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1 The residual claimant approach

The residual claimant is a simple way to align monetary incentives and effi-
ciency. Its most familiar application is to the rich class of Vicrey-Clarke-Groves
(VCG) mechanisms. If individual preferences are quasi-linear in money (or any
other numeraire) a VCG mechanism takes the "efficient" decision, except for the
fact that the budget imbalance must be covered by a residual claimant ([?, 7]).
Thus we achieve full efficiency (Pareto optimality) in the augmented economy
where the claimant’s preferences are taken into account, and he only cares about
cash transfers. In this case we speak of residual efficiency in the initial economy.

I submit that the realism of the residual claimant idea hinges around the
size of the cash transfer he or she receives. If the residual claimant (thereafter
RC) pockets a surplus commensurate to -or larger than- that available in the
economy, the cost of generating the efficient decision is prohibitive: the RC
receives a significant rent, and the choice of the entity playing the role of RC
is a matter of dispute. These difficulties are amplified if the RC must finance
a substantial deficit, in effect paying out an additional rent to the participants:
now it may not even be feasible to find an entity willing to play the RC role.

I propose a canonical mechanism, called residual*, to run a one commod-
ity convex technology, and argue that its residual claimant is cheap for many
specifications of the technology.

The residual® mechanism is simpler than a VCG mechanism: individual
messages are one-dimensional "demands", namely a request for a certain amount
of output, which the mechanism must meet. Its incentives properties are weaker:
individual demands are typically not dominant strategies. However for any
profile of convex quasi-linear preferences, the non cooperative analysis of the
demand game is quite straightforward, because it is a potential game ([15]).
Even when information on preferences is entirely private, most familiar learning
algorithms such as fictitious play and best reply dynamics converge to a Nash

*This is an extended abstract of my paper "Efficient and almost budget-balanced cost
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equilibrium outcome ([15, 16, 12]). Therefore in our demand games, simple
patterns of decentralized behavior by the participants achieve one of the Nash
outcomes, irrespective of the informational assumptions.

For many smooth cost functions, in particular for all analytic functions, the
residual® mechanism generates a budget transfer to the RC that is vanishingly
small relative to the overall surplus in the economy, when the set of potential
users of the commons grows. Although it is still easier to implement an RC
who burns some money than one who must finance the deficit, the benefit of
aligning efficiency with incentive-compatibility far outweighs the small cost of
establishing an independent residual claimant.

One of the oldest' normative requirements of a resource allocation mecha-
nism is that agents should have no objection to participate. In many contexts,
this results from private property rights (e.g., in any trading mechanism); in
other contexts (provision of a local public good), it reflects a concern for fair-
ness: an agent who is forced to participate subsidizes other agents, she does not
get a share of the collective surplus.

For the rich class of totally monotone cost functions, the residual® mechanism
guarantees voluntary participation. In particular a user with a null or small
demand may reseive a cash subsidy. This makes good sense when marginal
costs increase: refraining from using the technology benefits all active users. In
our mechanism inactive users in effect have a claim on the surplus generated by
the active users. Thus the manager of the mechanism must monitor entry, lest
many newcomers show up to demand no output and receive some cash.

Relation to the literature

Familiar applications of demand mechanisms include buyers cooperatives
([20]) and capacity sharing ([13, 1]). Recent applications are to resource allo-
cation in networks with elastic supply,such as sharing the cost of a bandwidth,
and assigning service priorities([6, 8, 9, 10, 23, 27, 4]).

Our asymptotic efficiency results (Theorems 2,3,4) differ from classic findings
of the same flavour in the literature on VCG mechanisms and on double auctions.
The latter are all probabilistic statements about the expected convergence of the
equilibrium surplus to the efficient level. In general VCG mechanisms, this can
be achieved by polling a subset of participants ([7, ?]); in double auctions, the
expected surplus in any non cooperative equilibrium outcome converges to zero
([24, 14, 5]). Thus these results are predicated on the existence of common priors
on individual types. By contrast, our convergence results bear on the worst case
configuration of types, they are completely independent of any prior belief on
individual types. Evaluating the worst relative surplus loss in equilibrium, over
the entire domain of preference profiles, was pioneered by the recent literature
on the price of anarchy in congestion games ([11, 22, 21, 2, 17]).

1Tt goes back to the early literature on public finance. See e.g. Wicksell’s entry in [19].



2 Overview of the results

The residual® mechanism asks each potential user 7 of the technology to de-
mand an arbitrary non negative quantity x; of "service" (output). Given the
increasing, convex, and differentiable cost function C, for each demand profile x
the mechanism computes monetary (input) charges y;. Each individual demand
is served in full by the mechanism, who can only adjust the monetary charges
to the various users, including those who choose not to consume. This defin-
ing feature of simple cost sharing mechanisms is the property called Consumer
Sovereignty in [18]2.

Given quasi-linear utility functions u;(z;,y;) = vi(x;) — y; for each user,
the predicted outcome is some Nash equilibrium of the resulting demand game.
To guarantee residual efficiency (Pareto optimality in the economy augmented
by the residual claimant) at all equilibria and for all utility profiles, we must
choose y; = C(3_; ;) — hi(z—;,C), where the function h; does not depend
on x; but is otherwise arbitrary (Lemma 1). By Nash’s theorem if v; is con-
cave the demand game has at least one Nash equilibrium, and at each equilib-
rium vi(z;) = C'(3_; x;) (or vi(z;) < C'(32; ;) if x; = 0) for all 4. There-
fore the equilibrium demand > ;%518 optimal, i.e., it maximizes total surplus
P(x)=>",vi(z;) —C(>_, z;). Moreover the function P is a potential for the de-
mand game, thus ensuring strong convergence properties of the classic learning
algorithms ([15, 16, 12]). Finally, when n potential users share the technol-
ogy, the budget imbalance (surplus or deficit) A(z,C) = Y. y;i — C(>, @) =
(n—=1)C(3, i) — >, hi(z—;, C) is transferred to the RC.

At the equilibrium demand profile z, r,(z,C,v) = 5 UQ(IASI gzlz - mea-

sures the relative inefficiency of the equilibrium outcome. We call this ratio the
residual cost of the mechanism at equilibrium zx.

A natural choice of the transfers functions is h;(z_;, C) = C(xn;), defin-
ing the incremental™ mechanism where each user pays the incremental cost of
adding her own demand to that of other users®. Note that these transfers are de-
fined by the normatively appealing property that a null demand, z; = 0, results
in a zero charge, y; = 0. Convexity of C' ensures that the RC receives a positive
surplus, however this surplus may exhaust all but a %-th fraction of the efficient
surplus: for all n we can choose a profile v of utilities and a corresponding Nash
equilibrium «, such that r,(z,C,v) > 1 — %, where the constant K does not
depend on n.

With the notation xg = ), ¢ x; for any subset S of agents, our residual*
mechanism is defined as follows

X 1
hi(z—;) = (n— D{C(zn4) Z C(rnij) § Z Clznijr)—
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2Compare more ‘bossy’ mechanism eliciting full-fledged preferences and assigning to each
agent an input contribution and an output share: see e.g., [20].
3This idea has a long history in the cost sharing literature: see [25, 3]



_ 1)k _1\n—2
"+( D Z C(xN\{iuT})‘*‘"""% Z C(z;)}

TCN\G,|T|=k JENNG

The first remarkable property of the cost shares y = C(>, ;) — h}(z_;) is
that they cover exactly the budget whenever the cost function C is a polynomial
of degree at most n—1. In this case every Nash equilibrium of the demand game
is fully efficient and a residual claimant is not needed. Polynomials of degree
n — 1 or less are in fact the only cost functions for which we can choose the
h; to balance the budget at all demand profiles. For all other cost functions,
residual efficiency implies budget imbalance at some demand profile, and our
only option is to make it small.

Second property of residual*: its budget is balanced if not all potential users
are active. For any cost function C, we have ), y5 = C(3>_, ;) if x; = 0 for
some 7. In combination with the symmetric treatment of all individual demands,
this property characterizes the residual* mechanism.

A third remarkable property is that for many cost functions, the sign of the
budget transfer to the RC is independent of the utility profile: if n users share
the commons, and the n-th derivative C(™ is everywhere non negative (resp.
everywhere non positive), the residual® mechanism always generates a budget
surplus (resp. a deficit).

Two of our main results, in section 6, apply to totally monotone cost func-
tions C, namely indefinitely differentiable with all derivatives C*) k = 1,---
non negative on Ry. Such functions are analytic, C(a) = Y"1 Aga®, with Ay > 0
for all k. Here the residual® mechanism is compelling. On the one hand it never
generate a budget deficit, and its residual cost is at most min{@, 1}, irrespec-
tive of C, the utility profile v = (v;), and the Nash equilibrium z. On the other
hand it guarantees the two critical normative requirements Ranking (RKG) and
Voluntary Participation (VP).

Ranking is a classic test of fairness (e.g.,[?]), requiring cost shares to be co-
monotonic with demands: x; < x; = y; < y;. Absent this property, some users
can claim convincingly that their charge is unfair, i.e., they pay more for less
service!

Voluntary Participation is an even more common® normative test, with a
stronger incentives flavour than RKG. If users can decline to participate in the
mechanism, we cannot sustain an outcome where they are worse off than by
opting out, namely receiving no output at no charge. In our model, VP means
that a null demand is never taxed: z; = 0 = y; < 0. Note that this does not
preclude to subsidize a null demand, z; = 0 and y; < 0. Unlike the incremental
one, our residual* mechanism routinely hands out cash to inactive users; for
instance we show that with many more inactive than active users, the rent of
the former group is quite large. Recall that if there is at least one inactive user,
the charges will exactly cover the costs: that is because inactive users are, in
effect, sharing the residual claim. Thus the right to participate in the residual*
mechanism must be carefully monitored.

4

4A formal statement in the cost sharing context is in [18].



We examine the performance of our mechanism for several other classes of
smooth cost functions. The first one contains the positive generalized polyno-
mials, of the form C(a) = Zszl AraP* where p > 1 and A\, > 0. Although
it is no longer possible to sign the budget imbalance, the asymptotic efficiency
property of the residual* mechanism remains strong: the worst case residual
cost (over all utility profiles and all Nash equilibria) converges to zero when n
grows as Wlpk},l Numerical evidence strongly suggests that both Voluntary
Participation and Ranking still hold for these functions, but I have been unable
to prove or disprove this conjecture.

We also consider the class of analytic functions C(a) = Y 7" Axa® where the
sign of Ay is arbitrary, and to the generalized polynomials C(a) = Zf ApaP*
with pr > 1 and Ay € R. Here Voluntary Participation and Ranking may fail.
However a weaker form of asymptotic efficiency still holds: the residual cost
converges to zero as the set of users increases (as opposed to an increase in
the number of users). The convergence is exponential in the former case, and
hyper-polynomial in the latter.

We show finally that the regularity of the cost function is critical to the
good behavior of our mechanism. For a piecewise linear cost function, and
more generally for a non differentiable cost function, the residual* mechanism
may generate surpluses and deficits growing exponentially with n. It grossly
violates VP and RK. Moreover, for a piecewise linear cost any residually efficient
mechanism (i.e., with cost shares of the form y; = C(>°, x;) — hi(x—;,C)) has a
residual cost of at least 100%.
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