Maximizing the Minimum Load for Selfish Agents

Leah Epsteih Rob van Steke
July 6, 2007

Abstract

We consider the problem of maximizing the minimum load forchiaes that are controlled by
selfish agents, who are only interested in maximizing their profit. Unlike the regular load balancing
problem, this problem has not been considered in this cobedrre.

For a constant number of machines,we show a monotone polynomial time approximation scheme
(PTAS) with running time that is linear in the number of joliisuses a new technique for reducing the
number of jobs while remaining close to the optimal solutidfe also present an FPTAS for the classical
machine covering problem, i.e., where no selfish agentsiaodvied (the previous best result for this case
was a PTAS) and use this to give a monotone FPTAS.

Additionally, we give a monotone approximation algorithrithwapproximation ratianin(m, (2 +
€)s1/sm) wheree > 0 can be chosen arbitrarily small andis the (real) speed of machire Finally
we give improved results for two machines.

*Department of Mathematics, University of Haifa, 31905 ldaléraell ea@mat h. hai fa. ac.il.
fDepartment of Computer Science, University of Karlsruh&/@128 Karlsruhe, Germanyanst ee@r a. uka. de.

Dagstuhl Seminar Proceedings 07261
Fair Division
http://drops.dagstuhl.de/opus/volltexte/2007/1242

1 Introduction

In this paper, we are concerned with a fair allocation of jmbparallel related machines, in the sense that
each machine should contribute a reasonable amount’ (aoedfo the other machines) to the processing of
the jobs. Specifically, we are interested in maximizing ttieimmum load which is assigned to any machine.
This problem has been studied in the past on identical [1,119as well as related machines [7] and also
in the online setting where jobs arrive one by one and neeé @sbigned without information about future
jobs [6]. Itis also closely related to the max-min fairnessigem [9, 15, 8], where we want to distribute
indivisible goods to players so as to maximize the minimutoaton.

In our case, the players (machines) have negative valsatarthe jobs, since there is a cost incurred
in running the jobs. So our goal becomes maximizing the mimiross, i.e., make sure that the cost
of processing is not distributed too unfairly. Moreove thachines are controlled by selfish agents that
only care about maximizing their individual profit (or minzmg their individual loss). The speeds of the
machines are unknown to us, but before we allocate the jobsdents will give us bids which may or may
not correspond to the real speeds of their machines.

Our goal in this paper will be to desidruthful mechanismsd.e., design games in such a way that truth
telling is a dominant strategy for the agents: it maximizesgrofit for each agent individually. This is done
by introducingside paymentfor the agents. In a way, we reward them (at some cost to uggliorg us
the truth. The role of the mechanism is to collect the claimpedate data (bids), and based on these bids
to provide a solution that optimizes our desired objectivre] hand out payments to the agents. The agents
know the mechanism and are computationally unbounded inmizirg their utility.

The seminal paper of Archer and Tardos [3] considered thergéproblem of one-parameter agents.
The class of one-parameter agents contain problems whgegant has a private valug and his valuation
function has the formw; - t;, wherew; is the work assigned to agentEach agent makes a bid depending on
its private value and the mechanism, and each agent wantaxionize its own profit. The paper [3] shows
that in order to achieve a truthful mechanism for such proBleit is necessary and sufficient to design
a monotoneapproximation algorithm. An algorithm is monotone if foregy agent, the amount of work
assigned to it does not increase if its bid increases. Maradlly, an algorithm is monotone if given two
vectors of lengthn, b, b" which represent a set ef bids, which differ only in one componeiti.e.,b; > ¥/,
and forj # 1, b; = bg, then the total size of the jobs (the work) that machiigets from the algorithm if the
bid vector isb is never higher than if the bid vectoris

Using this result, monotone (and therefore truthful) agpnation algorithms were designed for several
classical problems, like scheduling on related machinasitomize the makespan [3, 5, 1, 17], shortest
path [4, 13], set cover and facility location games [12], anthbinatorial auctions [18, 2].

Formal definition Denote the number of jobs by, and the size of joj by p; (j = 1,...,n). Denote
the number of machines by, and the speed of machindy s; (: = 1,...,m). As stated, each machine
belongs to a selfish user. The private valti¢ ¢f user: is equal tol /s;, that is, the cost of doing one unit
of work. The load on maching L;, is the total size of the jobs assigned to machickvided bys;. The
profit of useri is P, — L;, whereP; is the payment to usérby the payment scheme defined by Archer and
Tardos [3]. Leth_; denote the vector of bids, not including agéntVe writeb (the total bid vector) also as
(b—;, b;). Then the payment function for useis defined as

b;
Pilbs,bs) = ha(b_s) + brws(b_s, bi) — / wib_i, w)du,
0

wherew; (b_;, b;) is the work (total size of jobs) allocated to ugegiven the bid vectob and theh; are
arbitrary functions.

Our goal is to maximizenin L;. This problem is NP-complete in the strong sense [14] everlemn
tical machines. In order to analyze our approximation aflgors we use the approximation ratio. For an
algorithm 4, we denote its cost byl as well. An optimal algorithm is denoted lmpT. The approximation
ratio of A is the infimumR such that for any inputd < R - oPT. If the approximation ratio of an offline
algorithm is at mosp we say that it is g-approximation.

Previous results (non-selfish machines) For identical machines, Woeginger [19] designed a polyabmi
time approximation scheme (PTAS). He also showed that thedyr algorithm isn-competitive. This is
optimal for deterministic online algorithms. Azar and Egdst[6] presented a randomize&d/m logm)-
competitive online algorithm and gave an almost matchimgetdbound ofO(y/m).

In [7], a PTAS was designed for related machines. For the-satfitie case in which jobs arrive in
non-increasing order, [6] gave an-competitive algorithm called BSeD-GREEDY and showed that no
algorithm could do better. For the case where jobs arriv@omincreasing order and also the optimal value
is known in advance, [6] gave a 2-competitive algorithmxyt COVER.

For unrelated machines, Bezakova and Dani [9] give séedgarithms. One gives a solution value
which is at mosDPT — p.x l€SS than the optimum, wherg,.. is the largest job size (on any machine).
Note that this result may be close to zero. Two other algmdtihave performance guarantee- m + 1.
Golovin [15] gave an algorithm which guarantees that attlag@s — 1/k) fraction of the machines receive
jobs of total value at leasiPT/k, for any integet. In the same paper, he also gave®R/n)-approximation
for the case of restricted assignment (each job can onlydigresd to a subset of the machines, and has the
same size on each allowed machine) where all job sizes &er ditor some valug'.

For the case of restricted assignment (without furtherriot®ins on job sizes), Bansal and Sviri-
denko [8] provided arO(loglogm/ loglog log m)-approximation. Bezakovi and Dani [9] showed that
no polynomial-time algorithm can have a performance guambetter than 2 unless P=NP. In particular,
no PTAS is possible.

Our results We present anonotonestrongly polynomial time approximation scheme (PTAS) faoa-
stant number of related machines. Its running time is limre#ne number of jobs;.

We then give a new result for non-selfish related machines ¢thassical problem) by presenting an
FPTAS for it. We use this to give a monotone FPTAS with runringe polynomial inn ande and the
logarithm of sum of job sizes.

Additionally, we present a monotone approximation aldgwnitbased on EXT CovER which achieves
an approximation ratio ahin(m, (2+¢)s1/s,,). This algorithm is strongly polynomial-time for an arbitya
number of machines. It seems difficult to design a monotorpoxpmation algorithm with a constant
approximation ratio for an arbitrary number of machinesmally, we study two monotone algorithms for
two machines, and analyze their approximation ratios asetifan of the speed ratio between them. These
algorithms are very simple and in many cases faster thalyiagphe PTAS or FPTAS on two machines.

Sorting Throughout the paper, we assume that the jobs are sortedlén of non-increasing size{ >
P2 > ... > pn), €Xcept in Section 2, and the machines are sorted in a fixdel of non-decreasing bids
(i.e. non-increasing speeds, assuming the machine agerttsitoful,s; > so > ... > s5,).

2 PTAS for constantm

This section is set up as follows. First, we prove some lemahasit the amount of different sizes of jobs.
Then we show how to design a constant time simple optimal nomeoalgorithm for an input where the
number of jobs is constant (dependentrarandc). We next show how to reduce the number of jobs to a
constant, allowing us to find the optimal value for this chethgstance in constant time. We show that due
to this reduction, the optimal value is reduced by at mosbPT. Finally, we show that our algorithm has
linear running time in the number of jobs. Altogether, thisyes the following theorem.

Theorem 1 There exists a monotone PTAS for machine covering on a eumgianber of related machines,
which runs in time linear in the number of jobs.

Amounts of jobs We are given a fixed (constant) number of machimesf speeds; > ... > s,,. (Since
our PTAS will turn out to be truthful, we may assume that wewkrbe real speeds and can sort by them.)
Without loss of generality, we assume that= 1. Note that the total size of all jobs may be arbitrarily
large. Letny be the number of jobs of size strictly larger thanT, the optimal value of the cover, in the
input. We begin by proving some auxiliary claims regarding

Clam1 ng<m-—1.

Proof Assume by contradiction that there are at leagbbs that are all larger than sizPT. Assigning
one job per machine, we get a load larger tkweaT on all machines (since all speeds are at most 1), which
is absurd. d

Claim 2 The sum of sizes of all jobs that have size of at roestis at mosRopPT(m — ng — 1) + OPT.

Proof Consider all jobs of size at mostPT. Assume by contradiction that the total size of these jobs is
at least2opPT(m — ng — 1) + OPT. Let A be an arbitrary set of jobs that some optimal algorithm puts o
some least loaded machinec 1,...,m, and letB be all other jobs of size at mostPT. By assumption,
the total size of the jobs if is more tharRoPT(m — ng — 1). Since each job iB has size at mospPT, it

is possible to partition these jobs into sets, so that the site of the firsin —ng — 1 sets is in(OPT, 20PT],

and all remaining jobs are assigned to aGdtvhich must be nonempty). This can for instance be done by
sorting the jobs irB in order of decreasing size. Assign each of the fitst ng — 1 sets to its own machine.
Assign theng job larger tharoPTto ny machines, one per machine. AssigmndC to the remaining empty
machine. Sinc€’ has nonzero size, we find an assignment with cover betterdhana contradiction. O

Finding a monotoneoPT Lete > 0 be a given constant. Without loss of generality we assuriel. The
algorithm in the next sections modifies the input so that wieignwith a constant number of jobs (at most
4(m + 2m?/e?)). The reason is that for this input, it is possible to enwatesall possible job assignments
in constant time (there are at mostm+8m?/e? different assignments). Before enumeration, we define a
fixed ordering on the machines. This ordering does not neddend on the speeds, and does not change
even if machine speeds are modified. Among all possible jeigasients, we take the optimal assignment
which is lexicographically smallest among all optimal gesnent (using the fixed ordering). The usage
of a fixed ordering to obtain a monotone optimal algorithm aiasady used for the makespan scheduling
problem [3].

We show that this gives a monotone algorithm. Suppose machilaims to be faster, but it is not the
bottleneck, then nothing changes. The previous assignmstilt optimal. A hypothetical lexicographically

3

smaller optimal assignment with the new speed would alschraacover of the old optimal value with the
old speed, because the old speed was lower, a contradiction.

If machinei is the bottleneck (it is covered exactly to optimal heigktign: will only get more work.
This follows because there are two options:

1. The algorithm concludes that the original assignmentiligtse best (though with a smaller cover
than before), then the amount allocated temains unchanged.

2. The algorithm concludes that another assignment is natgrbéhen: clearly gets more work (to
reach a load abow€’, which is what; has with the old amount of work and the old, slower speed).

Reducing the number of jobs We construct an input for which we can find an optimal job assignt
which is the smallest assignment lexicographically, amg timonotone. We build it in a way that the value
of an optimal assignment for the adapted input is within atiplidative factor ofl — 3¢ from the value of
an optimal assignment for the original input. This is donegdnjucing the number of jobs of size no larger
thanoPT to a constant number (dependentmrande), using a method which is oblivious of the machine
speeds.

Let A = 2m?2/e2 + m. If the input consists of at mogi jobs, then we are done. Otherwise, we keep
the A largest such jobs as they are. This set is denotedi; by et Jg be the rest of the jobs.

Let A be the total size of the jobs ifls. Let a be the size of the largest job . If A < 3aA,
we combine jobs greedily to create mega-jobs of size in ttexval [a, 3a]. One mega-job is created by
combining jobs until the total size reaches at legdhis size does not excee@d «a. If we are left with a
remainder of size less thanit is combined into a previously created job. The resultinghber of mega-jobs
created fromJg is at mos3A.

Otherwise, we apply a “List Scheduling” algorithm with agun the jobs inJs and A identical ma-
chines. These machines are only used to combine the jobs isito A mega-jobs and should not be
confused with the actuah() machines in the input.

List Scheduling (LS) works by assigning the jobs one by ones¢ime order) to machines, each job is
assigned to the machine with minimum load (at the momentdhdg assigned). LS thus creatAssets
of jobs and the maximum difference in size between two se#t imosta [16]. The jobs in each set are
now combined into a mega-job. Thus we geitmega-jobs with sizes in the interv@ —a, % + a). Since
g > 3a, we get that the ratio between the size of two such mega-fohgs larger thar2.

In all three cases we get a constant number of jobs and mbéga-jo

The optimal value of the modified instance If no mega-jobs were created then clearly we consider all
possible job assignments and achieve an optimal one forripmal problem. Consider therefore the two
cases where we applied the jobs merging procedure. Notesithee the total size of all jobs of size at
mostoPT is at mos2moPT by Claim 2, and given the amount of jobs.fa (and using Claim 1), we have
a < e20PT/m.

Firstassumel < 3aA. We use the following notationgPT is the value of an optimal assignment using
the modified jobs.oPT’ is the value of an optimal assignment using the modified jolasamly machines
of speed at leasta/(c0PT) (called fast, whereas all other machines are called slowusToroprT” we
assume that the slow machines are simply not present. ZigarhaveorT’ > oPT andoPT > OPT.

We show thabpPT’ > (1 — 2¢)0PT. Given an optimal assignment for the original instance,awerall
jobs assigned to slow machines. Remove all jobs that belong {which are of size at most) that are
assigned to fast machines, and replace them greedily by-jobgaThe mega-jobs are assigned until that
total size of allocated mega-jobs is just about to exceedbtiabsize of jobs of/, that were assigned to this

machine. Since all mega-jobs are of size at Mastand each fast machine has load of at least and thus
a total size of assigned jobs of at le@af/c (since it is fast), the loss is at most 2f of the total load. The
rest of the jobs (jobs of;, removed from slow machines, and remaining mega-jobs) aigrae arbitrarily.
We next show how to convert an assignment with vatwea” (ignoring the slow machines) into an
assignment which uses all machines. Since there are atAejpdis of size at leasi (the jobs of.J;), and
these jobs are spread over at mesiachines, at least one machine has at 1> such jobs. From this
machine, remove at mo2tn /¢ jobs of size at least (the smallest ones among those that are large enough),
and assigrz/e jobs to each machine that does not participate in the assighaioP1’. The resulting load
of each such machine (taking the speed into account) hasleofcat leastoPT since it is slow: we have
2. a/(3%1) = OPT. The loss of the fast machine where jobs were removed is at anfastor ofz of its
original load. Therefore we get that in the new job assigrtreanh machine is either loaded by at leastr
or by at leas{1 — £)oPT’. ThusoPT > min{OPT, (1 —)oPT’}. SinceoPT’ > (1 — 2¢)0PT, this proves
thatopT > (1 — 3¢)oOPT.
The second case is completely analogous, except that icaheswe call machines with speed at least
(4 — a) /(eoPT) fast. Thus each fast machine has total size of assigned foalislenst(4 — a) /e. We
define fast in this way because in this case, the mega-jolesdiz® in the intervaﬂ% —a, g + a]. When
we replace jobs by mega-jobs, such a machine then loses &mosits original load. When we convert
the assignment abPT”, we use that mega-jobs have size at Ie%s% a, and there aré\ of them, so we can
now transferm /e of them to slow machines and get the same conclusions asbefor

Runningtime We reduce the number of jobs to a constant. Note in the remuittiSection 2, we are only
interested in identifying thé\ largest jobs. After this we merge all remaining jobs usingedhod based on
their total size. These things can be done in time lineat.ifrinally, once we have a constant number of
jobs, we only need constant time for the remainder of therilgn. Thus our algorithm has running time
which is linear in the number of jobs.

3 FPTAS for constantm

In this section, we present a monotone fully polynomialdiapproximation scheme for constant This
scheme uses as a subroutine a non-monotone FPTAS whiclcithéelsin Section 3.1. We explain how this
subroutine can be used to create a monotone FPTAS in thedigpen

In the current problem, it can happen that some jobs are fhupes: if they are removed, the optimal
cover that may be reached remains unchanged. Even thougs jtes are superfluous, we need to take
special care of these jobs to make sure that our FPTAS is rmo@otn particular, we need to make sure that
these superfluous jobs are always assigned in the same vehgpoaito very slow machines. We therefore
need to modify the FPTAS mechanism from [1] because we casimptly use any “black box” algorithm
as was possible in [1]. Due to space constraints, we havedrtbeemonotone FPTAS to the appendix.

3.1 An FPTAS which is not monotone

Choose: so thatl /e is an integer. We may assume that- m, otherwiseoPT = 0 and we assign all jobs
to machine 1. In the proof of Lemma 4.2 we show that this agségr is monotone.

We give an algorithm which finds the optimal cover up to a factbl — 2c. We can again use an
algorithm which is ann-approximation [6], therefore we can assume we can @ind within a factor of
m. We scale the problem instance such that that algorithmingta cover of size 1. Then we know that

OPT € [1, m]. We are now going to look for the highest value of the fgrre (j = 1/e,1/e +1,...,m/e)
such that we can find an assignment which is of value at l[daste)je. That is, we partition the interval
[1,m] into many small intervals of length We want to find out in which of these interva®Tis, and find
an assignment which is at most one interval below it.

Given a value forj, we scale the input up by a factor (]#afg > - > 1. Now the target value (the
cover that we want to reach) for a given valueja$ notje but S = n/e. Sort the machines by speed. For
machines with the same speed, sort them according to sondestkkernal ordering. For job and machine
i, letld = [pp/si] (k=1,...,n;i=1,...,m).

We use dynamic programming based on the numBersA load vectorof a given job assignment is
anm-dimensional vector of loads induced by the assignment.7l(&ét a) be a value between 0 anmd for
k =0,...,n and an (integer!) load vectar. 7'(k,a) is the maximum number such that jélis assigned
to machinel’(k, a) and a load vector of (or better) can be achieved with the jobs. . , k. If the vectora
cannot be achieved;(k,a) = 0. If a (or better) can be achieved{k, a) is a number between 1 ama.

We initialize 7'(0,0) = m, representing that a cover of 0 can be achieved without dny (this is
needed for the dynamic program), afd0,a) = 0 for anya > 0. For a load vector. = (aq,...,an),
T(k,a) is computed fronT'(k — 1, a) by examiningm values (each for a possible assignment of @b

T(k,a) = max (0, {’L e{1,....,m}|a; — ¢ > 0andT(k — 1, (a_;,a; — I¥)) > O})

The notation(a_;, z) represents the load vecti, ..., a;—1,z,a,11,...,a,): theith element ofa
has been replaced hy and all other elements are unchanged. Each Valie a) is set only once, i.e.,
if it is nonzero it is not changed anymore. When a véalyg, a) is set to a nonzero value, we also set
T(k,(a_;,a; —y)) = = for everyy = 1,...,1¥ — 1 such thatl'(j, (a_;,a; — y)) = 0. This represents the
fact that although a load vector of preciselycannot be achieved with this assignment, a load vector that
dominates: (is at least as large in every element) can be achieved byréisgijobk to machinel’(k, a).

The size of the tablg” for one value ofk is (S + 1)™. Then tables are computed in total time
nmS(S + 1)™ = O(m(n/e)™2). (The factorS is from updating the table after setting soffi¢k, a) to
a nonzero value.) As soon as we find a vatug n such thatl'(k, S,...,S) > 0, we can determine the
assignment for the firgt jobs by going back through the tuples. Each time, we can aciine last job from
the machine where it was assigned according to the valueediughle to find the previous load vector. If
some element of the load vector drops below O due to thisactizin, we replace it by 0. § < n, the last
n — k jobs are assigned to machine 1 (the fastest machine).

If T'(n,S,...,S) = 0 after running the dynamic program, the target value canaadhieved. In this
case we adjust our choice pfusing binary search) and try again. In this way, we evehttiald the highest
value ofj such that all machines can be covereg4asing jobs that are rounded.

Note that the loss by rounding is at maesper machine (in the final scaled instance): if we replace the
rounded job sizes by the actual job sizes as they were a#teseitond scaling, then the loss is at most 1 per
job, and there are at mostjobs on any machine. So the actual cover given by the assignimend by the
dynamic program is at least— n. Since the target valug = n /e, we lose a factor of — ¢ with regard to
S. After scaling back (dividing by:/(j<?) again) we have that the actual cover found is at I€hst ¢)je.

On the other hand, due to the binary search a covéj ef 1)e cannot be reached (not even with job sizes
that are rounded up). This implies that our cover is at Iéaste)(OPT—¢) > (1 — 2¢)OPTSinceoPT > 1.

Input: guess valu&?, m machines in a fixed order of non-increasing speedmbs in order of non-
increasing sizes.

For every machine in the fixed order, starting from machingladcate jobs to the machine according|to
the sorted order of jobs until the load is at le&st
If no jobs are left and not all machines reached a load levél,akport failure. If all machines reached
a load ofG, allocate remaining jobs (if any) to machine and report success.

Figure 1: Algorithm Next Cover (NC)

4 Approximation algorithm SNC for arbitrary values of m

The well known Least Processing Time (LPT) algorithm doespnovide finite approximation ratio; given
two machines of speeds 1 and 4, and two jobs of size 1, it wsigasboth jobs to the machine of speed 4.
BIASED-GREEDY is a special case of LPT which prefers faster machines in @bses. We can see that
even this variant gives a relatively high approximationoratt is known that LPT is not monotone but an
adaptation called LPT* is monotone [17]. However, the adimb acts the same on the above input and thus
it cannot be used for the current problem. Moreover, sinekesBD-GREEDY acts as LPT on some inputs,
it cannot be expected to be monotone either.

In this section, we present an efficient approximation allyor for an arbitrary number of machines.
Our algorithm uses Next Cover [6] as a subroutine. This samtiie algorithm is defined in Figure 1. Azar
and Epstein [6] showed that if the optimal cover is known, Neaver (NC) gives a 2-approximation. That
is, for the guess&’ = oPT/2 it will succeed. NC also has the following property, which widl use later.

Lemma 4.1 Suppose NC succeeds with guésbut fails with guessr + ¢, wheree < %G. Then in the
assignment for guegs, the work on machine: is less thammw + ¢, wherew > G is the minimum work
on any machine.

The proof is in the appendix. Our algorithm Sorted Next Cq{8MC) works as follows. A first step is to
derive a lower bound and an upper bound on the largest valighwhn be achieved for the input and
identical machines. To find these bounds, we can apply LPMdest processing Time), which assigns the
sorted (in non-increasing order) list of jobs to identicaahines one by one. Each job is assigned to the
machine where the load after this assignment is minimal.ak shown in [11, 10] that the approximation
ratio of LPT is 32=2 < 2. Thus we defined to be the value of the output assignment of LPT. We also
definel = % andU = %A. We have thatd andU are clear lower an upper bounds on the optimal cover
on identical machines. Since NC always succeeds to achafefran optimal cover, it will succeed with
the valueG = L. Since a cover o/ is impossible, the algorithm cannot succeed with the vélue U.
Throughout the algorithm, the valuésandU are such thalL is a value on which NC succeeds wheréas

is a failure value. We perform a geometrical binary searcis.possible to prove using induction that if NC
succeeds to cover all machines with a guess v&luien it succeeds to cover all machines using a smaller
guess valué&’ < G. The induction is on the number of machines and the claimaisithorder to achieve a
cover of G’ on the first; machines, NC uses the same subset or a smaller subset ushici®é .

The algorithm has a parameterc (0,1/2) that we can set arbitrarily. See Figure 2. Since the ratio
betweenUU and L is initially constant, it can be seen that the algorithm ctatgs in at mosO(m)
steps. The overall running time@(n(logn + 1/log(1 + ¢/2)) due to the sorting. Note that Steps 2 and 6
are only executed once.

Input: parametet € (0,1/2), sorted set of jobgpf > ... > p,), sorted machine bid${ < ... < b,,).
1. If there are less tham jobs, assign them to machine 1 (the machine of spegdoutput 0 and
halt.

2. Scale the jobs so thaf" ; p; = 1. Run LPT on identical machines and denote the value of the
output byA. SetL = 4 andU = 3 A.

Apply Next Cover on identical machines with the guéss- U - L.
. If Next Cover reports success, get G, else sell = G.
. IfU - L > 5L, goto step 3, else continue with step 6.

o 0 A w

Apply Next Cover on identical machines with the vallie Next Cover partitions the jobs im
subsets, each of total size of jobs at leAstSort the subsets in non-increasing order and allocate
them to the machines in non-increasing order of speed aocpra the bids.

Figure 2: Algorithm Sorted Next Cover (SNC)

Lemma 4.2 SNC is monotone.

Proof The subsets constructed in step 3 and 6 do not depend on thesspiethe machines. If a machine
claims it is faster than it really is, the only effect is thiatiay get a larger subset. Similar if it is slower.

If the algorithm halts in step 1, then we again have a sitodtiat jobs are partitioned into sets, and the
sets are assigned in a sorted way. This is actually the otliptisteps 2—6 would produce if SNC was run
with a guess valué. g

Theorem 2 For any0 < ¢ < 1, SNC maintains an approximation ratio wfin(m, (2 +)s1 /sy,).

Proof We start with the second term in the minimum. The load that 88€on machineis at least./s;,
and Next Cover cannot find a cover abdye< (1 + ¢/2)L on identical machines. So the optimal cover on
identical machines of speed 1 is at mdgt + ¢/2)L = (2 + ¢) L. Thus the optimal cover on machines of
speedk,, is at most2+¢)L/s,,, and the optimal cover on the actual machines can only berlsiwees,,, is
the smallest speed. We thus find a ratio of at ni@t-c)L/s,,)/(L/si) = (2+¢€)si/Sm < (2+¢€)51/Sm.-

We prove the upper bound ot using induction.

Base caseOn one machine, SNC has an approximation ratio of 1.

Induction hypothesisOnm — 1 machines, SNC has an approximation ratio of at most 1.

Induction step:Recall that the jobs are scaled so that their total size isupp&se each machirjehas
work at leastl/(jm) (j = 1,...,m). Then the load on machingis at leastl/(jms;). However, the
optimal cover is at most/(s1 + s2 + ... + sm) < 1/(jsj + (m — j)sm) < 1/(js;). Thus SNC maintains
an approximation ratio of at most in this case.

Suppose there exists a machini@ the assignment of SNC with work less thaf(im). Consider the
earliest (fastest) such machineDue to the resorting we have that the work on machines , m is less
than1/(im). So the total work there is less théam — i + 1)/(im). The work on the first — 1 machines
isthenatleast — (m —i+1)/(im) = (im —m+1i—1)/(im) = (i — 1)(m + 1)/(im) and the work on
machine 1 is at leagtn + 1)/(im). This is more thamn + 1 times the work on machine

We show that in this case there must exist a very large jolbgisiassigned to a machine by itself. Let
L’ andU’ be the final values of. and U in the algorithm. Letw be the minimum work assigned to any

machine for the guess valug. Since SNC gives machinework less tharl /(im), we havew < 1/(im).
We haveU’ — L' < $L'. SNC succeeds with’ and fails withU” and thus, since < % and by Lemma 4.1,
machinem receives at mostw + 5L’ < mw + 1L’ < (m + H)w < (m + 1)/(im) running NC with the
guess valud.’. Moreover, NC stops loading any other machine in step 6 as asd coverd.’.

We conclude that the only way that any machine can get worlerth@n(m + 1)L’ is if it gets a single
large job. This means that in particular the first (larges) has sizey; > (m + 1)w > 3w > 3L'. SNC
assigns this job to its first machine, and the remaining workhe other machines.

To complete the induction step, compare the execution of 8\ie execution of SNC with as input
them — 1 slowest machines and the— 1 smallest jobs. Denote the first SNC by SN@&nd the second by
SNC,,—1. We first show that SNG_; fails onU’. SincelU’ < (1 + §)w < 2w, then SNG, assigns only
p1 to machine 1, and thus SNC ; executes exactly the same on the other machines. Since maatlis
covered, SNG, fails on some later machine, and then this also happens tq,SNCTherefore, SNG,_{
cannot succeed with’’ or any larger value. A similar reasoning shows that $N¢ succeeds with any
guess that is at mogt’. Finally, L’ is at least the starting guess'2. Sop; > 3L’ > %A implies that LPT
also puts only the first job on the first machine, since its @gpration ratio is better tha#/3. Therefore,
LPT gives the same guess valddor the original input onn machines as it would for the — 1 smallest
jobs onm —1 machines. This means that SN@nd SNG,,_; maintain the same valuésandL throughout
the execution, and then we can apply the induction hypathesi O

In the appendix, we show that the simple algorithm Round Rblais an approximation guarantee of
m, SO this algorithm can also be used in case the speed ratiayis. |1t should be noted that if we find an
algorithm with a better guarantee than we cannot simply run both it and SNC and take the best assighm
to get a better overall guarantee. The reason that this ddegank is that this approach does not need to be
monotone, even if this hypothetical new algorithm is monetowe do not know what happens at the point
where we switch from one algorithm to the other.

5 Algorithms for small numbers of machines

We next consider the case of two machines. Even though prewections give algorithms for this case
with approximation ratio arbitrarily close th we are still interested in studying the performance of SNC
for this case. The main reason for this is that we hoped todgetsi on how to find algorithms with good
approximation ratios fom > 2 machines that are more efficient than our approximationraelse However,
as we show below, several obvious adaptations of SNC are oobdtone, and it seems we will need more
sophisticated algorithms for. > 2.

A first observation is that there are only— 1 possible partitions of the jobs into two sets (since we
keep the jobs in sorted order), and thus there is no need forpebinary search. Leb; = (L; =
{1,...,i},R; = {i+1,...,n}) be a partition of the sorted list of jobg:(> ps... > p,). Clearly, to
have a finite approximation ratio we only need to consiseior i = 1,...,n — 1. For a given partitiort;,
letoy (i) = 32y py andoa(i) = 371 pj-

SNC is defined for two machines as follows. See Figure 3. Frbaoflem 2 it follows that SNC (which
ignores the speeds) has an approximation of at aostVe next consider the approximation ratio as a
function of the speed ratie@ > 1. The proofs in this section can be found in the appendix.

Lemma 5.1 On two machines, SNC has an approximation ratiaafk{ 3, 25 }.

Below we prove that the fact that SNC ignores the speeds @attior its monotonicity in the general case.
However, ifm = 2, we can define an algorithm SSNC which takes the speeds iotmatand is monotone

9

Input: sorted set of jobg(> ... > p,), sorted machine bid${ < b3)
Find such thatmin{o (i), 02 (i)} is maximal. Ifoy(i) > o2(7), assignL; to the first (faster) machin
andR; to the second. Else, assid@n to the second machine arit] to the first.

11%

Figure 3: Algorithm Sorted Next Cover (SNC) on two machines

Input: sorted set of job(> ... > p,), sorted machine bid${ < b3)

Letr = by/b; > 1 be the speed ratio between the two machines according tadeefind: such that
min{alT(i),O'g(i)} is maximal. Ifoy(i) > o2(i), assignL; to the first (faster) machine ang; to the
second. Else, assigh; to the second machine artj to the first.

Figure 4. Algorithm Speed-aware Sorted Next Cover (SSNGwanmachines

as well. SSNC is defined in Figure 4. We show in the appendixahdawo machines, SSNC is monotone
and has an approximation ratio of at masii{1 + 35,1+ 11

It follows that on two machines, SSNC is better than SNC inegain However, the following lemma
shows that SNC is better than SSNC fog 1 + /2.

Lemma 5.2 The approximation ratio of SSNC is not better tham{1 + ;75,1 + 1} on two machines.

In the sequel, we show that SSNC or simple adaptations ofeithat monotone on more than two
machines. In our examples we use a small number of machitesexdamples can be extended to a larger
number of machines by adding sufficiently many very largesjold/e analyze an exponential version of
SSNC that checks all valid partitions of the sorted job h$bin consecutive sets. Denote the sums of these
sets byX1, ..., X,,. Then SSNC outputs the partition which maximize'mlgigm{f—;}.

Leta > /2. We use a job set which consists of five jobs of sizési® — 1,a% — 1,a% — 1, 1. There are
three machines of speed$, a, 1.

Running SSNC results in the sdis®}, {a® — 1}, {a® — 1,a® — 1,1} for a cover ofa. It is easy to see
that changing the first set intm?, a® — 1} so that the load on the fastest machine becomes strictlgrlarg
thana results in a second sét> — 1,a? — 1} and the third machine gets a load which is too small.

Assume now the speed of fastest machine decreasesdffdma. SSNC finds the setfa’}, {a® —
1,a® — 1}, {a® — 1,1} for a cover ofa®. So the size of the largest set can increase (in this case dftdo
a® + a? — 2) if the fastest machine slows down.

This example shows that not only the above algorithm is natatane, but also a version of it which
rounds machine speeds to poweraofln previous work, machine speeds were rounded to powerslaf r
tively large numbers (e.g2.5 in [1]). Thus it seems unlikely that rounding machine speedsowers of
some number smaller thaf2 would give a monotone algorithm.

Another option would be to round job sizes. In the appendi&,sivow that this approach results in a
non-monotone algorithm already for two machines (the exarrgn again be extended for more machines).

Acknowledgment The authors would like to thank an anonymous referee whag@wiout an error in an
earlier version of our approximation scheme in Section 8z referee who helped improve the presenta-
tion, and Motti Sorani for helpful discussions.

10

References

[1] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful agggimation mechanisms for scheduling self-
ish related machines. IAroc. of 22nd International Symposium on Theoretical AspetComputer
Science (STACSpage 69-82, 2005.

[2] Aaron Archer, Christos Papadimitriou, Kunal TalwarddEva Tardos. An approximate truthful mech-
anism for combinatorial auctions with single parametemégielnProc. of 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODggge 205-214, 2003.

[3] Aaron Archer and Eva Tardos. Truthful mechanisms for-paeameter agents. Froc. 42nd Annual
Symposium on Foundations of Computer Sciepages 482—491, 2001.

[4] Aaron Archer and Eva Tardos. Frugal path mechanism®rde. of 13th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODAjages 991-999, 2002.

[5] Vincenzo Auletta, Roberto De Prisco, Paolo Penna, angs€jpe Persiano. Deterministic truthful
approximation mechanisms for scheduling related machind2roc. of 21st International Symposium
on Theoretical Aspects of Computer Science (STAGBE 608—619, 2004.

[6] Yossi Azar and Leah Epstein. On-line machine coverimgProc. of the 5th Annual European Sympo-
sium on Algorithms (ESA'97pages 23-36, 1997.

[7] Yossi Azar and Leah Epstein. Approximation schemes farecing and scheduling on related ma-
chines. InProc. of 1st International Workshop on Approximation Aiguns for Combinatorial Opti-
mization Problems (APPRO))ages 39—-47, 1998.

[8] Nikhil Bansal and Maxim Sviridenko. The Santa Claus Feah In Proc. of 38th Annual ACM
Symposium on Theory of Computing (STQ#2)ges 31-40, 2006.

[9] Ivona Bezakova and Varsha Dani. Nobody left behindr #location of indivisible goods. ACM
SIGecom Exchanges, 5.3, 2005.

[10] Janos Csirik, Hans Kellerer, and Gerhard J. Woegingdre exact LPT-bound for maximizing the
minimum completion timeOperations Research Letterkl:281-287, 1992.

[11] Bryan L. Deuermeyer, Donald K. Friesen, and Michael Anfyston. Scheduling to maximize the
minimum processor finish time in a multiprocessor systedhAM J. Discrete Methogs3:190-196,
1982.

[12] Nikhil R. Devanur, Milena Mihail, and Vijay V. VaziraniStrategyproof cost-sharing mechanisms for
set cover and facility location games. ACM Conference on E-commergage 108-114, 2003.

[13] Edith Elkind, Amit Sahai, and Ken Steiglitz. Frugality path auctions. IrProc. of 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SOape 701-709, 2004.

[14] Michael R. Garey and David S. Johnsoomputers and Intractability: A Guide to the theory of
NP-Completenesd-reeman and Company, New York, 1979.

[15] Daniel Golovin. Max-min fair allocation of indivisikel goods. Technical Report, Carnegie Mellon
University, CMU-CS-05-144005.

11

[16] Ronald L. Graham. Bounds for certain multiprocessingraalies.Bell System Technical, 45:1563—
1581, 1966.

[17] Annemaria Kovacs. Fast monotone 3-approximationrélym for scheduling related machines. In
Proc. of 13th Annual European Symposium on Algorithms (ES¥ge 616—627, 2005.

[18] Ahuva Mu'alem and Noam Nisan. Truthful approximatiorechanisms for restricted combinatorial
auctions. InProc. of the 18th National Conference on Artificial Inteflitce and 14th Conference on
Innovative Applications of Artificial Intelligence (AARYAI), page 379-384, 2002.

[19] Gerhard J. Woeginger. A polynomial time approximatgmheme for maximizing the minimum ma-
chine completion timeOperations Research Lettei20(4):149-154, 1997.

A A monotone FPTAS-mechanism

Our FPTAS mechanism is displayed in Figure 5. It is a vanato the FPTAS-mechanism described in [1].
Their mechanism makes only one direct reference to the lagbah function (makespan in their case) and
relies on a black box algorithm to find good assignments. Tiheahanges that we had to make are therefore
the following:

e Where the mechanism from [1] uses their black box algorithewse instead the subroutine described
in Section 3.1.

¢ We need a different value fdy which denotes the second highest powet &f< that is considered as
a valid bid. We explain below how to find this value.

¢ In the last step (testing all the sorted assignments), weotlceturn the assignment with the minimal
makespan but instead the assignment with the maximal cover.

As specified in [1], we will normalize the bids such that thevdst bid (highest speed) is 1. Assuming
the bids are truthful, i.eh; = 1/s; for j = 1,...,m, a very simple upper bound for the optimal cover is
thenU = 37" | p;, the total size of all the jobs. (Placing all the jobs on ttetdat machine gives lodd on
that machine, and it is clear that the fastest machine cagetohore load than this.)

Consider a slower machinje Supposé; > U/p,,. Then the load of this machine if it receives only job
nis at least/ > oPT. This means that for our algorithm, it is irrelevant what éxact value ob; is in this
case, because already fgr= U/p,, an optimal cover is certainly reached by placing a singlérary job
on machinej. We can therefore change any bid which is higher thigp,, to U/p;,.

Since the mechanism normalizes and rounds bids to powdrs-af, we can now define

i1 pi-‘ .

n

U
l= {loglﬁ p_-‘ = {logpr6

Plugging this in in the mechanism from [1], this gives us &fpblynomial-time approximation scheme for
the machine covering problem, sinées still (weakly) polynomial in the size of the input.

Theorem 3 This FPTAS-mechanism is monotone.

12

Input: n jobs in order of non-decreasing sizes, a bid veétor (by,...,b,), a parameter and a
subroutine, which is the FPTAS from Section 3.1.

1. Construct a new bid vectel = (ds,...,d,,) by rounding up each bid to the closest value| of
(1 + €)%, normalizing the bids such that the lowest bid is 1, and @ptpeach bid larger tha
(1 + €)Z+1 by (1 + 6)(—%—1_

=

2. Enumerate over all possible vectdfs= ((1+¢)™, ..., (1+¢)™), wherei; € {0,...,¢+1}. For
each vector, apply the subroutine and sort the output assighsuch that théh fastest machine
in d’ will get theith largest amount of work.

3. Test all the sorted assignmentsdrand return the one with the maximal cover. In case of atie,
choose the assignment with the lexicographically maximsesigament (where the machines are
ordered according to some external machine-id).

Figure 5: A monotone FPTAS-mechanism

Proof We follow the proof of Andelman et al. [1]. We need to adapstpioof to our goal function.
Suppose that machingincreases its bid. First of all, if the increase is so smadt the vector’ remains
unchanged, the subroutine will give the same output, anttm3we will also choose the same assignment.
Thus the load on does not change.

If dj > (1+ e)¢, the assignment found by our algorithm will also not changeny slows down: the
vectord’ again remains the same and we can reason as in the first case.

Now suppose that; < (1 + ¢), and the speed of changes so that its rounded bid increases by a
factor of 1 + . (For larger increases, we can apply this proof repeaje8lyppose thaf is not the unique
fastest machine. We thus consider the case where a norchatimaded bid rises frond; to (1 + €)d;, the
assignment changes froi#i to W/, and we assume that the amount of work assigned to maglceeases
from w; to w}; > w;. Denote the size of the cover of assignmé@niton bid vectord by C. There are two
cases.

Suppose that the cover that our algorithm finds increasgsbasomes slower. So all machines have
load strictly above”. Consider the new assignmént’ on the old speeds. All machines besigedo not
change their speeds and therefore still have a load stabibyeC'. Machinej receives more work than in
the old assignmenity’ and therefore also has a load strictly ab@vesince it already had at least when
it was faster. This means tht’ gives a better cover thai¥’ on the old speeds. However, our algorithm
would then have outpdt’’ in the first place, because it checks all these speed settirmmtradiction.

Now suppose that the cover that our algorithm finds staysaheesasj becomes slower. This means
thatj is not the bottleneck machine (the unique least loaded maghiThe old assignment’ clearly has
a cover ofC also with the new speeds, so our algorithm considers it. ttlevonly outputiW’ if W’ were
lexicographically larger thal#” and also had a cover 6f (or better). However, in that ca$€’ again would
have been found before already exactly as above, a corttoadic

Finally, suppose that is the unique fastest machine. Due to normalizatiyrremains 1, bids between
1 + ¢ and(1 + ¢)* decrease by one step, and bids equdllte- £)‘*! can either decrease ta + ¢)* or
remain unchanged. We construct an alternative bid vekasrin [1] where we replace all bids of +¢)‘*!
in ' with (1 4 ¢)*. This is the point where we use the fact that we check “too rhapged settings.

13

Every machine that bidd +-¢)¢ or more needs to receive only at least one arbitrary job te kafficient
load. In such cases, our subroutine indeed puts only onaijsbah a machine, because it finds the minimum
amount of jobsk to get to a certain cover and puts all remaining jobs on thiesasnachine. Therefore,
the cover that our algorithm finds fdrwill be the same as that fa¥, and it will also give the same output
assignment. This is also optimal for + ¢)d. The difference betweefl + £)d andd is only that the bid;
changes from 1 té + . We can now argue as before: whether the cover that our #igofinds increases
or not asj becomes slower, a hypothetical new better assignmerai(ilopr) would also be better fod,
but in that case the algorithm would have found it before. d

B Proof of Lemma 4.1

Proof Consider machine:. Suppose its work is at leastw + ¢, wheres < % < %.

Supposemn is odd. We create a new assignment as follows. Place the jplmsatchinesi,: + 1 on
machine(i + 1)/2 fori = 1,3,5,...,m — 2. Cut the work on machine: into (m + 1)/2 pieces (without
cutting any jobs) that all have size at least- . Put these on the laét: + 1)/2 machines.

The proof that it is possible to cut the pieces in this waynsilgir to the creation of mega-jobs in Section
2. The jobs on machine: are the smallest in the sequence. Since some machine eedrk of w, it
means that the jobs on machineare of size at most. Thus, we can put a cut every time that we surpass
w + ¢, and we will not need to cut beyoritly: if we need two jobs to get past + ¢, this is clear since
all jobs on machinen have size at mosw; if we need at least three jobs, the size of the third job is at
most(w + €)/2 (the maximum possible average size of the first two jobs),vea€ind a set of size at most
3(w + €) < 2w. Doing this(m — 1)/2 times leaves a piece of size atleast +& — (m — L)w = w +&.
This means that NC succeeds with guess ¢ > G + ¢, a contradiction.

Now supposen is even. This time we create a new assignment by placing Hsego machines, i + 1
on machingi+1)/2fori =1,3,5,...,m—3. Note that machine: — 1 already has jobs no larger than
That is true since some machihamongl, ..., m — 1 has received work of exactly, and all jobs assigned
to machines, ..., m are no larger tham. We can consider the total work of the last two machines. This
load is at leastm + 1)w + ¢ and as shown before, it can be split iffg2 = 2 + 1 parts of size at least
w + ¢ each. This parts can be assigned in the appropriate ordesi¢cbinesy, ..., m. O

C Round Rohin

We show that if the speed ratio between the fastest and slomaeshines is large, the following very simple
and efficient algorithm performs quite well.

Sort the machines and jobs by speed, so that the first macagthé largest speed and the first job has
the largest size. The Round Robin algorithm assigns jobsdies: + mk (in the sorted list) to maching
(in the sorted list) fo: > 0 until it runs out of jobs. Comparing two successive machimessee that the
jth job on machiné + 1 is never larger than thgh job on machiné (and may not even exist at all in case
we ran out of jobs). Thus the work is monotonically decregsMoreover, the job sets that are constructed
are independent of the speed, and the only effect of e.gingddhigher speed is to possibly get a larger set
of jobs. Thus this algorithm is monotone.

Claim 3 The approximation ratio of Round Robin is exaetly

14

Proof Itis easy to see that the ratio cannot be better thaonsidenn identical machinesy — 1 jobs of
size 1 andn jobs of sizel /m. Round Robin places only one job of sizémn on the last machine and has a
cover of1/m. By placing all the small jobs on the last machine, it is plolesio get a cover of 1.

Consider the first machine in the ordering. It gets at leasaetibn of1/m of the total size of all jobs.
Consider now another machine, whose index in the orderingWe change the sequence in the following
way. Take the largest— 1 jobs and enlarge them to size. Clearly,opTcan only increase. Call these jobs
“huge”. Next, we claim that without loss of generality, hygbs are assigned to the first- 1 machines
in the ordering byopPT. Otherwise, do the following process. Foe 1,...,7 — 1, if machinej has a huge
job, do nothing. Otherwise, remove a huge job from a machiimei, ..., m (again, indices are in the sorted
list), and put it on maching, put the jobs of maching¢ on machinex. Sincej is not slower thane, the
cover does not get smaller. We got an assignnoertt > opPT. Consider now the assignment the algorithm
creates. Consider only the jobs which are not huge, we pliesg jobs in a Round-Robin manner, starting
from machinei. Therefore, machinéreceived at least ah/m fraction of these jobs (with respect to total
size). OnoPT, machinei does not have huge jobs, thus it can have at mostmes as much work as in our
assignment. Thus we have a cover of at least' /m > oPT/m. O

D Proofs from Section 5

Proof (Lemma 5.1)Assume without loss of generality that the speedssamed1. Since the total work is
1, we haveoPT < 1+

Let 7 be the index such that the partition chosen by SNG;isWe have that the set of jobs which is
assigned td\/, has the sunmax{o1 (i), 02(i)} > 1. Thus if M; has a smaller load thals, this load is at

leasts- and we have an approximation ratio of at m% < 2

To give a lower bound on the load 6f,, consider first the amount of jobs of size larger t@aim the
input. If no such jobs exist, letbe the smallest |nde1<< ji<n-—1, such that; (j) > 1 . Clearlyj exists
sincec(n) = 1. We would like to show that;(j) < . If 01(j) = = we are done, otherW|sg > 2 since
p1 < 3. We havery (j — 1) < % and thusoy () = Ul(j —1) +p, <1 ++%=2 Thus

(1)

ool»—n

min{oq (i), 02(i)} > min{o1(j),02(j)} >

Consider the case where there are two such jobs,pthas py > % or there is a single such jgh but
p1 < 2, we haver(1) > % ando»(1) > and thus again (1) holds. Finally, in case> 2, clearlyi = 1.
We get thaoPT < 09(1) and thusM; has (at least) optimal load.

Suppose; < 2 . Then by (1) we haves (i) > 1 . This implies that ifAM, has load smaller tham/;, we
have an apprOX|mat|on ratio of at m 3T < =

To show that the bound is tight, conS|der the foIIowmg sbkequences. The first sequence consists of
s and the two JobszT and — 1 pifs >3 (or 3 3 S+1’ 2(S+1) if s < 3). An optimal assignment assigns
? to M> and the other two JObS td/1, thusorPT = m. However, SNC partitions the input into two sets
whose sizes aré, and so the approximation ratioj%.

The second sequence needs to be shown only for3. We use the sorted sequentes, 375, 2=%
(this is a sorted sequence for any< 2). There are two possible best partitions, but for both ofrththe
minimum work is on}, and is3. However, an optimal assignment assigns one job of siaed a job of

size 25—1 to M, and the other jobs /5, getting a cover of<;. We get an approximation ratio gf<. O

15

Lemma D.1 Leti indicate the partition that SSNC outputs for speed ratid hen

Ul(i)

> 03(i) — pit1 2)

and
Ul(i) — Pi § TUg(i). (3)

Proof Sincei was a best ch0|cen1n{”1(2 oa(i)} > mm{ﬁ o2(i) — piy1}- Sincep; 1 > 0, this

|mpI|eSm1n{m 09(1) — piy1} = 02(i) — p;+1. Filling this in in the inequality proves (2).
Similarly, we havemin{ 7= 2@ 5y (i)} > min{@, oo(i) + p; } which implieSmin{w, oo(i) +

pi} = #, leading to (3). O

Theorem 4 SSNC is monotone on two machines.

Proof As a first step we show the following. Let{ > sy andg; > ¢2 be two speed sets such that
re = s; >rq = g; Leti, andi, be the partitions which SSNC outputs fQrandr, respectively.

We show the following: max{o(is), 02(is)} > max{o1(iq),02(iq)} and min{o(is), 02(is)} <
min{oy(iq), 02(iq)}. Sinceoy(is) + 02(is) = 01(iq) + 02(iq), it is enough to show one of the two proper-
ties. Clearly, ifi; = i, this holds, therefore we assume that# i,. Furthermore, we show that in this case
we havei, > i4.

Assume that; < i,. Theno(is) < o1(iq) andoz(is) > o2(i,). By definition of the algorithm we
havemin{ 2=, 5y (i;)} > min{ 22, 55 (ig)} andmin{ 2L, 0y (i)} < min{ZE2, 55(iy)}. To avoid
contradiction, we must ha\min{‘”(m 02(iq)} = 02(iq) andmin{F == "1(“ ,oo(is)} = 01("“) . Filling this in

in the inequalities glvegi > 09(i,) and "1(;“') < 03(iq). This |mpI|e5rq > g, a contradlctlon

We may concludenm{al(zs) o2(is)} < 02(is) < 02(iq) — pig+1 < 01(iq), Where the last inequality
follows from (2), andvos(is) < o2(iq), thusmin{o (is), 02(is)} < min{oy(iq), o2(iq)}.

SupposeMs becomes slowerThen the speed ratio between the two machines becomes. lafgas
still the slower machine and thus by the above, the amounbok W gets cannot increase.

Now supposell; becomes sloweMe may assum@/; remains faster thai/,. Otherwise, we divide
the slowing down into three parts. The first part is whifeis still faster than\/,. In the middle part, the
speeds do not change, but we change the order of the machileesly, at this point the work oA/; does
not increase. Finally/; slows down further, but now we can use the analysis from abegause it is like
M- getting slower.

Thus M; is still faster than)Ms but the speed ratio decreases. By the statement above, vileagéte
amount of work that\/; gets cannot increase. O

Theorem 5 On two machines, SSNC has an approximation ratio of at masf1 + 7,1 + %}.

Proof Consider an optimal assignment, anddehe sum of jobs assigned fd; by this assignment. Since
the total work is 1, the sum of jobs assigned\ig is 1 — p andoPT = min{£, 1 — u} < 54%1

Consider first the case> ¢. We claim that there exists an integex 7' < n — 1 such that

5+ OPT A _ 8-OPT
< oy(i') <
s+1 s+1

+ (1 — p). 4)

16

Consider the smallest indgxof an itemp; < 1 — u. Clearly,j < n — 1 since the optimal assignment we
consider assigns an amount of exadtly i to M», and moreover, by the same reasoningj) > 1 — p.

If j satisfies the condition (4), we defiie = j and we are done. If2(j) < =9FT we find opT =
min{£,1— pu} <1—p < 0y(j) < 2281 < opT, a contradiction.

We are left with the casey(j) > SscﬁTJr (1—p). Letj’ such that < j' < n be the smallest index for
which oz (5') < =281 (note that we allowj’ = n which does not give a valid partition). Singe> j, we
havep;; < 1—y and thusry (5’ — 1) = 02(j') +pj < 28T +1—pu. Inthis case definé = j'—1 < n—1.
We next show thatr (i') > g2 OPT , and later show that this implies the approximation ratiote\that

by the definition ofi’ we haveo—l(’) > - SSET. There are two cases. jf > —*;, we haveoPT =
1—p < -1 Wethen findr (i) > 1—opT— 98T > (5411 ; 57)-0PT= tsms . opr = $ZOPT,
If < 225, we haveopT = £ Thule(N>s- OPT— S‘SET > ngT.

This implies thatnin{ 2%, 7,(i)} > min{ 2 5,(i')} > =OPT wherei is the partition that SSNC

chooses for speed If al(‘) > 02(), then the sets of jobs are not resorted, afid(resp.M,) receives a
total of o4 (¢) (resp.o2(i)), so we are done. Otherwis#{; receives a load o‘f”(l) > "1(2) > sOPT and

= s+1
M receives a load of (i) > UlT(Z) > %};T-

For the case < ¢, consider several cases. Inthe sequed,#f 1, we consider an optimal assignment
whose work onl/; is no smaller than its work o/>. Note that)/; is always assigneshax{o (i), 02(i)} >
1 5 by the algonthm SinceprT < +1, an optimal algorithm assigns at magt; to A/; and we get a ratio
of 25 < 1+ %;. ThusM; gets sufficient load. Letindicate the partition which is chosen by SSNC.

Suppose first that there exists a job of size at I%astlearly, this is the first job and it belongs to the
first set found by SSNC, which has a larger size than the sesetndilso, for all other jobs > 2 we have
pi < 3. Therefores: (i) > 2 and sinceoPT < 1, M; gets sufficient load. If = 1, we are done since in
the optimal assignment, the work @, is at mostoy(1) = 1 — p;. Otherwise; > 2. Using (3) we have
o2(i) > (01(i) — pi)/s > (2/3)/s and thusry (i) JOPT > 2 /5 = 2522 > 2 > 1 + =

Now suppose all jobs have size less thdA. If p; < 1/3 (and thusolﬂ <1 5 as well), we get from (2)
thatoo (i) — pir1 =1 —01(7) — pit1 < 01(4)/s, which impliesoy (i)(s + 1) > s(l —pit1) > Z. Further,
we get from (3) that1 — o1 (i))s > o1(i) — p;, implying o1 (i) < (s —i—pz)/(s + 1) and thereforefg() =
1—01(@) > (1 —pi)/(s + 1) > 2/(3s + 3). Thusmin{o (i), o2(i)} > (S—i-l) > 20PT> (14 2 7)OPT.

If p; > 1/3, butp; < 3, we havei = 1 ori = 2, since there are at most two JObS larger t%arlif z =1,
we havemin{o(1),02(1)} = min{py,1 —p1} > 1 > 20PT > (1 + % +7)OPT. If i = 2, thenp; > %, and

by (3) we haVGJ'2(2) > % = ?. We havel =p1 +p2+ 0'2(2) < 2p1 + 0'2(2) < (28 + 1)0’2(2).

ThereforeoPT/o5(2) < ﬁ/ﬁ =1+ 5. ;

Proof (Lemma 5. 2)Supposes < ¢. Consider the foIIowing input instance for some> 0: jobs of size
T TodT — 5251 +¢. Itis always possible to distribute these jobs
in a ratio ofs : 1, so the optimal cover i$/(s + 1) (this is possible sincg;*7 < 1s+ 1 and thus each
machine receives one of the large jobs). For@rye < 555, SSNC WiII combine the first two jobs on the
fast machine, and on the slow machine it will have a load of ant 2S+1 +e= 281+1 + e. Takinge — 0,

this shows that fog < ¢, the approximation ratio of SSNC is not better thag /517 = 2L

Now suppose > ¢. In this case we use the joleﬁs% €, s+1 +¢, and(Tz These jobs are in order
of decreasing size § > ¢ ande < £ —s—1 7 Again SSNC puts the first two jobs on the fast machine, and has

2(s+1)2

17

a cover of onlyﬁz. The optimal assignment is to combine the first and third bthe fast machine for

1
a cover of 77 — £. O
Lemma D.2 The algorithm which rounds job sizes to powers of some Vatsep and then applies SSNC
is not monotone for two machines.

Proof Leta be a number such that< a < b+ 1. This is a constant used to define machine speeds (the
same example may be used to show that the combination of irmubdth machine speeds and job sizes
is not monotone either, since rounding speeds into powetsvaduld leave the speeds unchanged). We
consider the following problem instance with two machined five jobs. The speeds of both machines are
a initially, and the job sizes ar@l +)b, b, b, 1, where we take < 1/b.

Our algorithm sees the job sizestdsb, b, 1 and initially places$? on machine 1 and the remaining jobs
on machine 2. Note that putting the first job of sizalso on machine 1 only gives a cover(f+ 1)/a,
whereas the first option givéd/a (andb > ¢). The algorithm then uses the actual job sizes (which it seed
to do in order to resort the job sets accurately), and putstbeljob of sizg1 +)b on the second machine.

Now the speed of machine 2 decreases faam1. The new job sets afé?, b}, {b, 1}, to get a (rounded)
cover of (b + b)/a > b. This hold sincgb? + b)/a < b + 1. Keeping the old sets would give only a cover
of b2 /a < b. Taking the set§b?,b,b} and{1} would give only a cover of. However, this means that the
actual size of the first set is no@® +)b, whereas the size of the second seh is 1, which is less. So
the size of the smallest set is néwt 1, which is larger than beford{ + £)b), so the work on machine 2
increases although its speed decreased. d

18

