), the loss is at most of2ε of the total load. The
rest of the jobs (jobs ofJL removed from slow machines, and remaining mega-jobs) are assigned arbitrarily.

We next show how to convert an assignment with valueOPT′′ (ignoring the slow machines) into an
assignment which uses all machines. Since there are at least∆ jobs of size at leasta (the jobs ofJL), and
these jobs are spread over at mostm machines, at least one machine has at least∆/m such jobs. From this
machine, remove at most2m/ε jobs of size at leasta (the smallest ones among those that are large enough),
and assign2/ε jobs to each machine that does not participate in the assignment ofOPT′′. The resulting load
of each such machine (taking the speed into account) has a load of at leastOPT since it is slow: we have
2
ε · a/(2a

εOPT) = OPT. The loss of the fast machine where jobs were removed is at most a factor ofε of its
original load. Therefore we get that in the new job assignment each machine is either loaded by at leastOPT

or by at least(1 − ε)OPT′′. ThusOPT′ ≥ min{OPT, (1 − ε)OPT′′}. SinceOPT′′ ≥ (1 − 2ε)OPT, this proves
thatOPT′ ≥ (1 − 3ε)OPT.

The second case is completely analogous, except that in thiscase we call machines with speed at least
(

A
∆ − a

)

/(εOPT) fast. Thus each fast machine has total size of assigned jobs of at least
(

A
∆ − a

)

/ε. We
define fast in this way because in this case, the mega-jobs have size in the interval[A

∆ − a, A
∆ + a]. When

we replace jobs by mega-jobs, such a machine then loses at most 2ε of its original load. When we convert
the assignment ofOPT′′, we use that mega-jobs have size at leastA

∆ − a, and there are∆ of them, so we can
now transfer2m/ε of them to slow machines and get the same conclusions as before.

Running time We reduce the number of jobs to a constant. Note in the reduction in Section 2, we are only
interested in identifying the∆ largest jobs. After this we merge all remaining jobs using a method based on
their total size. These things can be done in time linear inn. Finally, once we have a constant number of
jobs, we only need constant time for the remainder of the algorithm. Thus our algorithm has running time
which is linear in the number of jobsn.

3 FPTAS for constantm

In this section, we present a monotone fully polynomial-time approximation scheme for constantm. This
scheme uses as a subroutine a non-monotone FPTAS which is described in Section 3.1. We explain how this
subroutine can be used to create a monotone FPTAS in the appendix.

In the current problem, it can happen that some jobs are superfluous: if they are removed, the optimal
cover that may be reached remains unchanged. Even though these jobs are superfluous, we need to take
special care of these jobs to make sure that our FPTAS is monotone. In particular, we need to make sure that
these superfluous jobs are always assigned in the same way, and not to very slow machines. We therefore
need to modify the FPTAS mechanism from [1] because we cannotsimply use any “black box” algorithm
as was possible in [1]. Due to space constraints, we have moved the monotone FPTAS to the appendix.

3.1 An FPTAS which is not monotone

Chooseε so that1/ε is an integer. We may assume thatn ≥ m, otherwiseOPT = 0 and we assign all jobs
to machine 1. In the proof of Lemma 4.2 we show that this assignment is monotone.

We give an algorithm which finds the optimal cover up to a factor of 1 − 2ε. We can again use an
algorithm which is anm-approximation [6], therefore we can assume we can findOPT within a factor of
m. We scale the problem instance such that that algorithm returns a cover of size 1. Then we know that

5

OPT ∈ [1,m]. We are now going to look for the highest value of the formj · ε (j = 1/ε, 1/ε + 1, . . . ,m/ε)
such that we can find an assignment which is of value at least(1 − ε)jε. That is, we partition the interval
[1,m] into many small intervals of lengthε. We want to find out in which of these intervalsOPT is, and find
an assignment which is at most one interval below it.

Given a value forj, we scale the input up by a factor ofn
jε2 ≥ m

mε ≥ 1. Now the target value (the
cover that we want to reach) for a given value ofj is notjε but S = n/ε. Sort the machines by speed. For
machines with the same speed, sort them according to some fixed external ordering. For jobk and machine
i, let ℓk

i = ⌈pk/si⌉ (k = 1, . . . , n; i = 1, . . . ,m).
We use dynamic programming based on the numbersℓk

i . A load vectorof a given job assignment is
anm-dimensional vector of loads induced by the assignment. LetT (k, a) be a value between 0 andm for
k = 0, . . . , n and an (integer!) load vectora. T (k, a) is the maximum number such that jobk is assigned
to machineT (k, a) and a load vector ofa (or better) can be achieved with the jobs1, . . . , k. If the vectora
cannot be achieved,T (k, a) = 0. If a (or better) can be achieved,T (k, a) is a number between 1 andm.

We initialize T (0, 0) = m, representing that a cover of 0 can be achieved without any jobs (this is
needed for the dynamic program), andT (0, a) = 0 for any a > 0. For a load vectora = (a1, . . . , am),
T (k, a) is computed fromT (k − 1, a) by examiningm values (each for a possible assignment of jobk):

T (k, a) = max
(

0,
{

i ∈ {1, . . . ,m}
∣

∣

∣
ai − ℓk

i ≥ 0 andT (k − 1, (a−i, ai − lki)) > 0
})

The notation(a−i, x) represents the load vector(a1, . . . , ai−1, x, ai+1, . . . , am): the ith element ofa
has been replaced byx and all other elements are unchanged. Each valueT (k, a) is set only once, i.e.,
if it is nonzero it is not changed anymore. When a valueT (k, a) is set to a nonzero valuex, we also set
T (k, (a−i, ai − y)) = x for everyy = 1, . . . , lki − 1 such thatT (j, (a−i, ai − y)) = 0. This represents the
fact that although a load vector of preciselya cannot be achieved with this assignment, a load vector that
dominatesa (is at least as large in every element) can be achieved by assigning jobk to machineT (k, a).

The size of the tableT for one value ofk is (S + 1)m. The n tables are computed in total time
nmS(S + 1)m = O(m(n/ε)m+2). (The factorS is from updating the table after setting someT (k, a) to
a nonzero value.) As soon as we find a valuek ≤ n such thatT (k, S, . . . , S) > 0, we can determine the
assignment for the firstk jobs by going back through the tuples. Each time, we can subtract the last job from
the machine where it was assigned according to the value of the tuple to find the previous load vector. If
some element of the load vector drops below 0 due to this subtraction, we replace it by 0. Ifk < n, the last
n − k jobs are assigned to machine 1 (the fastest machine).

If T (n, S, . . . , S) = 0 after running the dynamic program, the target value cannot be achieved. In this
case we adjust our choice ofj (using binary search) and try again. In this way, we eventually find the highest
value ofj such that all machines can be covered tojε using jobs that are rounded.

Note that the loss by rounding is at mostn per machine (in the final scaled instance): if we replace the
rounded job sizes by the actual job sizes as they were after the second scaling, then the loss is at most 1 per
job, and there are at mostn jobs on any machine. So the actual cover given by the assignment found by the
dynamic program is at leastS − n. Since the target valueS = n/ε, we lose a factor of1 − ε with regard to
S. After scaling back (dividing byn/(jε2) again) we have that the actual cover found is at least(1 − ε)jε.
On the other hand, due to the binary search a cover of(j + 1)ε cannot be reached (not even with job sizes
that are rounded up). This implies that our cover is at least(1− ε)(OPT− ε) ≥ (1− 2ε)OPT sinceOPT ≥ 1.

6

Input: guess valueG, m machines in a fixed order of non-increasing speeds,n jobs in order of non-
increasing sizes.
For every machine in the fixed order, starting from machine 1,allocate jobs to the machine according to
the sorted order of jobs until the load is at leastG.
If no jobs are left and not all machines reached a load level ofG, report failure. If all machines reached
a load ofG, allocate remaining jobs (if any) to machinem, and report success.

Figure 1: Algorithm Next Cover (NC)

4 Approximation algorithm SNC for arbitrary values of m

The well known Least Processing Time (LPT) algorithm does not provide finite approximation ratio; given
two machines of speeds 1 and 4, and two jobs of size 1, it will assign both jobs to the machine of speed 4.
BIASED-GREEDY is a special case of LPT which prefers faster machines in caseof ties. We can see that
even this variant gives a relatively high approximation ratio. It is known that LPT is not monotone but an
adaptation called LPT* is monotone [17]. However, the adaptation acts the same on the above input and thus
it cannot be used for the current problem. Moreover, since BIASED-GREEDY acts as LPT on some inputs,
it cannot be expected to be monotone either.

In this section, we present an efficient approximation algorithm for an arbitrary number of machinesm.
Our algorithm uses Next Cover [6] as a subroutine. This semi-online algorithm is defined in Figure 1. Azar
and Epstein [6] showed that if the optimal cover is known, Next Cover (NC) gives a 2-approximation. That
is, for the guessG = OPT/2 it will succeed. NC also has the following property, which wewill use later.

Lemma 4.1 Suppose NC succeeds with guessG but fails with guessG + ε, whereε ≤ 1
3G. Then in the

assignment for guessG, the work on machinem is less thanmw + ε, wherew ≥ G is the minimum work
on any machine.

The proof is in the appendix. Our algorithm Sorted Next Cover(SNC) works as follows. A first step is to
derive a lower bound and an upper bound on the largest value which can be achieved for the input andm
identical machines. To find these bounds, we can apply LPT (Longest processing Time), which assigns the
sorted (in non-increasing order) list of jobs to identical machines one by one. Each job is assigned to the
machine where the load after this assignment is minimal. It was shown in [11, 10] that the approximation
ratio of LPT is 4m−2

3m−1 < 4
3 . Thus we defineA to be the value of the output assignment of LPT. We also

defineL = A
2 andU = 4

3A. We have thatA andU are clear lower an upper bounds on the optimal cover
on identical machines. Since NC always succeeds to achieve half of an optimal cover, it will succeed with
the valueG = L. Since a cover ofU is impossible, the algorithm cannot succeed with the valueG = U .
Throughout the algorithm, the valuesL andU are such thatL is a value on which NC succeeds whereasU
is a failure value. We perform a geometrical binary search. It is possible to prove using induction that if NC
succeeds to cover all machines with a guess valueG, then it succeeds to cover all machines using a smaller
guess valueG′ < G. The induction is on the number of machines and the claim is that in order to achieve a
cover ofG′ on the firsti machines, NC uses the same subset or a smaller subset used to achieveG.

The algorithm has a parameterε ∈ (0, 1/2) that we can set arbitrarily. See Figure 2. Since the ratio
betweenU andL is initially constant, it can be seen that the algorithm completes in at mostO(1

log(1+ε/2))

steps. The overall running time isO(n(log n + 1/ log(1 + ε/2)) due to the sorting. Note that Steps 2 and 6
are only executed once.

7

Input: parameterε ∈ (0, 1/2), sorted set of jobs (p1 ≥ . . . ≥ pn), sorted machine bids (b1 ≤ . . . ≤ bm).

1. If there are less thanm jobs, assign them to machine 1 (the machine of speeds1), output 0 and
halt.

2. Scale the jobs so that
∑n

i=1 pj = 1. Run LPT on identical machines and denote the value of the
output byA. SetL = A

2 andU = 4
3A.

3. Apply Next Cover on identical machines with the guessG =
√

U · L.

4. If Next Cover reports success, setL = G, else setU = G.

5. If U − L > ε
2L, go to step 3, else continue with step 6.

6. Apply Next Cover on identical machines with the valueL. Next Cover partitions the jobs inm
subsets, each of total size of jobs at leastL. Sort the subsets in non-increasing order and allocate
them to the machines in non-increasing order of speed according to the bids.

Figure 2: Algorithm Sorted Next Cover (SNC)

Lemma 4.2 SNC is monotone.

Proof The subsets constructed in step 3 and 6 do not depend on the speeds of the machines. If a machine
claims it is faster than it really is, the only effect is that it may get a larger subset. Similar if it is slower.

If the algorithm halts in step 1, then we again have a situation that jobs are partitioned into sets, and the
sets are assigned in a sorted way. This is actually the outputthat steps 2–6 would produce if SNC was run
with a guess value0. �

Theorem 2 For any0 < ε < 1, SNC maintains an approximation ratio ofmin(m, (2 + ε)s1/sm).

Proof We start with the second term in the minimum. The load that SNChas on machinei is at leastL/si,
and Next Cover cannot find a cover aboveU ≤ (1 + ε/2)L on identical machines. So the optimal cover on
identical machines of speed 1 is at most2(1 + ε/2)L = (2 + ε)L. Thus the optimal cover on machines of
speedsm is at most(2+ε)L/sm, and the optimal cover on the actual machines can only be lower sincesm is
the smallest speed. We thus find a ratio of at most((2+ ε)L/sm)/(L/si) = (2+ ε)si/sm ≤ (2+ ε)s1/sm.

We prove the upper bound ofm using induction.
Base case:On one machine, SNC has an approximation ratio of 1.
Induction hypothesis:Onm − 1 machines, SNC has an approximation ratio of at mostm − 1.
Induction step:Recall that the jobs are scaled so that their total size is 1. Suppose each machinej has

work at least1/(jm) (j = 1, . . . ,m). Then the load on machinej is at least1/(jmsj). However, the
optimal cover is at most1/(s1 + s2 + ... + sm) ≤ 1/(jsj + (m − j)sm) ≤ 1/(jsj). Thus SNC maintains
an approximation ratio of at mostm in this case.

Suppose there exists a machinei in the assignment of SNC with work less than1/(im). Consider the
earliest (fastest) such machinei. Due to the resorting we have that the work on machinesi, . . . ,m is less
than1/(im). So the total work there is less than(m − i + 1)/(im). The work on the firsti − 1 machines
is then at least1 − (m − i + 1)/(im) = (im −m + i − 1)/(im) = (i − 1)(m + 1)/(im) and the work on
machine 1 is at least(m + 1)/(im). This is more thanm + 1 times the work on machinei.

We show that in this case there must exist a very large job, which is assigned to a machine by itself. Let
L′ andU ′ be the final values ofL andU in the algorithm. Letw be the minimum work assigned to any

8

machine for the guess valueL′. Since SNC gives machinei work less than1/(im), we havew < 1/(im).
We haveU ′ −L′ ≤ ε

2L′. SNC succeeds withL′ and fails withU ′ and thus, sinceε ≤ 1
2 and by Lemma 4.1,

machinem receives at mostmw + ε
2L′ ≤ mw + 1

4L′ ≤ (m + 1
4)w ≤ (m + 1

4)/(im) running NC with the
guess valueL′. Moreover, NC stops loading any other machine in step 6 as soon as it coversL′.

We conclude that the only way that any machine can get work more than(m + 1)L′ is if it gets a single
large job. This means that in particular the first (largest) job has sizep1 > (m + 1)w ≥ 3w ≥ 3L′. SNC
assigns this job to its first machine, and the remaining work on the other machines.

To complete the induction step, compare the execution of SNCto the execution of SNC with as input
them − 1 slowest machines and then − 1 smallest jobs. Denote the first SNC by SNCm and the second by
SNCm−1. We first show that SNCm−1 fails onU ′. SinceU ′ ≤ (1 + ε

2)w < 2w, then SNCm assigns only
p1 to machine 1, and thus SNCm−1 executes exactly the same on the other machines. Since machine 1 is
covered, SNCm fails on some later machine, and then this also happens to SNCm−1. Therefore, SNCm−1

cannot succeed withU ′ or any larger value. A similar reasoning shows that SNCm−1 succeeds with any
guess that is at mostL′. Finally, L′ is at least the starting guessA/2. Sop1 > 3L′ ≥ 3

2A implies that LPT
also puts only the first job on the first machine, since its approximation ratio is better than4/3. Therefore,
LPT gives the same guess valueA for the original input onm machines as it would for then − 1 smallest
jobs onm−1 machines. This means that SNCm and SNCm−1 maintain the same valuesU andL throughout
the execution, and then we can apply the induction hypothesis. �

In the appendix, we show that the simple algorithm Round Robin has an approximation guarantee of
m, so this algorithm can also be used in case the speed ratio is large. It should be noted that if we find an
algorithm with a better guarantee thanm, we cannot simply run both it and SNC and take the best assignment
to get a better overall guarantee. The reason that this does not work is that this approach does not need to be
monotone, even if this hypothetical new algorithm is monotone: we do not know what happens at the point
where we switch from one algorithm to the other.

5 Algorithms for small numbers of machines

We next consider the case of two machines. Even though previous sections give algorithms for this case
with approximation ratio arbitrarily close to1, we are still interested in studying the performance of SNC
for this case. The main reason for this is that we hoped to get ideas on how to find algorithms with good
approximation ratios form > 2 machines that are more efficient than our approximation schemes. However,
as we show below, several obvious adaptations of SNC are not monotone, and it seems we will need more
sophisticated algorithms form > 2.

A first observation is that there are onlyn − 1 possible partitions of the jobs into two sets (since we
keep the jobs in sorted order), and thus there is no need to perform binary search. LetSi = (Li =
{1, . . . , i}, Ri = {i + 1, . . . , n}) be a partition of the sorted list of jobs (p1 ≥ p2 . . . ≥ pn). Clearly, to
have a finite approximation ratio we only need to considerSi for i = 1, . . . , n − 1. For a given partitionSi,
let σ1(i) =

∑i
j=1 pj andσ2(i) =

∑n
j=i+1 pj .

SNC is defined for two machines as follows. See Figure 3. From Theorem 2 it follows that SNC (which
ignores the speeds) has an approximation of at most2. We next consider the approximation ratio as a
function of the speed ratios ≥ 1. The proofs in this section can be found in the appendix.

Lemma 5.1 On two machines, SNC has an approximation ratio ofmax{ 3
s+1 , 2s

s+1}.

Below we prove that the fact that SNC ignores the speeds is crucial for its monotonicity in the general case.
However, ifm = 2, we can define an algorithm SSNC which takes the speeds into account and is monotone

9

Input: sorted set of jobs (p1 ≥ . . . ≥ pn), sorted machine bids (b1 ≤ b2)
Find i such thatmin{σ1(i), σ2(i)} is maximal. Ifσ1(i) ≥ σ2(i), assignLi to the first (faster) machine
andRi to the second. Else, assignLi to the second machine andRi to the first.

Figure 3: Algorithm Sorted Next Cover (SNC) on two machines

Input: sorted set of jobs (p1 ≥ . . . ≥ pn), sorted machine bids (b1 ≤ b2)
Let r = b2/b1 ≥ 1 be the speed ratio between the two machines according to the bids. Findi such that
min{σ1(i)

r , σ2(i)} is maximal. If σ1(i) ≥ σ2(i), assignLi to the first (faster) machine andRi to the
second. Else, assignLi to the second machine andRi to the first.

Figure 4: Algorithm Speed-aware Sorted Next Cover (SSNC) ontwo machines

as well. SSNC is defined in Figure 4. We show in the appendix that on two machines, SSNC is monotone
and has an approximation ratio of at mostmin{1 + s

s+1 , 1 + 1
s}.

It follows that on two machines, SSNC is better than SNC in general. However, the following lemma
shows that SNC is better than SSNC fors ≤ 1 +

√
2.

Lemma 5.2 The approximation ratio of SSNC is not better thanmin{1 + s
s+1 , 1 + 1

s} on two machines.

In the sequel, we show that SSNC or simple adaptations of it are not monotone on more than two
machines. In our examples we use a small number of machines. The examples can be extended to a larger
number of machines by adding sufficiently many very large jobs. We analyze an exponential version of
SSNC that checks all valid partitions of the sorted job list intom consecutive sets. Denote the sums of these
sets byX1, . . . ,Xm. Then SSNC outputs the partition which maximizesmin1≤i≤m{Xi

si
}.

Let a >
√

2. We use a job set which consists of five jobs of sizesa3, a3 − 1, a2 − 1, a2 − 1, 1. There are
three machines of speedsa2, a, 1.

Running SSNC results in the sets{a3}, {a3 − 1}, {a2 − 1, a2 − 1, 1} for a cover ofa. It is easy to see
that changing the first set into{a3, a3 − 1} so that the load on the fastest machine becomes strictly larger
thana results in a second set{a2 − 1, a2 − 1} and the third machine gets a load which is too small.

Assume now the speed of fastest machine decreases froma2 to a. SSNC finds the sets{a3}, {a3 −
1, a2 − 1}, {a2 − 1, 1} for a cover ofa2. So the size of the largest set can increase (in this case, from a3 to
a3 + a2 − 2) if the fastest machine slows down.

This example shows that not only the above algorithm is not monotone, but also a version of it which
rounds machine speeds to power ofa. In previous work, machine speeds were rounded to powers of rela-
tively large numbers (e.g.,2.5 in [1]). Thus it seems unlikely that rounding machine speedsto powers of
some number smaller than

√
2 would give a monotone algorithm.

Another option would be to round job sizes. In the appendix, we show that this approach results in a
non-monotone algorithm already for two machines (the example can again be extended for more machines).

Acknowledgment The authors would like to thank an anonymous referee who pointed out an error in an
earlier version of our approximation scheme in Section 2, another referee who helped improve the presenta-
tion, and Motti Sorani for helpful discussions.

10

References

[1] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation mechanisms for scheduling self-
ish related machines. InProc. of 22nd International Symposium on Theoretical Aspects of Computer
Science (STACS), page 69–82, 2005.

[2] Aaron Archer, Christos Papadimitriou, Kunal Talwar, and Eva Tardos. An approximate truthful mech-
anism for combinatorial auctions with single parameter agents. InProc. of 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), page 205–214, 2003.

[3] Aaron Archer and Eva Tardos. Truthful mechanisms for one-parameter agents. InProc. 42nd Annual
Symposium on Foundations of Computer Science, pages 482–491, 2001.

[4] Aaron Archer and Eva Tardos. Frugal path mechanisms. InProc. of 13th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 991–999, 2002.

[5] Vincenzo Auletta, Roberto De Prisco, Paolo Penna, and Giuseppe Persiano. Deterministic truthful
approximation mechanisms for scheduling related machines. In Proc. of 21st International Symposium
on Theoretical Aspects of Computer Science (STACS), page 608–619, 2004.

[6] Yossi Azar and Leah Epstein. On-line machine covering. In Proc. of the 5th Annual European Sympo-
sium on Algorithms (ESA’97), pages 23–36, 1997.

[7] Yossi Azar and Leah Epstein. Approximation schemes for covering and scheduling on related ma-
chines. InProc. of 1st International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems (APPROX), pages 39–47, 1998.

[8] Nikhil Bansal and Maxim Sviridenko. The Santa Claus Problem. In Proc. of 38th Annual ACM
Symposium on Theory of Computing (STOC), pages 31–40, 2006.

[9] Ivona Bezáková and Varsha Dani. Nobody left behind: fair allocation of indivisible goods. ACM
SIGecom Exchanges, 5.3, 2005.

[10] János Csirik, Hans Kellerer, and Gerhard J. Woeginger. The exact LPT-bound for maximizing the
minimum completion time.Operations Research Letters, 11:281–287, 1992.

[11] Bryan L. Deuermeyer, Donald K. Friesen, and Michael A. Langston. Scheduling to maximize the
minimum processor finish time in a multiprocessor system.SIAM J. Discrete Methods, 3:190–196,
1982.

[12] Nikhil R. Devanur, Milena Mihail, and Vijay V. Vazirani. Strategyproof cost-sharing mechanisms for
set cover and facility location games. InACM Conference on E-commerce, page 108–114, 2003.

[13] Edith Elkind, Amit Sahai, and Ken Steiglitz. Frugalityin path auctions. InProc. of 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), page 701–709, 2004.

[14] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide to the theory of
NP-Completeness. Freeman and Company, New York, 1979.

[15] Daniel Golovin. Max-min fair allocation of indivisible goods. Technical Report, Carnegie Mellon
University, CMU-CS-05-144, 2005.

11

[16] Ronald L. Graham. Bounds for certain multiprocessing anomalies.Bell System Technical J., 45:1563–
1581, 1966.

[17] Annemaria Kovacs. Fast monotone 3-approximation algorithm for scheduling related machines. In
Proc. of 13th Annual European Symposium on Algorithms (ESA), page 616–627, 2005.

[18] Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for restricted combinatorial
auctions. InProc. of the 18th National Conference on Artificial Intelligence and 14th Conference on
Innovative Applications of Artificial Intelligence (AAAI/IAAI), page 379–384, 2002.

[19] Gerhard J. Woeginger. A polynomial time approximationscheme for maximizing the minimum ma-
chine completion time.Operations Research Letters, 20(4):149–154, 1997.

A A monotone FPTAS-mechanism

Our FPTAS mechanism is displayed in Figure 5. It is a variation on the FPTAS-mechanism described in [1].
Their mechanism makes only one direct reference to the actual goal function (makespan in their case) and
relies on a black box algorithm to find good assignments. The only changes that we had to make are therefore
the following:

• Where the mechanism from [1] uses their black box algorithm,we use instead the subroutine described
in Section 3.1.

• We need a different value forℓ, which denotes the second highest power of1 + ε that is considered as
a valid bid. We explain below how to find this value.

• In the last step (testing all the sorted assignments), we do not return the assignment with the minimal
makespan but instead the assignment with the maximal cover.

As specified in [1], we will normalize the bids such that the lowest bid (highest speed) is 1. Assuming
the bids are truthful, i.e.bj = 1/sj for j = 1, . . . ,m, a very simple upper bound for the optimal cover is
thenU =

∑n
i=1 pi, the total size of all the jobs. (Placing all the jobs on the fastest machine gives loadU on

that machine, and it is clear that the fastest machine cannotget more load than this.)
Consider a slower machinej. Supposebj ≥ U/pn. Then the load of this machine if it receives only job

n is at leastU ≥ OPT. This means that for our algorithm, it is irrelevant what theexact value ofbj is in this
case, because already forbj = U/pn an optimal cover is certainly reached by placing a single arbitrary job
on machinej. We can therefore change any bid which is higher thanU/pn to U/pn.

Since the mechanism normalizes and rounds bids to powers of1 + ε, we can now define

ℓ =

⌈

log1+ε

U

pn

⌉

=

⌈

log1+ε

∑n
i=1 pi

pn

⌉

.

Plugging this in in the mechanism from [1], this gives us a fully polynomial-time approximation scheme for
the machine covering problem, sinceℓ is still (weakly) polynomial in the size of the input.

Theorem 3 This FPTAS-mechanism is monotone.

12

Input: n jobs in order of non-decreasing sizes, a bid vectorb = (b1, . . . , bm), a parameterε and a
subroutine, which is the FPTAS from Section 3.1.

1. Construct a new bid vectord = (d1, . . . , dm) by rounding up each bid to the closest value of
(1 + ε)i, normalizing the bids such that the lowest bid is 1, and replacing each bid larger than
(1 + ε)ℓ+1 by (1 + ε)ℓ+1.

2. Enumerate over all possible vectorsd′ = ((1+ε)i1 , . . . , (1+ε)im), whereij ∈ {0, . . . , ℓ+1}. For
each vector, apply the subroutine and sort the output assignment such that theith fastest machine
in d′ will get theith largest amount of work.

3. Test all the sorted assignments ond, and return the one with the maximal cover. In case of a tie,
choose the assignment with the lexicographically maximum assignment (where the machines are
ordered according to some external machine-id).

Figure 5: A monotone FPTAS-mechanism

Proof We follow the proof of Andelman et al. [1]. We need to adapt this proof to our goal function.
Suppose that machinej increases its bid. First of all, if the increase is so small that the vectord′ remains
unchanged, the subroutine will give the same output, and in step 3 we will also choose the same assignment.
Thus the load onj does not change.

If dj > (1 + ε)ℓ, the assignment found by our algorithm will also not change whenj slows down: the
vectord′ again remains the same and we can reason as in the first case.

Now suppose thatdj ≤ (1 + ε)ℓ, and the speed ofj changes so that its rounded bid increases by a
factor of1 + ε. (For larger increases, we can apply this proof repeatedly.) Suppose thatj is not the unique
fastest machine. We thus consider the case where a normalized rounded bid rises fromdj to (1 + ε)dj , the
assignment changes fromW to W ′, and we assume that the amount of work assigned to machinej increases
from wj to w′

j > wj . Denote the size of the cover of assignmentW on bid vectord by C. There are two
cases.

Suppose that the cover that our algorithm finds increases asj becomes slower. So all machines have
load strictly aboveC. Consider the new assignmentW ′ on the old speeds. All machines besidesj do not
change their speeds and therefore still have a load strictlyaboveC. Machinej receives more work than in
the old assignmentW and therefore also has a load strictly aboveC, since it already had at leastC when
it was faster. This means thatW ′ gives a better cover thanW on the old speeds. However, our algorithm
would then have outputW ′ in the first place, because it checks all these speed settings, a contradiction.

Now suppose that the cover that our algorithm finds stays the same asj becomes slower. This means
that j is not the bottleneck machine (the unique least loaded machine). The old assignmentW clearly has
a cover ofC also with the new speeds, so our algorithm considers it. It would only outputW ′ if W ′ were
lexicographically larger thanW and also had a cover ofC (or better). However, in that caseW ′ again would
have been found before already exactly as above, a contradiction.

Finally, suppose thatj is the unique fastest machine. Due to normalization,dj remains 1, bids between
1 + ε and(1 + ε)ℓ decrease by one step, and bids equal to(1 + ε)ℓ+1 can either decrease to(1 + ε)ℓ or
remain unchanged. We construct an alternative bid vectord̂ as in [1] where we replace all bids of(1+ ε)ℓ+1

in d′ with (1 + ε)ℓ. This is the point where we use the fact that we check “too many” speed settings.

13

Every machine that bids(1+ε)ℓ or more needs to receive only at least one arbitrary job to have sufficient
load. In such cases, our subroutine indeed puts only one job on such a machine, because it finds the minimum
amount of jobsk to get to a certain cover and puts all remaining jobs on the fastest machine. Therefore,
the cover that our algorithm finds for̂d will be the same as that ford′, and it will also give the same output
assignment. This is also optimal for(1 + ε)d̂. The difference between(1 + ε)d̂ andd is only that the biddj

changes from 1 to1 + ε. We can now argue as before: whether the cover that our algorithm finds increases
or not asj becomes slower, a hypothetical new better assignment ford̂(1 + ε) would also be better ford,
but in that case the algorithm would have found it before. �

B Proof of Lemma 4.1

Proof Consider machinem. Suppose its work is at leastmw + ε, whereε ≤ G
3 ≤ w

3 .
Supposem is odd. We create a new assignment as follows. Place the jobs on machinesi, i + 1 on

machine(i + 1)/2 for i = 1, 3, 5, . . . ,m − 2. Cut the work on machinem into (m + 1)/2 pieces (without
cutting any jobs) that all have size at leastw + ε. Put these on the last(m + 1)/2 machines.

The proof that it is possible to cut the pieces in this way is similar to the creation of mega-jobs in Section
2. The jobs on machinem are the smallest in the sequence. Since some machine received work of w, it
means that the jobs on machinemare of size at mostw. Thus, we can put a cut every time that we surpass
w + ε, and we will not need to cut beyond2w: if we need two jobs to get pastw + ε, this is clear since
all jobs on machinem have size at mostw; if we need at least three jobs, the size of the third job is at
most(w + ε)/2 (the maximum possible average size of the first two jobs), andwe find a set of size at most
3
2(w + ε) ≤ 2w. Doing this(m − 1)/2 times leaves a piece of size at leastmw + ε − (m − 1)w = w + ε.
This means that NC succeeds with guessw + ε ≥ G + ε, a contradiction.

Now supposem is even. This time we create a new assignment by placing the jobs on machinesi, i + 1
on machine(i+1)/2 for i = 1, 3, 5, . . . ,m−3. Note that machinem−1 already has jobs no larger thanw.
That is true since some machinei among1, . . . ,m−1 has received work of exactlyw, and all jobs assigned
to machinesi, . . . ,m are no larger thanw. We can consider the total work of the last two machines. This
load is at least(m + 1)w + ε and as shown before, it can be split intom+2

2 = m
2 + 1 parts of size at least

w + ε each. This parts can be assigned in the appropriate order to machinesm
2 , . . . ,m. �

C Round Robin

We show that if the speed ratio between the fastest and slowest machines is large, the following very simple
and efficient algorithm performs quite well.

Sort the machines and jobs by speed, so that the first machine has the largest speed and the first job has
the largest size. The Round Robin algorithm assigns jobs of indicesi + mk (in the sorted list) to machinei
(in the sorted list) fork ≥ 0 until it runs out of jobs. Comparing two successive machines, we see that the
jth job on machinei + 1 is never larger than thejth job on machinei (and may not even exist at all in case
we ran out of jobs). Thus the work is monotonically decreasing. Moreover, the job sets that are constructed
are independent of the speed, and the only effect of e.g. bidding a higher speed is to possibly get a larger set
of jobs. Thus this algorithm is monotone.

Claim 3 The approximation ratio of Round Robin is exactlym.

14

Proof It is easy to see that the ratio cannot be better thanm. Considerm identical machines,m− 1 jobs of
size 1 andm jobs of size1/m. Round Robin places only one job of size1/m on the last machine and has a
cover of1/m. By placing all the small jobs on the last machine, it is possible to get a cover of 1.

Consider the first machine in the ordering. It gets at least a fraction of1/m of the total size of all jobs.
Consider now another machine, whose index in the ordering isi. We change the sequence in the following
way. Take the largesti − 1 jobs and enlarge them to size∞. Clearly,OPTcan only increase. Call these jobs
“huge”. Next, we claim that without loss of generality, hugejobs are assigned to the firsti − 1 machines
in the ordering byOPT. Otherwise, do the following process. Forj = 1, ..., i − 1, if machinej has a huge
job, do nothing. Otherwise, remove a huge job from a machinex in i, ...,m (again, indices are in the sorted
list), and put it on machinej, put the jobs of machinej on machinex. Sincej is not slower thanx, the
cover does not get smaller. We got an assignmentOPT′ ≥ OPT. Consider now the assignment the algorithm
creates. Consider only the jobs which are not huge, we placedthese jobs in a Round-Robin manner, starting
from machinei. Therefore, machinei received at least an1/m fraction of these jobs (with respect to total
size). OnOPT′, machinei does not have huge jobs, thus it can have at mostm times as much work as in our
assignment. Thus we have a cover of at leastOPT′/m ≥ OPT/m. �

D Proofs from Section 5

Proof (Lemma 5.1)Assume without loss of generality that the speeds ares and1. Since the total work is
1, we haveOPT ≤ 1

s+1 .
Let i be the index such that the partition chosen by SNC isSi. We have that the set of jobs which is

assigned toM1, has the summax{σ1(i), σ2(i)} ≥ 1
2 . Thus ifM1 has a smaller load thanM2, this load is at

least 1
2s and we have an approximation ratio of at mostOPT

1/(2s) ≤ 2s
s+1 .

To give a lower bound on the load ofM2, consider first the amount of jobs of size larger than1
3 in the

input. If no such jobs exist, letj be the smallest index1 ≤ j ≤ n− 1, such thatσ1(j) ≥ 1
3 . Clearlyj exists

sinceσ1(n) = 1. We would like to show thatσ1(j) < 2
3 . If σ1(j) = 1

3 we are done, otherwise,j ≥ 2 since
p1 < 1

3 . We haveσ1(j − 1) < 1
3 and thusσ1(j) = σ1(j − 1) + pj < 1

3 + 1
3 = 2

3 . Thus

min{σ1(i), σ2(i)} ≥ min{σ1(j), σ2(j)} ≥ 1

3
. (1)

Consider the case where there are two such jobs, thusp1 ≥ p2 > 1
3 , or there is a single such jobp1 but

p1 ≤ 2
3 , we haveσ1(1) > 1

3 andσ2(1) > 1
3 and thus again (1) holds. Finally, in casep1 > 2

3 , clearlyi = 1.
We get thatOPT ≤ σ2(1) and thusM2 has (at least) optimal load.

Supposep1 ≤ 2
3 . Then by (1) we haveσ2(i) ≥ 1

3 . This implies that ifM2 has load smaller thanM1, we
have an approximation ratio of at mostOPT

1/3 ≤ 3
s+1 .

To show that the bound is tight, consider the following sorted sequences. The first sequence consists of
1
2 and the two jobs s−1

2(s+1) and 1
s+1 if s ≥ 3 (or 1

2 , 1
s+1 , s−1

2(s+1) if s < 3). An optimal assignment assigns
1

s+1 to M2 and the other two jobs toM1, thusOPT = 1
s+1 . However, SNC partitions the input into two sets

whose sizes are12 , and so the approximation ratio is2s
s+1 .

The second sequence needs to be shown only fors ≤ 3
2 . We use the sorted sequence1

3 , 1
3 , 2s−1

3s+3 , 2−s
3s+3

(this is a sorted sequence for anys ≤ 2). There are two possible best partitions, but for both of them, the
minimum work is onM2 and is1

3 . However, an optimal assignment assigns one job of size1
3 and a job of

size 2s−1
3s+3 to M1, and the other jobs toM2, getting a cover of 1

s+1 . We get an approximation ratio of3s+1 . �

15

Lemma D.1 Let i indicate the partition that SSNC outputs for speed ratior. Then

σ1(i)

r
≥ σ2(i) − pi+1 (2)

and
σ1(i) − pi ≤ rσ2(i). (3)

Proof Sincei was a best choice,min{σ1(i)
r , σ2(i)} ≥ min{σ1(i)+pi+1

r , σ2(i)− pi+1}. Sincepi+1 > 0, this

impliesmin{σ1(i)+pi+1

r , σ2(i) − pi+1} = σ2(i) − pi+1. Filling this in in the inequality proves (2).

Similarly, we havemin{σ1(i)
r , σ2(i)} ≥ min{σ1(i)−pi

r , σ2(i)+pi} which impliesmin{σ1(i)−pi

r , σ2(i)+

pi} = σ1(i)−pi

r , leading to (3). �

Theorem 4 SSNC is monotone on two machines.

Proof As a first step we show the following. Lets1 ≥ s2 and q1 ≥ q2 be two speed sets such that
rs = s1

s2
> rq = q1

q2
. Let is andiq be the partitions which SSNC outputs forrs andrq respectively.

We show the following: max{σ1(is), σ2(is)} ≥ max{σ1(iq), σ2(iq)} and min{σ1(is), σ2(is)} ≤
min{σ1(iq), σ2(iq)}. Sinceσ1(is) + σ2(is) = σ1(iq) + σ2(iq), it is enough to show one of the two proper-
ties. Clearly, ifis = iq this holds, therefore we assume thatis 6= iq. Furthermore, we show that in this case
we haveis > iq.

Assume thatis < iq. Thenσ1(is) < σ1(iq) andσ2(is) > σ2(iq). By definition of the algorithm we

havemin{σ1(is)
rs

, σ2(is)} ≥ min{σ1(iq)
rs

, σ2(iq)} andmin{σ1(is)
rq

, σ2(is)} ≤ min{σ1(iq)
rq

, σ2(iq)}. To avoid

contradiction, we must havemin{σ1(iq)
rs

, σ2(iq)} = σ2(iq) andmin{σ1(is)
rq

, σ2(is)} = σ1(is)
rq

. Filling this in

in the inequalities givesσ1(is)
rs

≥ σ2(iq) and σ1(is)
rq

≤ σ2(iq). This impliesrq ≥ rs, a contradiction.
We may concludemin{σ1(is), σ2(is)} ≤ σ2(is) ≤ σ2(iq) − piq+1 ≤ σ1(iq), where the last inequality

follows from (2), andσ2(is) < σ2(iq), thusmin{σ1(is), σ2(is)} ≤ min{σ1(iq), σ2(iq)}.
SupposeM2 becomes slower. Then the speed ratio between the two machines becomes larger. M2 is

still the slower machine and thus by the above, the amount of work it gets cannot increase.
Now supposeM1 becomes slower. We may assumeM1 remains faster thanM2. Otherwise, we divide

the slowing down into three parts. The first part is whereM1 is still faster thanM2. In the middle part, the
speeds do not change, but we change the order of the machines.Clearly, at this point the work onM1 does
not increase. FinallyM1 slows down further, but now we can use the analysis from abovebecause it is like
M2 getting slower.

ThusM1 is still faster thanM2 but the speed ratio decreases. By the statement above, we getthat the
amount of work thatM1 gets cannot increase. �

Theorem 5 On two machines, SSNC has an approximation ratio of at mostmin{1 + s
s+1 , 1 + 1

s}.

Proof Consider an optimal assignment, and letµ the sum of jobs assigned toM1 by this assignment. Since
the total work is 1, the sum of jobs assigned toM2 is 1 − µ andOPT = min{µ

s , 1 − µ} ≤ 1
s+1 .

Consider first the cases ≥ φ. We claim that there exists an integer1 ≤ i′ ≤ n − 1 such that

s · OPT

s + 1
≤ σ2(i

′) ≤ s · OPT

s + 1
+ (1 − µ). (4)

16

Consider the smallest indexj of an itempj ≤ 1 − µ. Clearly,j ≤ n − 1 since the optimal assignment we
consider assigns an amount of exactly1 − µ to M2, and moreover, by the same reasoning,σ2(j) ≥ 1 − µ.
If j satisfies the condition (4), we definei′ = j and we are done. Ifσ2(j) < s·OPT

s+1 we find OPT =

min{µ
s , 1 − µ} ≤ 1 − µ ≤ σ2(j) < s·OPT

s+1 < OPT, a contradiction.

We are left with the caseσ2(j) > s·OPT
s+1 +(1−µ). Let j′ such thatj < j′ ≤ n be the smallest index for

which σ2(j
′) < s·OPT

s+1 (note that we allowj′ = n which does not give a valid partition). Sincej′ > j, we

havepj′ ≤ 1−µ and thusσ2(j
′−1) = σ2(j

′)+pj′ < s·OPT
s+1 +1−µ. In this case definei′ = j′−1 ≤ n−1.

We next show thatσ1(i
′) ≥ s2·OPT

s+1 , and later show that this implies the approximation ratio. Note that

by the definition ofi′ we haveσ1(i
′) ≥ µ − s·OPT

s+1 . There are two cases. Ifµ ≥ s
s+1 , we haveOPT =

1−µ ≤ 1
s+1 . We then findσ1(i

′) ≥ 1−OPT− s·OPT
s+1 ≥ (s+1− 1− s

s+1) ·OPT = s2+s−s
s+1 ·OPT = s2·OPT

s+1 .

If µ < s
s+1 , we haveOPT = µ

s . Thusσ1(i
′) ≥ s · OPT− s·OPT

s+1 ≥ s2·OPT
s+1 .

This implies thatmin{σ1(i)
s , σ2(i)} ≥ min{σ1(i′)

s , σ2(i
′)} ≥ s·OPT

s+1 , wherei is the partition that SSNC
chooses for speeds. If σ1(i) ≥ σ2(i), then the sets of jobs are not resorted, andM1 (resp.M2) receives a
total of σ1(i) (resp.σ2(i)), so we are done. Otherwise,M1 receives a load ofσ2(i)

s ≥ σ1(i)
s ≥ s·OPT

s+1 and

M2 receives a load ofσ1(i) ≥ σ1(i)
s ≥ s·OPT

s+1 .

For the cases < φ, consider several cases. In the sequel, ifs = 1, we consider an optimal assignment
whose work onM1 is no smaller than its work onM2. Note thatM1 is always assignedmax{σ1(i), σ2(i)} ≥
1
2 by the algorithm. SinceOPT ≤ 1

s+1 , an optimal algorithm assigns at mostss+1 to M1 and we get a ratio
of 2s

s+1 < 1 + s
s+1 . ThusM1 gets sufficient load. Leti indicate the partition which is chosen by SSNC.

Suppose first that there exists a job of size at least2
3 . Clearly, this is the first job and it belongs to the

first set found by SSNC, which has a larger size than the secondset. Also, for all other jobsi ≥ 2 we have
pi ≤ 1

3 . Thereforeσ1(i) ≥ 2
3 and sinceOPT < 1, M1 gets sufficient load. Ifi = 1, we are done since in

the optimal assignment, the work onM2 is at mostσ2(1) = 1 − p1. Otherwise,i ≥ 2. Using (3) we have
σ2(i) ≥ (σ1(i) − pi)/s ≥ (2/3)/s and thusσ2(i)/OPT ≥ 2

3s/
1

s+1 = 2s+2
3s ≥ 2

3 ≥ 1 + s
s+1 .

Now suppose all jobs have size less than2/3. If pi ≤ 1/3 (and thuspi+1 ≤ 1
3 as well), we get from (2)

thatσ2(i)− pi+1 = 1− σ1(i) − pi+1 ≤ σ1(i)/s, which impliesσ1(i)(s + 1) ≥ s(1− pi+1) ≥ 2s
3 . Further,

we get from (3) that(1 − σ1(i))s ≥ σ1(i) − pi, implying σ1(i) ≤ (s + pi)/(s + 1) and thereforeσ2(i) =
1 − σ1(i) ≥ (1 − pi)/(s + 1) ≥ 2/(3s + 3). Thusmin{σ1(i), σ2(i)} ≥ 2

3(s+1) ≥ 2
3 OPT ≥ (1 + s

s+1)OPT.

If pi > 1/3, butp1 < 2
3 , we havei = 1 or i = 2, since there are at most two jobs larger than1

3 . If i = 1,
we havemin{σ1(1), σ2(1)} = min{p1, 1 − p1} > 1

3 ≥ 2
3 OPT ≥ (1 + s

s+1)OPT. If i = 2, thenp1 > 1
3 , and

by (3) we haveσ2(2) ≥ σ2(1)−p2

s = p1

s . We have1 = p1 + p2 + σ2(2) ≤ 2p1 + σ2(2) ≤ (2s + 1)σ2(2).
ThereforeOPT/σ2(2) ≤ 1

s+1/ 1
2s+1 = 1 + s

s+1 . �

Proof (Lemma 5.2)Supposes ≤ φ. Consider the following input instance for someε > 0: jobs of size
s

2s+1 , s
2s+1 − ε, and many small jobs of total size1− 2s

2s+1 + ε. It is always possible to distribute these jobs
in a ratio ofs : 1, so the optimal cover is1/(s + 1) (this is possible since s

2s+1 ≤ 1s + 1 and thus each
machine receives one of the large jobs). For any0 < ε < s

2s+1 , SSNC will combine the first two jobs on the
fast machine, and on the slow machine it will have a load of only 1 − 2s

2s+1 + ε = 1
2s+1 + ε. Takingε → 0,

this shows that fors ≤ φ, the approximation ratio of SSNC is not better than1s+1/ 1
2s+1 = 2s+1

s+1 .

Now supposes > φ. In this case we use the jobss2

(s+1)2
−ε, 1

s+1 +ε, and s
(s+1)2

. These jobs are in order

of decreasing size ifs > φ andε < s2−s−1
2(s+1)2

Again SSNC puts the first two jobs on the fast machine, and has

17

a cover of only s
(s+1)2

. The optimal assignment is to combine the first and third jobson the fast machine for

a cover of 1
s+1 − ε

s . �

Lemma D.2 The algorithm which rounds job sizes to powers of some valueb > φ and then applies SSNC
is not monotone for two machines.

Proof Let a be a number such thatb < a < b + 1. This is a constant used to define machine speeds (the
same example may be used to show that the combination of rounding both machine speeds and job sizes
is not monotone either, since rounding speeds into powers ofa would leave the speeds unchanged). We
consider the following problem instance with two machines and five jobs. The speeds of both machines are
a initially, and the job sizes are(1 + ε)b, b, b, 1, where we takeε < 1/b.

Our algorithm sees the job sizes asb2, b, b, 1 and initially placesb2 on machine 1 and the remaining jobs
on machine 2. Note that putting the first job of sizeb also on machine 1 only gives a cover of(b + 1)/a,
whereas the first option givesb2/a (andb > φ). The algorithm then uses the actual job sizes (which it needs
to do in order to resort the job sets accurately), and puts only the job of size(1+ ε)b on the second machine.

Now the speed of machine 2 decreases froma to 1. The new job sets are{b2, b}, {b, 1}, to get a (rounded)
cover of(b2 + b)/a > b. This hold since(b2 + b)/a < b + 1. Keeping the old sets would give only a cover
of b2/a < b. Taking the sets{b2, b, b} and{1} would give only a cover of1. However, this means that the
actual size of the first set is now(2 + ε)b, whereas the size of the second set isb + 1, which is less. So
the size of the smallest set is nowb + 1, which is larger than before ((1 + ε)b), so the work on machine 2
increases although its speed decreased. �

18

