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Abstract

Personalized ranking systems and trust systems are an essential tool for col-
laboration in a multi-agent environment. In these systems,trust relations between
many agents are aggregated to produce a personalized trust rating of the agents. In
this paper we introduce the first extensive axiomatic study of this setting, and ex-
plore a wide array of well-known and new personalized ranking systems. We adapt
several axioms (basic criteria) from the literature on global ranking systems to the
context of personalized ranking systems, and fully classify the set of systems that
satisfy all of these axioms. We further show that all these axioms are necessary for
this result.

1 Introduction

Personalized ranking systems and trust systems are an essential tool for collaboration in
a multi-agent environment. In these systems, agents reporton their peers’ performance,
and these reports are aggregated to form a ranking of the agents. This ranking may
be either global, where all agents see the same ranking, or personalized, where each
agent is provided with her own ranking of the agents. Examples of global ranking
systems include eBay’s reputation system[20] and Google’sPageRank[18]. Examples
of personalized ranking systems include the personalized version of PageRank[14] and
the MoleTrust ranking system[8]. Furthermore, trust systems which provide each agent
with a set of agents he or she can trust, can be viewed as personalized ranking systems
which supply a two-level ranking over the agents. Many of these systems can be easily
adapted to provide a full ranking of the agents. Examples of trust systems include
OpenPGP(Pretty Good Privacy)’s trust system[10], the ranking system employed by
Advogato[16], and the epinions.com web of trust.

∗This paper is an extended version of [3].
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A central challenge in the study of ranking systems, is to provide means and rig-
orous tools for the evaluation of these systems. This challenge equally applies to both
global and personalized ranking systems. A central approach to the evaluation of such
systems is the experimental approach. In the general ranking systems setting, this ap-
proach was successfully applied to Hubs&Authorities[15] and to various other ranking
systems[9]. In the trust systems setting, [17] suggests a similar experimental approach.

A more analytical approach to the evaluation of ranking systems is the axiomatic
approach. In this approach, one considers basic properties, or axioms, one might re-
quire a ranking system to satisfy. Then, existing and new systems are classified ac-
cording to the set of axioms they satisfy. Examples of such study in the global ranking
systems literature include [11, 9, 22, 5, 19]. Typical results of such study areaxioma-
tizationsof particular ranking systems, or a proof that no ranking system satisfying a
set of axioms exists. For example, in [2] we provide a set of axioms that are satisfied
by the PageRank system and show that any global ranking system that satisfies these
axioms must coincide with PageRank.

While the axiomatic approach has been extensively applied to the global ranking
systems setting, no general attempt has been made to apply such an approach to the
context of personalized ranking systems. In this paper, we introduce an extensive ax-
iomatic study of the personalized ranking system setting, by adapting axioms that have
been previously applied to global ranking systems[1, 4]. Wecompare several existing
personalized ranking systems in the light of these axioms, and provide novel ranking
systems that satisfy various sets of axioms. Moreover, we prove a full characterization
of the personalized ranking systems satisfying all suggested axioms.

We consider four basic axioms. The first axiom, self confidence, requires that an
agent would be ranked at the top of his own personalized rank.The second axiom,
transitivity, captures the idea that an agent preferred by more highly trusted agents,
should be ranked higher than an agent preferred by less trusted agents. The third axiom,
Ranked Independence of Irrelevant Alternatives, requiresthat under the perspective of
any agent, the relative ranking of two other agents would depend only on the pairwise
comparisons between the rank of the agents that prefer them.The last axiom, strong
incentive compatibility, captures the idea that an agent cannot gain trust by any agent’s
perspective by manipulating its reported trust preference.

We fully characterize the set of ranking systems satisfyingall four axioms, and
show ranking systems satisfying every three of the four axioms (but not the fourth).

This paper is organized as follows. Section 2 introduces thesetting of personalized
ranking systems and discusses some known system. In section3 we present our axioms,
and classify the ranking systems shown according to these axioms. In section 4 we
provide a full characterization of the ranking systems satisfying all of our axioms, and
in section 5 we study ranking systems satisfying every threeof the four axioms. Section
6 presents some concluding remarks and suggestions for future research.
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2 Personalized Ranking Systems

2.1 The Setting

Before describing our results regarding personalized ranking systems, we must first
formally define what we mean by the words “personalized ranking system” in terms of
graphs and linear orderings:

Definition 2.1. Let A be some set. A relationR ⊆ A × A is called anorderingon A
if it is reflexive, transitive, and complete. LetL(A) denote the set of orderings onA.

Notation2.2. Let� be an ordering, then≃ is the equality predicate of�, and≺ is the
strict order induced by�. Formally,a ≃ b if and only if a � b andb � a; anda ≺ b if
and only ifa � b but notb � a.

Given the above we can define what a personalized ranking system is:

Definition 2.3. Let GV be the set of all directed graphsG = (V, E) with no parallel
edges, but possibly with self-loops1. A personalized ranking system(PRS)F is a func-
tional that for every finite vertex setV and for everysources ∈ V maps every graph
G ∈ GV to an ordering�F

G,s∈ L(V ).

Note that our definition of a personalized ranking system considers only the ordinal
ranking of the vertices and does not assign cardinal values to vertices. Also note that
our definition does not assume the existence of a path froms to every vertex. However,
in some settings this may be considered a useful assumption.Therefore, we shall use
these kind of graphs in all examples and counter-examples, but prove our results for
the more general case defined above.

2.2 Some personalized ranking systems

We shall now give examples of some known PRSs. A basic rankingsystem that is at
the basis of many trust systems ranks the agents based on the minimal distance of the
agents from the source.

Notation2.4. LetG = (V, E) be some directed graph andv1, v2 ∈ V be some vertices,
we will usedG(v1, v2) to denote the length of the shortest directed path inG between
v1 andv2. If no such path exists,dG(v1, v2) , ∞.

Definition 2.5. Thedistance PRSFD is defined as follows: Given a graphG = (V, E)
and a sources, v1 �FD

G,s v2 ⇔ dG(s, v1) ≥ dG(s, v2)

Another family of PRSs can be derived from the well-known PageRank ranking
system by modifying the so-called teleportation vector in the definition of PageRank[14].
These systems can be defined as follows:

Definition 2.6. LetG = (V, E) be a directed graph, and assumeV = {v1, v2, . . . , vn}.
ThePageRank MatrixAG (of dimensionn × n) is defined as:

[AG]i,j =

{
1/|SG(vj)| (vj , vi) ∈ E

0 Otherwise.

1Unless otherwise noted, all our results still apply when self loops are not allowed.
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The Personalized PageRank procedure ranks pages accordingto the stationary prob-
ability distribution obtained in the limit of a random walk with a random teleportation
to the sources with probabilityd; this is formally defined as follows:

Definition 2.7. Let G = (V, E) be some graph, and assumeV = {s, v2, . . . , vn}.
Let r be the unique solution of the system(1 − d) · AG · r + d · (1, 0, . . . , 0)T = r.
The Personalized PageRank with damping factord of a vertexvi ∈ V is defined as
PPRd

G,s(vi) = ri. ThePersonalized PageRank Ranking System with damping factor

d is a PRS that for the vertex setV and sources ∈ V mapsG to �PPRd

G,s , where

�PPRd

G,s is defined as: for allvi, vj ∈ V : vi �
PPRd

G,s vj if and only if PPRd
G,s(vi) ≤

PPRd
G,s(vj).

We now suggest a variant of the Personalized PageRank system, which, as we will
later show, has more positive properties than PersonalizedPageRank.

Definition 2.8. Let G = (V, E) be some graph and assumeV = {s, v2, . . . , vn}. Let
BG be the link matrix forG. That is,[BG]i,j = 1 ⇔ (j, i) ∈ E. Let α = 1/n2 and
let a be the unique solution of the systemα · BG · a + (1, αn, . . . , αn)T = a. The
α-Rankof a vertexvi ∈ V is defined asrG,s(vi) = ai. Theα-Rank PRSis a PRS that
for the vertex setV and sources ∈ V mapsG to �αR

G,s, where�αR
G,s is defined as: for

all vi, vj ∈ V : vi �αR
G,s vj if and only if rG,s(vi) ≤ rG,s(vj).

Theα-Rank system ranks the agents based on their distance froms, breaking ties
by the summing of the trust values of the predecessors. By selectingα = 1/n2, it is
ensured that a slight difference in rank of nodes closer tos will be more significant
than a major difference in rank of nodes further froms.

Additional personalized ranking systems are presented in Section 5 as part of our
axiomatic study.

3 Some Axioms

A basic requirement of a PRS is that the source – the agent under whose perspective
we define the ranking system – must be ranked strictly at the top of the trust ranking,
as each agent implicitly trusts herself. We refer to this property as self confidence.

Definition 3.1. Let F be a PRS. We say thatF satisfiesself confidenceif for all graphs
G = (V, E), for all sourcess ∈ V and for all verticesv ∈ V \ {s}: v ≺F

G,s s.

A basic property of (global) ranking systems calledstrong transitivity[1, 22], which
requires that if an agenta’s voters are ranked higher than those of agentb, then agenta
should be ranked higher than agentb. We adapt this notion to the personalized setting,
and provide a new weaker notion of transitivity as follows:

Notation3.2. We will usePG(v) andSG(v) to denote the predecessor set and successor
set ofv in G respectively. The subscriptG may be omitted when understood from
context.
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Definition 3.3. Let F be a PRS. We say thatF satisfiesquasi transitivityif for all
graphsG = (V, E), for all sourcess ∈ V and for all verticesv1, v2 ∈ V \ {s}:
Assume there is a 1-1 mappingf : P (v1) 7→ P (v2) s.t. for allv ∈ P (v1):v � f(v).
Then,v1 � v2. F further satisfiesstrong quasi transitivityif whenP (v1) 6= ∅ and for
all v ∈ P (v1): v ≺ f(v), thenv1 ≺ v2. F further satisfiesstrong transitivityif when
eitherf is not onto or for somev ∈ P (v1): v ≺ f(v), thenv1 ≺ v2.

The new notion of strong quasi transitivity requires that agents with stronger match-
ing predecessors be ranked at least as strong as agents with weaker predecessors, but
requires a strict preference only whenall matching predecessors arestrictly stronger.

A standard assumption in social choice settings is that an agent’s relative rank
should only depend on (some property of) their immediate predecessors. Such axioms
are usually called independence of irrelevant alternatives(IIA) axioms. In the global
ranking systems setting[1], we required that the relative ranking of two agents must
only depend on the pairwise comparisons of the ranks of theirpredecessors, and not on
their identity or cardinal value. TherankedIIA axiom differs from the one suggested
by [7] in the fact that ranked IIA does not consider the identity of the voters, but rather
their relative rank. We now adapt this axiom of ranked IIA to the setting of PRSs, by
requiring this independence for all vertices except the source.

To formally define this condition, one must consider all possibilities of comparing
two nodes in a graph based only on ordinal comparisons of their predecessors. These
possibilities are called comparison profiles:

Definition 3.4. A comparison profileis a〈a,b〉 wherea = (a1, . . . , an), b = (b1, . . . , bm),
a1, . . . , an, b1, . . . , bm ∈ N, a1 ≤ a2 ≤ · · · ≤ an, andb1 ≤ b2 ≤ · · · ≤ bm. LetP be
the set of all such profiles.

A PRSF , a graphG = (V, E), a sources ∈ V , and a pair of verticesv1, v2 ∈ V
are said tosatisfysuch a comparison profile〈a,b〉 if there exist 1-1 mappingsf1 :
P (v1) 7→ {1 . . . n} andf2 : P (v2) 7→ {1 . . .m} such that givenf : ({1} × P (v1)) ∪
({2} × P (v2)) 7→ N defined as:

f(1, v) = af1(v)

f(2, u) = bf2(u),

f(i, x) ≤ f(j, y) ⇔ x �F
G,s y for all (i, x), (j, y) ∈ ({1} × P (v1)) ∪ ({2} × P (v2)).

We now require that for every such profile the personalized ranking system ranks
the nodes consistently:

Notation3.5. We will useV G
s to denote the set of vertices that have a directed path

from s in a graphG. We will sloppily useVs whenG is understood from context.

Definition 3.6. Let F be a PRS. We say thatF satisfiesranked independence of ir-
relevant alternatives (RIIA)if there exists a mappingf : P 7→ {0, 1} such that for
every graphG = (V, E), for every sources ∈ V and for every pair of vertices
v1, v2 ∈ V G

s \ {s} and for every comparison profilep ∈ P that v1 and v2 sat-
isfy, v1 �F

G,s v2 ⇔ f(p) = 1. We will sloppily use the notationa 4 b to denote
f〈a,b〉 = 1.

This IIA axiom intuitively means that the relative ranking of agents must be con-
sistent across all comparisons with the same rank relations.
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3.1 Incentive Compatibility

The issue of incentives has been extensively studied both inclassical social choice[13,
21, 12], and with regard to global ranking systems[4, 5]. As with global ranking sys-
tems, agents ranked by personalized ranking systems may wish to manipulate their
reported preferences in order to improve their trustworthiness in the eyes of a specific
agent. Therefore, the incentives of these agents should in many cases be taken into
consideration.

We would like our ranking systems to stand against various types of manipulations.
It is important to formally define what a manipuation is, and the types of manipulations
we would like to defend against.

Definition 3.7. A manipulationis a functionM that maps every graphG = (V, E) ∈
G and every vertexv ∈ V in that graph to a set of graphsM ⊆ G such thatG ∈ M
andv ∈ G′ for all G′ ∈ M .

That is, a manipulation defines for every vertex in any graph,what different graphs
can that agent cause to be presented to the ranking system as aresult of a manipulation.

Our standard of incentive compatibility is strong incentive compatibility, which
requires that agents will not improve their rank in the termsof the number of agents
ranked above them and the number or agents ranked the same as them2:

Definition 3.8. Let F be a PRS.F satisfiesstrong incentive compatibility under ma-
nipulationM if for all true preference graphsG = (V, E), for all sourcess ∈ V ,
for all verticesv ∈ V , and for all manipulationsG′ ∈ M(G, v): |{x ∈ V ′|v ≺F

G′

x}| ≥ |{x ∈ V |v ≺F
G x}|; and if |{x ∈ V ′|v ≺F

G′ x}| = |{x ∈ V |v ≺F
G x}| then

|{x ∈ V ′|v ≃F
G′ x}| ≥ |{x ∈ V |v ≃F

G x}|.

In [4] and [5], we considered manipulation by modification ofan agent’s outgoing
links. Such outgoing link manipulation can be defined as:

Mout(V, E, v) = {(V, E′)|∀u ∈ V \ {v} : ∀u′ ∈ V : (u, u′) ∈ E ⇔ (u, u′) ∈ E′}.

The outgoing link manipulationMout is actually a special kind of manipulation in the
sense that the agent can perform the manipulation in both directions.

Definition 3.9. A manipulationM is calledreversibleif for all G = (V, E) ∈ G, for
all v ∈ V , and for allG′ ∈ M(G, v): G ∈ M(G′, v).

Reversible manipulations are important due to the following simple fact:

Fact 3.10. LetM be a reversible manipulation and letF be a PRS .F satisfies strong
incentive compatibility underM if and only if for all graphsG = (V, E), for all
sourcess ∈ V , for all verticesv ∈ V , and for all manipulationsG′ ∈ M(G, v): |{x ∈
V ′|v ≺F

G′ x}| = |{x ∈ V |v ≺F
G x}| and|{x ∈ V ′|v ≃F

G′ x}| = |{x ∈ V |v ≃F
G x}|.

2In [4], we have defined the notion of a utility functionun : N 7→ R that for every graph sizen maps
the number of agents ranked below a specific agent in a strict ranking to a utility value, and we assumed
such utility functions are nondecreasing. If we further assume thatun(i) = um(i + n − m) for all
0 < i < m < n, that is, an agent’s utility in a strict ranking depends onlyon the number of agents ranked
above it, we can show that our current defintion of stong incentive compatibility is equivalent to the one in
[4].
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Therefore, in a PRS that is incentive compatible under a reversible manipulation an
agent cannot change its rank at all by performing a manipulation.

Another type of manipulation, considered by [11] is concerned with the generation
of fraudulent identities in order to manipulate one’s rank.Their setting considered
weighted edges, as opposed to our setting where the edges arebinary. However, we
can adapt their sybil form of manipulation by simply removing these weghts.

A sybil manipulation, or sybling strategy is a manipulationin which an agent con-
trolling one vertexv in the graph can create any number of fraudulent identities (or
sybils) and freely manipulate the links among these sybils,while maintaining the same
set of incoming and outgoing links (possibly duplicated) among the sybil group as a
whole.

Thus, we can define the sybil manipulation as:

Msybil(V, E, v) = {(V ′, E′)|

V ⊆ V ′ ∧ ∀u, u′ ∈ V \ {v} : (u, u′) ∈ E ⇔ (u, u′) ∈ E′ ∧

PG(v) \ {v} = (V \ {v}) ∩
⋃

u∈V ′\V ∪{v}

PG′(u) ∧

SG(v) \ {v} = (V \ {v}) ∩
⋃

u∈V ′\V ∪{v}

SG′(u)}.

We can also consider the combined manipulation of the two, which is not the same
as the simple union of these manipulations:

Mboth(V, E, v) = {(V ′, E′)|

V ⊆ V ′ ∧ ∀u, u′ ∈ V \ {v} : (u, u′) ∈ E ⇔ (u, u′) ∈ E′ ∧

PG(v) \ {v} = (V \ {v}) ∩
⋃

u∈V ′\V ∪{v}

PG′(u).

It turns out that strong incentive compatibility under bothoutgoing edge and sybling
manipulations is equivalent to strong incentive compatibility under the combined ma-
nipulation:

Fact 3.11. LetF be a PRS.F satisfies strong incentive compatibility underMout and
underMsybil if and only if it satisfies strong incentive compatibility underMboth.

Proof. The “if” direction is trivial. For the “only if” direction, let G = (V, E) be
a graph andv ∈ V . Consider a manipulation(V ′, E′) ∈ Mboth(V, E, v). Let
U = {x|∃u ∈ V ′\V ∪{v} : (u, x) ∈ E′}. LetE′′ = E\{(v, x)|x ∈ V }∪{(v, x)|x ∈
U}. Now (V, E′′) ∈ Mout(V, E, v) and (V ′, E′) ∈ Msybil(V, E′′, v), and due to
strong incentive compatibility under these manipulations, F also satisfies strong incen-
tive compatibility under manipulation(V ′, E′) and indeed under any manipulation in
Mboth.

3.2 Satisfication

We will now demonstrate the aforementioned axioms by showing which axioms are
satisfied by the PRSs mentioned in Section 2.2.
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Proposition 3.12. The distance PRSFD satisfies self confidence, ranked IIA, tran-
sitivity, and strong incentive compatibility underMboth, but does not satisfy strong
transitivity.

Proof. Self-confidence is satisfied by definition ofFD. FD satisfies RIIA, because it
ranks every comparison profile in the connected section consistently according to the
following rule:

(a1, a2, . . . , an) 4 (b1, b2, . . . , bm) ⇔ an ≤ bm.

That is, any two vertices are compared according to their strongest predecessor.FD

satisfies strong quasi transitivity, because the ranking ofthe profiles above is consistent
with strong quasi transitivity. The unconnected vertices are all equal to each other and
weaker than the connected vertices which is also true for their predecessors, and thus
strong quasi transitivity is satisfied.

To prove thatFD satisfies strong incentive compatibility, note the fact that an agent
x cannot modify the shortest path froms to x by changing its outgoing links or adding
sybils since any such shortest path necessarily does not includex or its sybils (except
as target). Moreover,x or its sybils cannot change the shortest path to any agenty with
d(s, y) ≤ d(s, x), becausex and its sybils are necessarily not on the shortest path from
s to y. Therefore, the amount of agents ranked above x and its sybils and the amount
of agents ranked equal tox or its sybils cannot decrease due tox’s manipulations.

To proveFD does not satisfy strong transitivity, consider the graph inFigure 1a. In
this graph,x andy are ranked the same, even thoughP (x) ( P (y), in contradiction to
strong transitivity.

Proposition 3.13. The Personalized PageRank ranking systems satisfy self confidence
if and only if the damping factor is set to more than1

2
3. Moreover, Personalized PageR-

ank does not satisfy weak transitivity, ranked IIA or strongincentive compatibility un-
derMout or Msybil for any damping factor.

Proof. To prove the that PPR does not satisfy self-confidence ford ≤ 1
2 , consider the

graph in Figure 1b. For any damping factord, the PPR will bePPR(s) = d and
PPR(x) = 1 − d. If d ≤ 1

2 thenPPR(s) ≤ PPR(x) and thuss �PPRd x, in
contradiction to the self confidence axiom.

PPR satisfies self-confidence ford > 1
2 because thenPPR(s) ≥ d > 1

2 , while for
all v ∈ V \ {s}, PPR(v) ≤ 1 − d < 1

2 .
To prove that PPR does not satisfy strong quasi transitivityand ranked IIA, consider

the graph in Figure 1c. The PPR of this graph for any damping factor d is as follows:

PPR(s) = d; PPR(a) = d(1−d)
2 ; PPR(b) = d(1−d)2

4 ; PPR(c) = d(1−d)2

2 .
Therefore, the ranking of this graph is:b ≺ c ≺ a ≺ s. Quasi transitivity is violated
becauseb ≺ c even thoughP (b) = P (c) = a. This also violates ranked IIA because
the ranking profile〈(1), (1)〉 must be ranked as equal due to trivial comparisons such
asa anda.

3If we do not allow self-loops this bound becomes(
√

5 − 1)/2 ≈ 0.618.
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Strong incentive compatibility underMout is not satisfied, because in the graph in
Figure 1c, if any of theb agentsb′ would have voted for themselves, they would have
been rankedb ≺ b′ ≺ c ≺ a ≺ s, which is a strict increase inb′ rank.

To show that strong incentive compatibility underMsybil is not satisfied, consider
the graph in Figure 1d. Note thata ≃ b ≺ s in this graph. Consider the manipulation
by a where a sybila′ is added along with the edges{(s, a′), (a′, a)}. In this case,
the PageRank value ofb would be 1

3 (1 − d)d while the PageRank value ofa will be
(1−d)+1

3 (1 − d)d. Therefore,b ≺ a ≺ s in the manipulated graph, and thus strong
incentive compatibility is not satisfied.

It is interesting to note that although Personalized Pagerank does not satisfy strong
incentive compatibility underMsybil, a weighted version of Personalized PageRankis
in fact sybilproof with regard to the weighted definition of sybilproofness presented in
[11].

Strong transitivity is also satisfied by a natural PRS — theα-Rank system:

Proposition 3.14. Theα-Rank system satisfies self confidence and strong transitiv-
ity, but does not satisfy ranked IIA or strong incentive compatibility underMout or
Msybil.

Proof. To showα-Rank satisfies self confidence, note that by definitionrG,s(s) ≥ 1.
Assume for contradiction thatmaxv 6=s rG,s(v) ≥ 1. Then,

rG,i(s) ≤ 1 + α
∑

v∈V

rG,s(v)

≤ 1 + α

[

(n − 1)max
v 6=s

rG,s(v) + rG,i(s)

]

rG,i(s) ≤
1

1 − α
+

α

1 − α
(n − 1)max

v 6=s
rG,s(v) ≤

≤ 2 + max
v 6=s

rG,s(v)

max
v 6=s

rG,s(v) ≤ αn + α
∑

v∈V

rG,s(v)

≤ αn + α

[

n · max
v 6=s

rG,s(v) + 2

]

[

1 −
n

n2

]

max
v 6=s

rG,s(v) ≤
2

n2
+

1

n2n

n2 − n ≤ 2 + 1/n2n−2

n2 − n − 1/n2n−2 ≤ 2

2 ≤ n(n − 1) < 2

To proveα-Rank satisfies strong transitivity, consider two verticesa, b ∈ V \ {s}
and a functionf : P (a) 7→ P (b) such thatv � f(v) for all v ∈ P (a). Then,

rG,s(a)/α − αn =
∑

v∈P (a)

rG,s(v) ≤
∑

v∈f(P (a))

rG,s(v) ≤
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≤
∑

v∈P (b)

rG,s(v) = rG,s(b)/α − αn, (1)

which impliesa � b. If for somev ∈ P (a): v ≺ f(v) , or if f is not onto, then the
first or the second inequality respectively in (1) above is strict, which impliesa ≺ b, as
required.

To proveα-Rank does not satisfy strong incentive compatibility under Mout, con-
sider the graph in Figure 1e. In this graphα-Rank ranksd ≺ b. However, ifd removes
the link tob they will be ranked equally and thus reducing the number of agents stronger
thand. To proveα-Rank does not satisfy strong incentive compatibility under Msybil,
consider again the graph in Figure 1e. Agentc is ranked below agentb in this graph.
However, she can duplicate herself and add edges(c, c′) and(c′, c) to be ranked above
b thus decreasing the number of agents ranked better than herself.

To proveα-Rank does not satisfy RIIA, consider the graph in Figure 1f.It is easy
to calculate the followingα-Rank values:

r(s) = 1

r(i) = r(h) = α + α10

r(d) = r(e) = α2 + α10 + α11

r(f) = 2α2 + α3 + α10 + 3α11 + α12

r(g) = α2 + α3 + α10 + 2α11 + α12

r(a) = 2α3 + α10 + 2α11 + 2α12

r(b) = 2α3 + α4 + α10 + α11 + 3α12 + α13

r(c) = α3 + α4 + α10 + α11 + 2α12 + α13.

Therefore, this graph is rankedc ≺ a ≺ b ≺ d ≃ e ≺ g ≺ f ≺ i ≃ h ≺ s. Note
that(a, b) and(a, c) both satisfy the profile〈(1, 1), (2)〉, howevera ≺ b andc ≺ a in
contradiction to RIIA.

4 A Characterization Theorem

Our main result is a full characterization of the PRSs that satisfy the axioms above. We
will see that these systems are the generalized strong countsystems. Strong count rank
agents based on their strongest predecessors, breaking ties according to thenumberof
equal strongest predecessors the agents have. The functionr below determines how
such ties are broken. Ass is stronger than all other agents, the strongest predecessor of
each agent inVs \ {s} must be closer tos.

The strong count system is formally defined as follows:

Definition 4.1. Let r : N 7→ N be a monotone nondecreasing function such that
r(i) ≤ i for all i ∈ N. The strong count systemSCr is recursively defined as follows:
First of all,y ≃ y′ ≺ x ≺ s for all x ∈ Vs \ {s} andy, y′ ∈ V \ Vs. Forx ∈ Vs \ {s},
denoteP ′(x) = P (x) ∩ {y|d(s, y) < d(s, x)}, andPmax(x) = {y|y ∈ P ′(x), ∀z ∈
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P ′(x) : z �SCr y}. Now for a, b ∈ Vs \ {s}:

a �SCr b ⇔ (∃x ∈ Pmax(a), y ∈ Pmax(b) : x ≺SCr y) ∨

∨[ (∀x ∈ Pmax(a), y ∈ Pmax(b) : x ≃SCr y) ∧

∧((r(|Pmax(a)|) ≤ r(|Pmax(b)|))].

The strong count systems rank based on the strongest predecessor’s rank and then
break ties based on the number of strongest predecessors. Unconnected vertices are
equally ranked at the bottom. Note that forr ≡ 1, the Strong Count PRS is exactly the
distance system.

Our main result claims that these strong count systems are the only systems that
satisfy all aforementioned axioms.

Theorem 4.2. LetF be a PRS. The following three statements are equivalent:

1. F is a strong count system for somer.

2. F satisfies self confidence, strong quasi transitivity, ranked IIA and strong incen-
tive compatibility underMout.

3. F satisfies self confidence, strong quasi transitivity, ranked IIA and strong incen-
tive compatibility underMboth.

We begin our proof by showing that the strong count systems doin fact satisfy all
these axioms.

Proof. (1 ⇒ 3): Let r be a monotone nondecreasing function such thatr(x) ≤ x. SCr

satisfies self confidence by definition.
To show thatSCr satisfies RIIA and strong quasi transitivity on elements ofVs,

we will show that it ranks any profilep = 〈(a1, . . . , an); (b1, . . . , bm)〉 as follows: Let
ca = max{i ∈ N|an−i = an−i+1 = · · · = an} and cb = max{i ∈ N|bm−i =
bm−i+1 = · · · = bm}.

f(p) = 1 ⇔ (an < bm) ∨

∨ [(an = bm) ∧ (r(ca) ≤ r(cb))]

This almost follows from the recursive definition ofSCr, however it remains to show
that∀x, y ∈ V : d(s, x) < d(s, y) ⇒ x ≺SC y. This can be proven by induction
on d(s, y). If y = s this is trivial by definition. Otherwise, by the assumption of
induction,∃x′ ∈ Pmax(x), y′ ∈ Pmax(y) : x′ ≺SC y′ and thus by the recursive
definition,x ≺SC y.

Strong quasi transitivity involving elements inV \Vs and elements either inV \Vs

or in Vs \ {s} is satisfied because for allx ∈ V \ Vs andy ∈ V \ {s} we havex � y
(by definition) and ifx ≺ y theny ∈ Vs \ {s} and thus there is somey′ ∈ P (y) such
that for allx′ ∈ P (x): x′ � y′.

With regard to the strong incentive compatibility underMboth, due to the dis-
tance feature proven above, all sybils ofv will be strictly weaker than the vertices with
smaller distance froms. Furthermore, any other vertices that were stronger thanv in
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the original graph will be stronger than any ofv’s sybils, due to the fact that the relative
rank of two vertices is determined only based on incoming links from vertices closer
to s, and more incoming edges cannot decrease an agent’s rank. Bythe same logic,
vertices which were equal tov in the original graph, will either be stronger or equal to
v in the manipulated graph.

In order to prove the hard direction of Theorem 4.2 (2 ⇒ 1), we will first show that
a strong notion of transitivity is implied by the axioms:

Definition 4.3. Let F be a PRS. We say thatF satisfiesweak maximum transitivity
if for all graphsG = (V, E), for all sourcess ∈ V and for all verticesv1, v2 ∈ Vs:
Let m1, m2 be the maximally ranked vertices inP (v1), P (v2) respectively. Assume
m1 ≺ m2. Then,v1 ≺ v2.

Lemma 4.4. Let F be a PRS that satisfies self confidence, strong quasi transitivity,
RIIA and strong incentive compatibility. Then,F satisfies weak maximum transitivity.

Proof. In order to show thatF satisfies weak maximum transitivity, we will show
that for every comparison profile the ranking must be consistent with weak maxi-
mum transitivity. Letp = 〈(a1, a2, . . . , ak), (b1, b2, . . . , bl)〉 be a comparison pro-
file whereak 6= bl. Assume wlog thatbl < ak and assume for contradiction that
〈(a1, a2, . . . , ak) � (b1, b2, . . . , bl)〉. Consider the graphG = (V, E) defined as fol-
lows:

V = {s, a, b} ∪ {uj
i |i ∈ {1, . . . , max(k, l)}; j ∈ {0, . . . , ak}}

E = {(uj
i , u

j−1
i )|i ∈ {1, . . . , max(k, l)}; j ∈ {1, . . . , ak}} ∪

∪{(s, ubl

i )|i ∈ {1, . . . , max(k, l)}} ∪

∪{(uj
i , a)|ai = j} ∪ {(uj

i , b)|bi = j}.

Figure 2 contains such a graph for the profile〈(1, 4), (2, 2, 3)〉.

Note that by strong quasi transitivity and self confidence, for all i, i′, j, j′: uj
i � uj′

i′

iff , j ≤ j′. Therefore, we will useuj to denote anyuj
i . By the construction ofG, a

andb satisfyp. Thus, from our assumption,a � b.
By strong quasi transitivity,a � ubl , and thus from our assumption alsob � ubl .

Now consider the point of view of agentubl

l . She can perform a manipulation by not
voting for b. This manipulation must not change her relative rank, as it is inMout. As
the relative ranks of theuj

i agents ands are unaffected by this manipulation, it cannot
affect the ranks ofa andb relative toubl

l , and thus after the edge(ubl

l , b) is removed,
we still haveb � ubl

l . We can repeat this process for alli = bl, . . . , 2, with the result
that in the graphG′ for the profile〈(a1, a2, . . . , ak), (b1)〉, b � ub2 � ub1 . However,
by strong quasi transitivity,b ≃G′ ub1−1 ≺G′ ub1 �G′ b, which is a contradiction.

We can now prove the hard direction of Theorem 4.2.

13



u4

1
u3

1

u4

2
u3

2

a

u4

3 u3

3

u2

1

u2

2

u2

3

b

u1

1

u1

2

u1

3

u0

1

u0

2

u0

3

s

Figure 2: Example of graph from proof of Lemma 4.4.

Proof. (Theorem 4.2:2 ⇒ 1) Given Lemma 4.4, it remains to look at profiles〈(a1, a2, . . . , ak), (b1, b2, . . . , bl)〉
whereak = bl. DenoteM = ak = bl. Let p be such a profile. Denotexa = |{n|an =
M}| and similarlyxb = |{n|bn = M}|. These values denote the number of strongest
predecessorsa andb have in profilep.

We will now prove by induction onk + l − xa − xb that F ranksp the same as
it ranks〈(1, . . . , 1

︸ ︷︷ ︸

xa times

), (1, . . . , 1
︸ ︷︷ ︸

xb times

)〉. If k + l − xa − xb = 0, thena1 = ak = b1 = bl,

and thus the requirement is trivially satisfied. Otherwise,we assume correctness for
k + l − xa − xb − 1. Further assume wlog thata1 6= ak. Denoter = ak−xa

and
ya = |{n|an = r}|.

We shall now consider two cases:

• If b1 = bl or ak−xa
6= bl−xb

. If b1 6= bl, then further assume wlog thatak−xa
>

bl−xb
. Consider the graphG = (V, E) defined as follows:

V = {s, a} ∪ {b1, . . . , bya} ∪

∪{uj
i |i ∈ {1, . . . , max(k, l)}; j ∈ {0, . . . , M}}

E = {(uj
i , u

j−1
i )|i ∈ {1, . . . , max(k, l)}; j ∈ {1, . . . , M}} ∪

∪{(s, uM
i )|i ∈ {1, . . . , max(k, l)}} ∪ {(uj

i , a)|ai = j 6= r} ∪

∪{(uj
i , b

n)|bi = j, n = 1, . . . , ya} ∪ {(bn, a)|n = 1, . . . , ya}.

Figure 3 contains such a graph for the profile〈(1, 3, 3, 4), (1, 2, 4, 4)〉. Note that

by strong quasi transitivity and self confidence, for alli, i′, j, j′: uj
i � uj′

i′ iff
, j ≤ j′. Therefore, we will useuj to denote anyuj

i . Similarly, allbn are equal to
each other, and by weak maximum transitivity (Lemma 4.4),uM−1 � a, b ≺ uM

(we will similarly useb to denote anybn). Therefore,a andb satisfyp. Now
consider the following manipulation byb1: Removing the outgoing edge toa.
This manipulation is inMout and thus should not change the relative rank ofb1.
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Figure 3: Example graph from the proof of Theorem 4.2 case 1.
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Note thatb1’s predecessors remain the same and equal to the ones ofb2, . . . , bya,
and allbn remain equal. We must now show that for every allowable relative
ranking ofuM−1, a, andb the manipulation cannot changea and b’s relative
rank. We will do this by considering all cases:

Ordering # Vertices equal tob # Vertices stronger thanb

uM−1 ≃ b ≺ a ya + max(k, l) (M − r) · max(k, l) + 2
uM−1 ≺ b ≺ a ya (M − r) · max(k, l) + 2
uM−1 ≃ a ≃ b ya + max(k, l) + 1 (M − r) · max(k, l) + 1
uM−1 ≺ a ≃ b ya + 1 (M − r) · max(k, l) + 1
uM−1 ≃ a ≺ b ya (M − r) · max(k, l) + 1
uM−1 ≺ a ≺ b ya (M − r) · max(k, l) + 1

We see that any change in the relation betweena andb will surely changeb’s
rank in a way that is not strategyproof.

We have shown that profilep must be ranked the same as the profile

〈(a1, a2, . . . , ak−xa−1, ak−xa+1, . . . , ak), (b1, b2, . . . , bl)〉,

which by the assumption of induction gives us the desired result.

• Otherwise,ak−xa
= bl−xb

. Denoteyb = |{n|bn = r}| and assume wlog that
yb ≥ ya. Consider the graphG = (V, E) defined as follows:

V = {s, a} ∪ {b0, . . . , byb} ∪

∪{uj
i |i ∈ {1, . . . , max(k, l)}; j ∈ {0, . . . , M}}

E = {(uj
i , u

j−1
i )|i ∈ {1, . . . , max(k, l)}; j ∈ {1, . . . , M}} ∪

∪{(s, uM
i )|i ∈ {1, . . . , max(k, l)}} ∪ {(uj

i , a)|ai = j 6= r} ∪

∪{(uj
i , b

n)|bi = j 6= r, n = 0, . . . , y} ∪

∪{(bn, a)|n = 1, . . . , ya} ∪ {(bn, bm)|n 6= m ∈ {0, . . . , yb}}.

Figure 4 contains such a graph for the profile〈(1, 1, 2, 2), (1, 1, 1, 2)〉. As before,

for all i, i′, j, j′: uj
i � uj′

i′ iff , j ≤ j′ and we will useuj to denote anyuj
i . All

bn are equal to each other because if wlogb1 ≺ b2 thenb1’s predecessors will
be stronger thanb2’s predecessors and thus by strong quasi transitivityb2 �
b1. Again, by weak maximum transitivity,uM−1 � a, b ≺ uM and we will
useb to denote anybn. Therefore,a and b satisfyp. We can again consider
a manipulation byb1 removing an edge toa, again allbn remain equal and as
before the manipulation cannot changea andb’s relative rank, and when again
applying the assumption of induction we get the desired result.

By strong quasi transitivity, profiles where all predecessors are equal are ranked〈1〉 �
〈1, 1〉 � · · ·. When considering the result above, we conclude any two vertices should
be weakly ranked according to the number of strongest predecessors they have, and by
RIIA the tie-breaking rule must be universal.
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Figure 4: Example graph from the proof of Theorem 4.2 case 2.

It remains to show that vertices inV \Vs will be ranked equally and strictly weaker
than those inVs. Let m ∈ Vs be a minimally ranked vertex inVs. Consider a manip-
ulation bym adding edges to all vertices inV \ Vs. By the above proof, all vertices
in V \ Vs will be equally ranked weaker thanm. As m does not worsen its position
by performing this manipulation and the internal ranking inVs does not change we
conclude that in any graph all vertices inV \ Vs must be ranked strictly weaker than
those inVs.

We can show the vertices inV \ Vs are ranked equally by induction on the number
of edges between them. If there are no such edges, then by strong quasi transitivity, the
requirement is satisfied. Otherwise, consider an edge(v1, v2) such thatv1, v2 ∈ V \Vs.
A manipulation byv1 adding this edge must retain its position and thus all agentsin
V \ Vs must be ranked equally.

We have shown that all vertices must be ranked according to strong count and thus
the system must be a strong count system.

5 Relaxing the Axioms

We shall now prove the conditions in Lemma 4.4 (and thus also in Theorem 4.2(2)) are
all necessary by showing PRSs that satisfy each three of the four conditions, but do not
satisfy weak maximum transitivity. Some of these systems are quite artificial, while
others are interesting and useful.
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Proposition 5.1. There exists a PRS that satisfies strong quasi transitivity,RIIA and
strong incentive compatibility, but not self confidence norweak maximum transitivity.

Proof. Let F−
D be the PRS that ranks strictly the opposite of the depth system FD.

That is,v1 �
F

−

D

G,s v2 ⇔ v2 �FD

G,s v1. The proofF−
D satisfies strong quasi transitivity,

RIIA and strong incentive compatibility follows the proof of Proposition 3.12, with the
following rule for ranking comparison profiles:

(a1, a2, . . . , an) 4 (b1, b2, . . . , bm) ⇔ a1 ≤ b1.

F−
D does not satisfy self confidence, because, by definitions is weaker than all other

agents, and does not satisfy weak maximum transitivity because in graph from Figure
1a,F−

D ranksx andy equally even though the strongest predecessor ofy, which isx,
is stronger than the strongest predecessor ofx, which iss.

This PRS is highly unintuitive, as the most trusted agents are the ones furthest from
the source, which is by itself the least trusted.

Relaxing strong quasi transitivity leads to a PRS that is almost trivial:

Proposition 5.2. There exists a PRS that satisfies self confidence, ranked IIA and
strong incentive compatibility, but not strong quasi transitivity nor weak maximum
transitivity.

Proof. Let F be thePRS which ranks for everyG = (V, E), for every sources ∈ V ,
and for everyv1, v2 ∈ V \ {s}: v1 ≃ v2 ≺ s. That is,F rankss on the top, and all of
the other agents equally.F trivially satisfies self confidence, RIIA and strong incentive
compatibility, ass is indeed stronger than all other agents and every comparison pro-
file is ranked equally.F does not satisfy strong quasi transitivity or weak maximum
transitivity, because in a chain of vertices starting froms all excepts will be ranked
equally,

5.1 Relaxing Ranked IIA

When Ranked IIA is relaxed, we find a new ranking system that ranks according to the
distance froms, breaking ties according to the number of shortest paths from s.

Notation5.3. LetG = (V, E) be some directed graph andv1, v2 ∈ V be some vertices,
we will use nG(v1, v2) to denote the number of directed paths of minimum length
betweenv1 andv2 in G. We will sloppily use the notationsd(v) andn(v) to denote
dG(s, v)andnG(s, v) respectively.

Definition 5.4. The Path Count PRSFP is defined as follows: Given a graphG =
(V, E) and a sources, for all v1, v2 ∈ V \ {s}:

v1 �FP

G,s v2 ⇔ dG(s, v1) > dG(s, v2) ∨

(dG(s, v1) = dG(s, v2) ∧

∧nG(s, v1) ≤ nG(s, v2))
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Proposition 5.5. The path count PRSFP satisfies self confidence, strong quasi tran-
sitivity and strong incentive compatibility underMboth , but not ranked IIA nor weak
maximum transitivity.

Proof. Self confidence is trivial asd(s) = 0 < d(v) for all v 6= s.
To proveFP satisfies quasi transitivity consider a graphG = (V, E), a source

s ∈ V and two verticesv1, v2 ∈ V \ {s}. Assume for contradiction thatv2 ≺ v1 and
there exists a 1-1 functionf : P (v1) 7→ P (v2) such thatv � f(v) for all v ∈ P (v1).
By the definition ofFP : d(v1) ≤ d(v2), but

d(v1) = min
v∈P (v1)

d(v) + 1 ≥ min
v∈f(P (v1))

d(v) + 1 ≥ min
v∈P (v2)

d(v) + 1 = d(v2),

and thusd(v1) = d(v2). Now,

n(v1) =
∑

v∈P (v1)∧d(v)+1=d(v1)

n(v) ≤

≤
∑

v∈f(P (v1))∧d(f−1(v))+1=d(v1)

n(v) ≤

≤
∑

v∈P (v2)∧d(v)+1=d(v2)

n(v) = n(v2).

Therefore,v1 � v2 in contradiction to our assumption.
For strong quasi transitivity, assume now thatv2 � v1, P (v1) 6= ∅, and there exists

a 1-1 functionf : P (v1) 7→ P (v2) such thatv ≺ f(v) for all v ∈ P (v1). As above we
find thatd(v1) = d(v2). Now,

n(v1) =
∑

v∈P (v1)∧d(v)+1=d(v1)

n(v) <

<
∑

v∈f(P (v1))∧d(f−1(v))+1=d(v1)

n(v) ≤ n(v2),

which yieldsv1 ≺ v2 in contradiction to our assumption.
To showFP satisfies strong incentive compatibility underMboth, note that a ma-

nipulation byv cannot changed(v) or d(v′) ∀v′ : d(v′) < d(v). Moreover,v and
its sybils cannot gain any new edges from vertices closer tov or change their inter-
nal edges. For this reason,n(v) cannot increase andn(v′) cannot decrease for allv′

s.t. d(v′) ≤ d(v). Thus,FP does indeed satisfy strong incentive compatibility under
Mboth.

To showFP does not satisfy ranked IIA nor weak maximum transitivity, consider
the graph in Figure 5.FP ranks this graph as follows:a ≺ b ≺ y ≺ z ≺ x ≺ s.
Consider the profile〈(2); (1, 1)〉. If we comparex andy we get(1, 1) ≺ (2), but if we
comparea andb we get(2) ≺ (1, 1), in violation of ranked IIA. Furthermore, the latter
comparison is in violation of weak maximum transitivity, asrequired.
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5.2 Relaxing incentive compatibility

When we relax incentive compatibility we find an interestingfamily of PRSs that rank
the agents according to their in-degree, breaking ties by comparing the ranks of the
strongest predecessors. These recursive in-degree systems work by assigning a rational
number trust value for every vertex, that is based on the following idea: rank first based
on the in-degree. If there is a tie, rank based on the strongest predecessor’s trust, and
so on. Loops are ranked as periodical rational numbers in base (n + 2) with a period
the length of the loop, only if continuing on the loop is the maximally ranked option.

The recursive in-degree systems differ in the way differentin-degrees are com-
pared. Any monotone increasing mapping of the in-degrees could be used for the
initial ranking. To show these systems are well-defined and that the trust values can be
calculated we define these systems algorithmically as follows:

Definition 5.6. Let r : N 7→ N be a monotone nondecreasing function such that
r(i) ≤ i for all i ∈ N. Therecursive in-degree PRS with rank functionr is defined as
follows: Given a graphG = (V, E) and sources,

v1 �RIDr

G,s v2 ⇔ valuer,s(v1) ≤ valuer,s(v2),

where value is defined as:

valuer,s(v) = max
a∈Paths(v)

vpr,s(a) (2)

where the maximum is over the set of almost-simple paths tov not passing throughs
(but which may start ats):

Paths(v) = { (v = a1, a2, . . . , am)|

(am, . . . , a1) is a path inG ∧ (am−1, . . . , a1) is simple∧

∀i ∈ {1 . . .m − 1} : ai 6= s}.
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Figure 6: Values assigned by the recursive in-degree algorithm

and valuation function vp: V ∗ 7→ Q is defined as:

vpr,s(a1, a2, . . . , am) =
1

n + 2











{
n + 1 a1 = s
r(|P (a1)|) Otherwise

+






0 m = 1
vpr,s(a2, . . . , am, a2) a1 = am ∧ m > 1
vpr,s(a2, . . . , am) Otherwise.











(3)

Note that vpr,s(a1, a2, . . . , am) is infinitely recursive in the case whena1 = am ∧
m > 1. For computation sake we can redefine this case finitely as:

vpr,s(a1, . . . , am, a1) =
∞∑

i=0

1

(n + 2)mi

m∑

j=1

r(|P (aj)|)

(n + 2)j
=

=
(n + 2)m

(n + 2)m − 1
vpr,s(a1, . . . , am).

Further note that when ther function is constant (r ≡ 1), then the recursive in-
degree system becomes the distance system onVs, where the vertices inV \ Vs are
ranked weaker, and the ordering among them is set according to the length of the
longest path (simple or not) leading to the vertex.

An example of the values assigned for a particular graph whenr is the identity
function is given in Figure 6. Asn = 8, the trust values are decimal. Note that the loop
(b, d) generates a periodical decimal valuer,s(b) = vpr,s(b, d) = 0.32 by the infinite
recursion in (3).

These systems satisfy the axioms as required:

Proposition 5.7. Let r : N 7→ N be a monotone nondecreasing function such that
r(i) ≤ i for all i ∈ N and definer(0) = 0. The recursive in-degree ranking system with
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rank functionr satisfies self-confidence, strong quasi-transitivity and RIIA. If r is not
constant4 then the recursive in-degree system further does not satisfy weak maximum
transitivity nor strong incentive compatibility under eitherMout or Msybil.

Proof. We will prove that in the entire graph (not justVs) every comparison profile
〈a,b〉 wherea = (a1, . . . , ak), b = (b1, . . . , bl) is ranked as follows:

f〈a,b〉 = 1 ⇔ (k = 0) ∨ (r(k) < r(l)) ∨ [(r(k) = r(l)) ∧ (ak ≤ bl)] .

Note that this ranking of comparison profiles also implies strong quasi transitivity. To
show comparison profiles are ranked as such, we will prove that

valuer,s(v) =







0 v 6= s ∧ P (v) = ∅
n+1
n+2 v = s

1
n+2

[
r(|P (v)|) + maxp∈P (v) valuer,s(p)

]
Otherwise

(4)

and note that0 ≤ valuer,s(v) ≤ n+1
n+2 , and thus vertices other thans are ordered first by

r(|P (v)|) and then bymaxp∈P (v) valuer,s(p), as required. Moreover, self confidence
is satisfied because for allv 6= s: valuer,s(v) < n+1

n+2 .
The two edge cases are trivial, we shall now concentrate on the primary case in

(4). Letv ∈ V \ {s} be some vertex whereP (v) 6= ∅. Denote Path′s(p, v) as the set
of almost-simple directed paths top stopping ats which do not pass throughv unless
immediately looping back top:

Path′s(p, v) = { (p = a1, a2, . . . , am)|

(am, . . . , a1) is a path inG ∧ (am−1, . . . , a1) is simple∧

∀i ∈ {1 . . .m − 1} : ai 6= s ∧

∀i ∈ {1, . . . , m − 2, m} : ai 6= v ∧ am−1 = v ⇔ am = p}.

Now we see that:

valuer,s(v) = max
a∈Paths(v)

vpr,s(a) =

=
1

n + 2





r(|P (v)|) + max(v=a1,...,am)∈Paths(v){
vpr,s(a2, . . . , am, a2) a1 = am ∧ m > 1
vpr,s(a2, . . . , am) Otherwise.



 = (5)

=
1

n + 2

[

r(|P (v)|) + max
p∈P (v)

max
a∈Path′

s
(p,v)

vpr,s(a)

]

= (6)

=
1

n + 2

[

r(|P (v)|) + max
p∈P (v)

max
a∈Paths(p)

vpr,s(a)

]

=

=
1

n + 2

[

r(|P (v)|) + max
p∈P (v)

valuer,s(p)

]

.

4If r is constant, the system still does not satisfy strong incentive compatibility under eitherMout or
Msybil, but only if we allow vertices that have no path froms.
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a = (p, x, v, p′, x)

b = (p, x, v, p)

c = (p′, x, v, p′)

Figure 7: Example of paths from the proof of Proposition 5.7.

x

x

x

s t

Figure 8: Graph from proof that Recursive In-degree does notsatisfy axioms

To show that the equality (6) holds, assume for contradiction that there existsp ∈ P (v)
anda ∈ Paths(p) such that

vpr,s(a) > max
p′∈P (v)

max
a
′∈Path′

s
(p′,v)

vpr,s(a
′). (7)

From a ∈ Paths(p) \ Path′s(p, v), we know thatai = v for somei ∈ {1, . . . , m}.
Assume wlog thati is minimal. Letb denote the path(p = a1, a2, . . . , ai, p) and let
c denote the path(p′ = ai+1, . . . , am, aj+1, . . . , ai+1) if am = aj for somej < i or
(p′ = ai+1, . . . , am) otherwise. An example of such paths is given in Figure 7. Note
thatb ∈ Path′s(p, v) andc ∈ Path′s(p

′, v), wherep, p′ ∈ P (v). Now, note that

vpr,s(a) =
(n + 2)j − 1

(n + 2)j
vpr,s(b) +

1

(n + 2)j
vpr,s(c),

and thus vpr,s(a) must be between vpr,s(b) and vpr,s(c), in contradiction to assump-
tion (7).

We shall now prove that recursive in-degree is not incentivecompatible under
Mout or Msybil and does not satisfy weak maximum transitivity. Leti ∈ N be the
minimum number such thatr(i) > 1. Consider the graphG in Figure 8, where there
arei vertices labeledx. This graph is rankedx ≺ t ≺ s, wherex refers to all ver-
tices labeledx. Weak maximum transitivity is not satisfied becausex ≺ t even though
s ≻ x. Let x′ be one of the vertices labeledx. It can perform a manipulation inMout

by removing its edge tot, and thus changing the ranking tox ≃ x′ ≃ t ≺ s. It can
also perform a manipulation inMsybil by creatingi additional sybils of themselves
and create a complete clique thus changing the ranking tox ≺ v ≃ x′ ≃ t ≺ s, where
v are the new vertices involved from the manipulation.
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For an extensive study of the recursive in-degree system in the context of general
ranking systems see [6].

6 Concluding Remarks

We have presented a method for the evaluation of personalized ranking systems by
using axioms adapted from the ranking systems literature, and evaluated existing and
new personalized ranking systems according to these axioms. As most existing PRSs
do not satisfy these axioms, we have presented several new and practical personalized
ranking systems that satisfy subsets, or indeed all, of these axioms. We argue that these
new ranking systems have a more solid theoretical basis, andthus may very well be
successful in practice.

Furthermore, we have proven a representation theorem for the Strong Count rank-
ing systems, which are the only systems that satisfy all axioms.

This study is far from exhaustive. Further research is due informulating new ax-
ioms, and proving representation theorems for the various PRSs suggested in this paper.
An additional avenue for research is modifying the setting in order to accommodate for
more elaborate input such as trust/distrust relations or numerical trust ratings, as seen
in some existing personalized ranking systems used in practice.
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