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Abstract

Personalized ranking systems and trust systems are artiassawl for col-
laboration in a multi-agent environment. In these systerast relations between
many agents are aggregated to produce a personalizeddtingtof the agents. In
this paper we introduce the first extensive axiomatic studiie setting, and ex-
plore awide array of well-known and new personalized ragkiystems. We adapt
several axioms (basic criteria) from the literature on glalanking systems to the
context of personalized ranking systems, and fully clggbié set of systems that
satisfy all of these axioms. We further show that all theseraz are necessary for
this result.

1 Introduction

Personalized ranking systems and trust systems are artiaker for collaboration in
a multi-agent environment. In these systems, agents repdiieir peers’ performance,
and these reports are aggregated to form a ranking of thesag€his ranking may
be either global, where all agents see the same ranking,reomedized, where each
agent is provided with her own ranking of the agents. Exampfeglobal ranking
systems include eBay’s reputation system[20] and GoogleeRank[18]. Examples
of personalized ranking systems include the personalieesion of PageRank[14] and
the MoleTrust ranking system([8]. Furthermore, trust systevhich provide each agent
with a set of agents he or she can trust, can be viewed as pdiczhranking systems
which supply a two-level ranking over the agents. Many o§thgystems can be easily
adapted to provide a full ranking of the agents. Examplesudt tsystems include
OpenPGP(Pretty Good Privacy)’s trust system[10], the irapkystem employed by
Advogato[16], and the epinions.com web of trust.

*This paper is an extended version of [3].
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A central challenge in the study of ranking systems, is to/isl®@means and rig-
orous tools for the evaluation of these systems. This angélequally applies to both
global and personalized ranking systems. A central apprtzathe evaluation of such
systems is the experimental approach. In the general rgisiistems setting, this ap-
proach was successfully applied to Hubs&Authorities[ 1] & various other ranking
systems[9]. In the trust systems setting, [17] suggestaidasiexperimental approach.

A more analytical approach to the evaluation of rankingesyst is the axiomatic
approach. In this approach, one considers basic propestiesioms, one might re-
quire a ranking system to satisfy. Then, existing and nevesys are classified ac-
cording to the set of axioms they satisfy. Examples of sugtlysin the global ranking
systems literature include [11, 9, 22, 5, 19]. Typical resaf such study araxioma-
tizationsof particular ranking systems, or a proof that no rankingesyssatisfying a
set of axioms exists. For example, in [2] we provide a set afrag that are satisfied
by the PageRank system and show that any global rankingnsytktet satisfies these
axioms must coincide with PageRank.

While the axiomatic approach has been extensively appligte global ranking
systems setting, no general attempt has been made to amblyasuapproach to the
context of personalized ranking systems. In this paperntveduce an extensive ax-
iomatic study of the personalized ranking system settiggdapting axioms that have
been previously applied to global ranking systems[1, 4].cd@pare several existing
personalized ranking systems in the light of these axiomd,povide novel ranking
systems that satisfy various sets of axioms. Moreover, weeoa full characterization
of the personalized ranking systems satisfying all sugglestioms.

We consider four basic axioms. The first axiom, self configemequires that an
agent would be ranked at the top of his own personalized rdile second axiom,
transitivity, captures the idea that an agent preferred byenhighly trusted agents,
should be ranked higher than an agent preferred by lessdragents. The third axiom,
Ranked Independence of Irrelevant Alternatives, requirasunder the perspective of
any agent, the relative ranking of two other agents wouldceddnly on the pairwise
comparisons between the rank of the agents that prefer thémnlast axiom, strong
incentive compatibility, captures the idea that an agenhoagain trust by any agent’s
perspective by manipulating its reported trust preference

We fully characterize the set of ranking systems satisfyatidour axioms, and
show ranking systems satisfying every three of the fourrasi¢but not the fourth).

This paper is organized as follows. Section 2 introduceséiitng of personalized
ranking systems and discusses some known system. In s8atiepresent our axioms,
and classify the ranking systems shown according to theieenax In section 4 we
provide a full characterization of the ranking systemsségtig all of our axioms, and
in section 5 we study ranking systems satisfying every tbfélee four axioms. Section
6 presents some concluding remarks and suggestions foeftgsearch.



2 Personalized Ranking Systems
2.1 The Setting

Before describing our results regarding personalizedingngystems, we must first
formally define what we mean by the words “personalized nagkystem” in terms of
graphs and linear orderings:

Definition 2.1. Let A be some set. ArelatioR C A x A is called arorderingon A
if it is reflexive, transitive, and complete. L&{ A) denote the set of orderings oh

Notation2.2 Let < be an ordering, thetx is the equality predicate of, and< is the
strict order induced by. Formally,a ~ b if and only ifa < b andb < a; anda < b if
and only ifa < b but notb < a.

Given the above we can define what a personalized rankingrayist

Definition 2.3. Let Gy be the set of all directed graplis= (V, E) with no parallel
edges, but possibly with self-loopsA personalized ranking system(PRS)s a func-
tional that for every finite vertex sét and for everysources € V' maps every graph
G € Gy to an ordering<f; ;€ L(V).

Note that our definition of a personalized ranking systensiz®rs only the ordinal
ranking of the vertices and does not assign cardinal vatugsitices. Also note that
our definition does not assume the existence of a path frimevery vertex. However,
in some settings this may be considered a useful assumptfmrefore, we shall use
these kind of graphs in all examples and counter-examplagsyrove our results for
the more general case defined above.

2.2 Some personalized ranking systems

We shall now give examples of some known PRSs. A basic rargyiatem that is at
the basis of many trust systems ranks the agents based orirtimeaindistance of the
agents from the source.

Notation2.4. LetG = (V, E) be some directed graph ang vo € V be some vertices,
we will usedq(v1, v2) to denote the length of the shortest directed patfi inetween
v, andwy. If no such path existsis (v1, v2) £ co.

Definition 2.5. Thedistance PR3, is defined as follows: Given a gragh= (V, E)
and a source, v; <52, v2 < da(s,v1) > dg(s,vs)

Another family of PRSs can be derived from the well-known éRank ranking
system by modifying the so-called teleportation vectohmdefinition of PageRank[14].
These systems can be defined as follows:

Definition 2.6. LetG = (V, E) be a directed graph, and assume= {vy,va, ..., v, }.
ThePageRank Matrix4d (of dimension: x n) is defined as:

_J YISa(uj)  (vj,vi) € E
[Acl; ; = { 0 Otherwise.

1Unless otherwise noted, all our results still apply wheflselps are not allowed.



The Personalized PageRank procedure ranks pages accirthegtationary prob-
ability distribution obtained in the limit of a random walkittva random teleportation
to the source with probabilityd; this is formally defined as follows:

Definition 2.7. Let G = (V, E) be some graph, and assuiie= {s,v2,...,vp}.

Let r be the unique solution of the systedih— d) - Ag -r +d - (1,0,...,0)T = r.

The Personalized PageRank with damping factoof a vertexv; € V is defined as
PPRdGVS(vZ-) = r;. ThePersonalized PageRank Ranking System with damping factor

d is a PRS that for the vertex skt and sources € V mapsG to <", where
=g is defined as: for all;,v; € Vi v; <G5 v if and only if PPRE, (v;) <
PPRdG7S(vj).

We now suggest a variant of the Personalized PageRank systeah, as we will
later show, has more positive properties than PersonafageéRank.

Definition 2.8. Let G = (V, E)) be some graph and assuivie= {s,vs,...,v,}. Let
Bg be the link matrix forG. Thatis,[Bg], ; = 1 < (j,7) € E. Leta = 1/n* and
let a be the unique solution of the system B¢ - a + (1,a",...,a")T = a. The
a-Rankof a vertexv; € V' is defined as¢ s(v;) = a;. Thea-Rank PRSs a PRS that
for the vertex set’ and sources € V mapsG to <%, where=<2" is defined as: for
allv;,v; € Vi jgﬁ vjifandonly ifrg s(v;) < ra.s(v)).

The a-Rank system ranks the agents based on their distancesfrbneaking ties
by the summing of the trust values of the predecessors. Bgtiega = 1/n?, it is
ensured that a slight difference in rank of nodes closer will be more significant
than a major difference in rank of nodes further frem

Additional personalized ranking systems are presente@oti® 5 as part of our
axiomatic study.

3 Some Axioms

A basic requirement of a PRS is that the source — the agent witdese perspective
we define the ranking system — must be ranked strictly at th@ftohe trust ranking,
as each agent implicitly trusts herself. We refer to thigerty as self confidence.

Definition 3.1. Let ' be a PRS. We say that satisfiesself confidenc# for all graphs
G = (V,E), for all sources; € V and for all vertices) € V' \ {s}: v <§ , .

A basic property of (global) ranking systems calétng transitivityl, 22], which
requires that if an agents voters are ranked higher than those of agetiten agent
should be ranked higher than agéntWe adapt this notion to the personalized setting,
and provide a new weaker notion of transitivity as follows:

Notation3.2 We will use P (v) andS¢(v) to denote the predecessor set and successor
set ofv in G respectively. The subscrigf may be omitted when understood from
context.



Definition 3.3. Let I’ be a PRS. We say thdt satisfiesquasi transitivityif for all
graphsG = (V, E), for all sourcess € V and for all verticesy;, vy € V \ {s}:
Assume there is a 1-1 mappirfg: P(v1) — P(ve) s.t. forallv € P(vy):v < f(v).
Then,v; =< ve. F further satisfiestrong quasi transitivityf when P(v;) # () and for
allv € P(v1): v < f(v), thenvy < vy. F further satisfiestrong transitivityif when
either f is not onto or for some € P(v1): v < f(v), thenv; < vs.

The new notion of strong quasi transitivity requires tharatg with stronger match-
ing predecessors be ranked at least as strong as agentsewkempredecessors, but
requires a strict preference only whalhmatching predecessors ateictly stronger.

A standard assumption in social choice settings is that @mtagrelative rank
should only depend on (some property of) their immediatdgeessors. Such axioms
are usually called independence of irrelevant alternafii&) axioms. In the global
ranking systems setting[1], we required that the relatarking of two agents must
only depend on the pairwise comparisons of the ranks of irettecessors, and not on
their identity or cardinal value. ThenkedllA axiom differs from the one suggested
by [7] in the fact that ranked 1A does not consider the idigrif the voters, but rather
their relative rank. We now adapt this axiom of ranked IIAhe setting of PRSs, by
requiring this independence for all vertices except thesmu

To formally define this condition, one must consider all ploiies of comparing
two nodes in a graph based only on ordinal comparisons of pnedecessors. These
possibilities are called comparison profiles:

Definition 3.4. A comparison profilés a{a, b) wherea = (a1, ...,a,),b = (b1,...,bn),
A1y lpybr, o by ENJap <ag < --- gan,andbl <by <o < by LetP be
the set of all such profiles.

A PRSF, agraphG = (V, E), asources € V, and a pair of vertices;, v, € V
are said tosatisfysuch a comparison profilea, b) if there exist 1-1 mappingg; :
P(vy) — {1...n}andfs : P(vy) — {1...m} such that givery : ({1} x P(v1)) U
({2} x P(v2)) — N defined as:

fLv) = ap@
f(2, u) = bfz(u)’
fli,2) < f(j,y) & @ =G yforall (i,2), (j.y) € ({1} x P(v1)) U ({2} x P(v2)).
We now require that for every such profile the personalizedirey system ranks
the nodes consistently:

Notation3.5. We will use V¢ to denote the set of vertices that have a directed path
from s in a graphG. We will sloppily useV; whenG is understood from context.

Definition 3.6. Let F' be a PRS. We say thdt satisfiesranked independence of ir-
relevant alternatives (RIIAi there exists a mapping : P — {0, 1} such that for
every graphG = (V. E), for every sources € V and for every pair of vertices
vi,v2 € VE\ {s} and for every comparison profile € P thatv, andwv, sat-
isfy, vi <&, va & f(p) = 1. We will sloppily use the notation < b to denote
fla,b) =1.

This IIA axiom intuitively means that the relative rankinfjagents must be con-
sistent across all comparisons with the same rank relations



3.1 Incentive Compatibility

The issue of incentives has been extensively studied batlagsical social choice[13,
21, 12], and with regard to global ranking systems[4, 5]. Athwlobal ranking sys-
tems, agents ranked by personalized ranking systems maytwisanipulate their
reported preferences in order to improve their trustwogehs in the eyes of a specific
agent. Therefore, the incentives of these agents shouldaimyroases be taken into
consideration.

We would like our ranking systems to stand against variopesyf manipulations.
Itis important to formally define what a manipuation is, anel types of manipulations
we would like to defend against.

Definition 3.7. A manipulationis a functionM that maps every grapi = (V, F) €
G and every vertex € V in that graph to a set of graplig C G such thatZ € M
andv € G' forall G’ € M.

That is, a manipulation defines for every vertex in any gragtat different graphs
can that agent cause to be presented to the ranking systerasagtaf a manipulation.

Our standard of incentive compatibility is strong inceatwompatibility, which
requires that agents will not improve their rank in the teohghe number of agents
ranked above them and the number or agents ranked the saheas t

Definition 3.8. Let I’ be a PRSF satisfiesstrong incentive compatibility under ma-
nipulation M if for all true preference graphs = (V, E), for all sourcess € V,
for all verticesv € V, and for all manipulations’’ € M(G,v): [{z € V'|v <&,
z} > {z € Vo <E 2} and if {z € V'|v <E, 2}| = {z € V|v <& 2} then
Hx e Vo ~E 2} > {z € Vv ~E 2}

In [4] and [5], we considered manipulation by modificatioraofagent’s outgoing
links. Such outgoing link manipulation can be defined as:

Mout(V, E;v) = {(V,E"Vu € V\ {v} :Vu' € V: (u,u') € E & (u,u') € E'}.

The outgoing link manipulation,,,; is actually a special kind of manipulation in the
sense that the agent can perform the manipulation in bogletitins.

Definition 3.9. A manipulationM is calledreversibleif for all G = (V, E) € G, for
allv e V, and for allG’ € M(G,v): G € M(G',v).

Reversible manipulations are important due to the follgngimple fact:

Fact 3.10. Let M be a reversible manipulation and I&tbe a PRS F' satisfies strong
incentive compatibility undeM if and only if for all graphsG = (V, E), for all
sourcess € V, for all verticesv € V, and for all manipulationg?’ € M(G,v): |{z €
V' <E 2} = {z € Vv <E 2} and|{z € V'|v ~&, 2} = {z € Vv ~& 2}|.

2In [4], we have defined the notion of a utility functian, : N — R that for every graph size maps
the number of agents ranked below a specific agent in a saméing to a utility value, and we assumed
such utility functions are nondecreasing. If we furtheruass thatu., (i) = wum (i + n — m) for all
0 < i < m < n, thatis, an agent’s utility in a strict ranking depends amtythe number of agents ranked
above it, we can show that our current defintion of stong itfteercompatibility is equivalent to the one in

[41.



Therefore, in a PRS that is incentive compatible under arséde manipulation an
agent cannot change its rank at all by performing a manijpumat

Another type of manipulation, considered by [11] is coneerwith the generation
of fraudulent identities in order to manipulate one’s rarnkeir setting considered
weighted edges, as opposed to our setting where the edgbsarg. However, we
can adapt their sybil form of manipulation by simply remaythese weghts.

A sybil manipulation, or sybling strategy is a manipulatinnvhich an agent con-
trolling one vertexv in the graph can create any number of fraudulent identities (
sybils) and freely manipulate the links among these sylifsle maintaining the same
set of incoming and outgoing links (possibly duplicated)oaig the sybil group as a
whole.

Thus, we can define the sybil manipulation as:

Msybil(‘/v E,U) = {(VlaE/)|
V V' AVu, v e V\{v}: (u,v) € E< (u,u') € E'A
Po)\{v}=(V\{ehn |J Pon

uweV/\VU{v}
Se@)\{v} =(V\{vhn |J Se(}.
ueV/\VU{v}

We can also consider the combined manipulation of the twéglnis not the same
as the simple union of these manipulations:

Mboth(VaEvv) = {(V/aE/)l
VCV' AVu,u' € V\ {v}: (u,v') € B (u,u') € E'A
Po)\{o} = \{ohn |J Pow)
ueV/\VU{v}
It turns out that strong incentive compatibility under botlitgoing edge and sybling

manipulations is equivalent to strong incentive compktybinder the combined ma-
nipulation:

Fact3.11. Let F' be a PRSF satisfies strong incentive compatibility undet,,,, and
underM . if and only if it satisfies strong incentive compatibilityder M ¢, .

Proof. The “if” direction is trivial. For the “only if” direction, &t G = (V, E) be

a graph andv € V. Consider a manipulatiofV’; E') € My (V, E,v). Let
U={z|F3ue V\VU{v}: (u,z) € E'}. LetE” = E\{(v,2)|x € V}U{(v,z)|x €
U}. Now (V,E") € Mou(V,E,v) and (V' E’) € Mgypu(V, E"”,v), and due to
strong incentive compatibility under these manipulatignalso satisfies strong incen-
tive compatibility under manipulatiofi’’, E’) and indeed under any manipulation in
Mboth. O

3.2 Satisfication

We will now demonstrate the aforementioned axioms by shgwihich axioms are
satisfied by the PRSs mentioned in Section 2.2.



Proposition 3.12. The distance PR%p satisfies self confidence, ranked IIA, tran-
sitivity, and strong incentive compatibility undér(,,.,, but does not satisfy strong
transitivity.

Proof. Self-confidence is satisfied by definition Bf,. Fp satisfies RIIA, because it
ranks every comparison profile in the connected sectionistemsly according to the
following rule:

(al,ag,...,an) < (bl,bg,...,bm)éangbm.

That is, any two vertices are compared according to theingest predecessof.p
satisfies strong quasi transitivity, because the rankingeprofiles above is consistent
with strong quasi transitivity. The unconnected verticesadl equal to each other and
weaker than the connected vertices which is also true far pmedecessors, and thus
strong quasi transitivity is satisfied.

To prove thatF'p satisfies strong incentive compatibility, note the fact traagent
2 cannot modify the shortest path fronto 2 by changing its outgoing links or adding
sybils since any such shortest path necessarily does natlme or its sybils (except
as target). Moreover; or its sybils cannot change the shortest path to any ageith
d(s,y) < d(s,z), because: and its sybils are necessarily not on the shortest path from
s to y. Therefore, the amount of agents ranked above x and itsssghd the amount
of agents ranked equal foor its sybils cannot decrease duerte manipulations.

To provel’p does not satisfy strong transitivity, consider the graphigure 1a. In
this graphy: andy are ranked the same, even thougx) C P(y), in contradiction to
strong transitivity. O

Proposition 3.13. The Personalized PageRank ranking systems satisfy sdifleane

if and only if the damping factor is set to more th%ﬁ'l Moreover, Personalized PageR-
ank does not satisfy weak transitivity, ranked 1A or stramgentive compatibility un-
der My, Or M1y for any damping factor.

Proof. To prove the that PPR does not satisfy self-confidence fgr%, consider the
graph in Figure 1b. For any damping factérthe PPR will bePPR(s) = d and
PPR(z) = 1—d. If d < } thenPPR(s) < PPR(z) and thuss <PFfa z in
contradiction to the self confidence axiom.

PPR satisfies self-confidence for- § because the?®PR(s) > d > 1, while for
allve V\{s}, PPR(v) <1-d< 3.

To prove that PPR does not satisfy strong quasi transit@ityranked 1A, consider
the graph in Figure 1c. The PPR of this graph for any dampiotpfal is as follows:

PPR(s) = d; PPR(a) = 94-9: PPR(b) = 9129, pPR(c) = 54
Therefore, the ranking of this graph i:< ¢ < a < s. Quasi transitivity is violated
becausé < ¢ even thoughP(b) = P(c) = a. This also violates ranked IIA because
the ranking profile((1), (1)) must be ranked as equal due to trivial comparisons such

asa anda.

3If we do not allow self-loops this bound becom@gs — 1)/2 ~ 0.618.



@

:

(b) ©

(d) (e)

Figure 1: Graphs proving PRS do not satisfy axioms.



Strong incentive compatibility unde¥1,,; is not satisfied, because in the graph in
Figure 1c, if any of thé agents’ would have voted for themselves, they would have
beenranked < b’ < ¢ < a < s, which is a strict increase i rank.

To show that strong incentive compatibility undet,,; is not satisfied, consider
the graph in Figure 1d. Note that~ b < s in this graph. Consider the manipulation
by a where a sybila’ is added along with the edgéés,a’), (a’,a)}. In this case,
the PageRank value éfwould be1 (1 — d)d while the PageRank value afwill be

%(1 — d)d. Thereforep < a < s in the manipulated graph, and thus strong
incentive compatibility is not satisfied. O

It is interesting to note that although Personalized Patedaes not satisfy strong
incentive compatibility undeM ,,,;;, @ weighted version of Personalized PageRank
in fact sybilproof with regard to the weighted definition gbdproofness presented in
[11].

Strong transitivity is also satisfied by a natural PRS —dtHeank system:

Proposition 3.14. The a-Rank system satisfies self confidence and strong transitiv-
ity, but does not satisfy ranked IlA or strong incentive catiiplity under M,,; or
Msybil-

Proof. To showa-Rank satisfies self confidence, note that by definitign (s) > 1.
Assume for contradiction thatax,-s rq s(v) > 1. Then,

rgi(s) < l4+a Z ra,s(v)

veV

< 14a [(n — 1)maxrg,s(v) +7¢.i(s)

1
rails) < l—a 1 —a(n_ 2 ?ﬁ?rc’s(w =
< 2+ max ra.s(v)
maxrgs(v) < "+« rg.s(v
naxre, (v) > res(v)
veV
< a"+o [n-mgxrgjs(v) +2]
n 2 1
1= o maxreae) < G
n>—n < 2—|—1/n2n*2
n?—n—1/n?""? < 2

2<nn-1) < 2

To provea-Rank satisfies strong transitivity, consider two vertiees € V' \ {s}
and a functionf : P(a) — P(b) such that < f(v) forall v € P(a). Then,

rgs(a)/a—a™ = Z rg.s(v) < Z rg.s(v) <

vEP(a) vef(P(a))

10



< ) ras(v) =rasb)/a-a” (1)

which impliesa < b. If for somev € P(a): v < f(v), orif f is not onto, then the
first or the second inequality respectively in (1) aboverigstwhich impliesa < b, as
required.

To provea-Rank does not satisfy strong incentive compatibility ungi¢, ..., con-
sider the graph in Figure le. In this graptRank ranksl < b. However, ifd removes
the link tob they will be ranked equally and thus reducing the number ehégystronger
thand. To provea-Rank does not satisfy strong incentive compatibility unties, .,
consider again the graph in Figure 1e. Ageiig ranked below ageritin this graph.
However, she can duplicate herself and add edge$) and(c’, ¢) to be ranked above
b thus decreasing the number of agents ranked better thaglthers

To provea-Rank does not satisfy RIIA, consider the graph in Figureltlis easy
to calculate the followingv-Rank values:

r(s) 1
r@i)=rh) = a+a'
rd)=r() = a*+a'%+alt
r(f) = 2a®+a®+a'% +3att 4+ al?
rg) = a+a®+a'®+ 2l +al?
r(a) = 20+ a'® 4+ 22! 4 2012
r(d) = 2a°+a* +a'+at + 321+ a3
r(c) o +at +a'? +alt + 202 + ol

Therefore, this graphisranked< a < b <d ~e < g < f <i ~ h < s. Note
that(a, b) and(a, ¢) both satisfy the profilé(1,1), (2)), howevera < b andc < ain
contradiction to RIIA. O

4 A Characterization Theorem

Our main result is a full characterization of the PRSs thtisfsethe axioms above. We
will see that these systems are the generalized strong sgsit@ims. Strong count rank
agents based on their strongest predecessors, brealdragtierding to theumberof
equal strongest predecessors the agents have. The fundiielow determines how
such ties are broken. Asis stronger than all other agents, the strongest predeaaisso
each agentifV; \ {s} must be closer te.

The strong count system is formally defined as follows:

Definition 4.1. Let » : N — N be a monotone nondecreasing function such that
r(i) < foralli € N. The strong count syste§(C,. is recursively defined as follows:
Firstofall,y ~y' <z < sforallz € V; \ {s} andy,y’ € V' \ V.. Forz € Vi \ {s},
denoteP’(z) = P(x) N {y|d(s,y) < d(s,z)}, and P4, (z) = {yly € P'(z),Vz €

11



P'(x) : z =25 y}. Now fora,b € V, \ {s}:

a jSCT b &
V[

(3z € Ppaz(a),y € Praz(b) : x <5Cr y)V
(V& € Ppaz(a),y € Praz(b) : x ~SCr y) A
A(r(|Pmaz (a)]) < (| Praz (b)]))]-

The strong count systems rank based on the strongest pssdesaank and then
break ties based on the number of strongest predecessocankbtted vertices are
equally ranked at the bottom. Note that for 1, the Strong Count PRS is exactly the
distance system.

Our main result claims that these strong count systems arerly systems that
satisfy all aforementioned axioms.

Theorem 4.2. Let F' be a PRS. The following three statements are equivalent:
1. Fis a strong count system for some

2. I satisfies self confidence, strong quasi transitivity, raHk& and strong incen-
tive compatibility undemm,,,;.

3. F satisfies self confidence, strong quasi transitivity, rahké& and strong incen-
tive compatibility undemM o, -

We begin our proof by showing that the strong count systemia flact satisfy all
these axioms.

Proof. (1 = 3): Letr be a monotone nondecreasing function suchithat < z. SC,
satisfies self confidence by definition.
To show thatSC, satisfies RIIA and strong quasi transitivity on elementd/gf

we will show that it ranks any profile = ((a1, ..., a,); (b1, ..., b)) as follows: Let
¢o = max{i € Nlap,—; = ap—iy1 = -+ = a,} ande, = max{i € Nlb,,_; =
bm—i+1 == bm}

fp)=1 & (an <by,)V
Vo [(an = bm) A (r(eq) < r(cp))]

This almost follows from the recursive definition 8€,., however it remains to show
thatVe,y € V : d(s,x) < d(s,y) = = <% y. This can be proven by induction
ond(s,y). If y = s this is trivial by definition. Otherwise, by the assumptioh o
induction, 32" € Prax(2),y € Prae(y) @ o' <5¢ 3 and thus by the recursive
definition,z <% 4.

Strong quasi transitivity involving elementsin\ V; and elements either ivi \ V;
orinV; \ {s} is satisfied because for alle V' \ V; andy € V \ {s} we haver <y
(by definition) and ifz < y theny € V \ {s} and thus there is somg € P(y) such
that for allz’ € P(x): 2’ < y'.

With regard to the strong incentive compatibility undét;,;,, due to the dis-
tance feature proven above, all sybilsofill be strictly weaker than the vertices with
smaller distance from. Furthermore, any other vertices that were stronger thian
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the original graph will be stronger than any.d$ sybils, due to the fact that the relative
rank of two vertices is determined only based on incomingsliftom vertices closer
to s, and more incoming edges cannot decrease an agent’s rantheByame logic,
vertices which were equal toin the original graph, will either be stronger or equal to
v in the manipulated graph. O

In order to prove the hard direction of Theorem 22+ 1), we will first show that
a strong notion of transitivity is implied by the axioms:

Definition 4.3. Let F' be a PRS. We say thdt satisfiesweak maximum transitivity
if for all graphsG = (V, E), for all sourcess € V and for all vertices;,vs € Vi:
Let mq, mo be the maximally ranked vertices i(v; ), P(v2) respectively. Assume
m1 < meo. Thenu, < vs.

Lemma 4.4. Let I' be a PRS that satisfies self confidence, strong quasi traitgiti
RIIA and strong incentive compatibility. Thefi,satisfies weak maximum transitivity.

Proof. In order to show that" satisfies weak maximum transitivity, we will show
that for every comparison profile the ranking must be coestswith weak maxi-
mum transitivity. Letp = ((a1,as,...,ax), (b1,be,...,b;)) be a comparison pro-
file wherea;, # b;. Assume wlog thab; < a;, and assume for contradiction that
((a1,az2,...,a;) = (b1,be,...,b;)). Consider the grapty = (V, E)) defined as fol-
lows:

vV = {s,q,b}u{ug|i e{1,...,max(k,0)};j€{0,...,ax}}
E = {(, w7 Mie{l,.. . max(k,)};je{l,...,ar}}U

1) K2

U{(s,.u?l)ﬁ e{1,.. .,m;x(k,l)}} u
U{(ui, a)lai = j} U {(uf, b)[bi = j}.

Figure 2 contains such a graph for the profile, 4), (2, 2, 3)).

Note that by strong quasi transitivity and self confidenoeafl i, ¢', j, j': u{ = u{,,
iff ,j < j'. Therefore, we will use:’ to denote an;u{. By the construction of7, a
andb satisfyp. Thus, from our assumption, =< b.

By strong quasi transitivity; = %, and thus from our assumption also- u”.
Now consider the point of view of ageufl. She can perform a manipulation by not
voting forb. This manipulation must not change her relative rank, asiitiVi,,;. As
the relative ranks of the] agents and are unaffected by this manipulation, it cannot
affect the ranks of andb relative tou!", and thus after the edde}", b) is removed,
we still haveb » u?l. We can repeat this process forak= b, . .., 2, with the result
that in the graplt’ for the profile((a1, as, ..., ax), (b1)), b = u’? = u’*. However,
by strong quasi transitivityy ~¢ u”* ! <5 ub <5 b, which is a contradiction.

|

We can now prove the hard direction of Theorem 4.2.
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Figure 2: Example of graph from proof of Lemma 4.4.

Proof. (Theorem4.22 = 1) Given Lemma 4.4, it remains to look at profil§s, , as, . . ., ax), (b1, b2, ..., b))
whereay, = b;. DenoteM = a;, = b;. Letp be such a profile. Denote, = [{n|a,, =
M}| and similarlyz, = |{n|b, = M}|. These values denote the number of strongest
predecessorsandb have in profilep.

We will now prove by induction otk + | — x, — x; that F' ranksp the same as
it ranks((1,...,1),(1,...,1)). fk+1— 2z, — x, = 0, thena; = a, = by = by,

z, times  z, times

and thus the requirement is trivially satisfied. Otherwise,assume correctness for
k+ 11—z, —xp, — 1. Further assume wlog that # a;. Denoter = aj_,, and
Ya = |{nlan = r}|.

We shall now consider two cases:

o If by = b Orag_s, # bi—g,. If b1 # by, then further assume wlog that_,,, >
bi_,. Consider the grap&y = (V, E) defined as follows:

V o= {s,a}u{d,...,b%}u
u{u_{u_e{1,...,max(k,z)};je{o,...,M}}
E = {(,u Hie{1,...,max(k,0)};j€{1,...,M}}U

U{(s,ufw)h e {1,...,max(k,D}}U{(ul,a)|a; = j #r} U
U{(ul,0™)b; =j4,n=1,...,y, U{(d" a)ln=1,...,y.}.

Figure 3 contains such a graph for the profilg, 3, 3,4), (1, 2,4, 4)). Note that
by strong quasi transitivity and self confidence, forialt, j, j': v =< u/, iff
,j < j'. Therefore, we will use’ to denote anytz. Similarly, allb™ are equal to
each other, and by weak maximum transitivity (Lemma 4,1 < a,b < uM
(we will similarly useb to denote any™). Thereforea andb satisfyp. Now
consider the following manipulation by : Removing the outgoing edge to
This manipulation is in\,,,,; and thus should not change the relative rank'of

14



Figure 3: Example graph from the proof of Theorem 4.2 case 1.
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Note thath'’s predecessors remain the same and equal to the ohés of, b¥«,
and allb™ remain equal. We must now show that for every allowable ikelat
ranking ofu™~1, a, andb the manipulation cannot changeandb’s relative
rank. We will do this by considering all cases:

| Ordering | # Vertices equal t | # Vertices stronger thain |

uM=T~b=<a Yo + max(k, 1) (M —r) - max(k,l) + 2
WM <b<a Ya (M —r)-max(k,l) +2
uM T ~a~b | y, +max(k, ) +1 | (M —r) max(k,l)+1
uM=T <a~b Yo + 1 (M —r)-max(k,l)+1
uM T ~a<b Ya (M —r) -max(k,l)+ 1
M=t <a<b Ya (M —r)-max(k,l) +1

We see that any change in the relation betweeamdb will surely changeb’s
rank in a way that is not strategyproof.

We have shown that profilemust be ranked the same as the profile

<(a17 A2y ooy Aoy —1y A—z 415+« 5 ak)a (b17 b21 e abl)>a
which by the assumption of induction gives us the desiredltes

Otherwiseay_,, = bj_,. Denotey, = |{n|b, = r}| and assume wlog that
U» > Y. Consider the grapty = (V, E) defined as follows:

V o= {s,a}u{d’,...,b"} U
u{u;u;{1,...,max(k,1)};je{o,...,M}}
E = {(u, v YHie{1,. .. max(k,0)};je{l,...,M}}U

W{(s,u)li € {1, max(k,)}} U{(u], a)|a; = j # 1} U
U{(d™,a)ln =1,..., 9. U{(B",0™)|n £ m € {0,...,yp}}.
Figure 4 contains such a graph for the profilg, 1, 2, 2), (1, 1, 1, 2)). As before,

for all i, 4, j,j': u} < uJ, iff ,j < j" and we will useu’ to denote any:?. All
b are equal to each other because if widg< b2 thenb!’s predecessors will
be stronger tham?'s predecessors and thus by strong quasi transitbAty<
bl. Again, by weak maximum transitivity, ™! < a,b < »™ and we will
useb to denote any™. Therefore,a andb satisfyp. We can again consider
a manipulation by' removing an edge ta, again allb™ remain equal and as
before the manipulation cannot changandb’s relative rank, and when again
applying the assumption of induction we get the desireditesu

By strong quasi transitivity, profiles where all predecessoe equal are rankéd) <
(1,1) = ---. When considering the result above, we conclude any twaécesrshould
be weakly ranked according to the number of strongest pesdecs they have, and by
RIIA the tie-breaking rule must be universal.
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Figure 4: Example graph from the proof of Theorem 4.2 case 2.

It remains to show that vertices In\ V; will be ranked equally and strictly weaker
than those in/,. Letm € V, be a minimally ranked vertex if;. Consider a manip-
ulation bym adding edges to all vertices i \ V,. By the above proof, all vertices
in V'\ V; will be equally ranked weaker than. Asm does not worsen its position
by performing this manipulation and the internal rankinglindoes not change we
conclude that in any graph all verticeslifh\ V; must be ranked strictly weaker than
those inV;.

We can show the vertices I \ V; are ranked equally by induction on the number
of edges between them. If there are no such edges, then g sfuasi transitivity, the
requirementis satisfied. Otherwise, consider an édges,) such that, v, € V'\ V.

A manipulation byv; adding this edge must retain its position and thus all agents
V'\ Vs must be ranked equally.

We have shown that all vertices must be ranked accordingdagtount and thus

the system must be a strong count system. O

5 Relaxing the Axioms

We shall now prove the conditions in Lemma 4.4 (and thus alSdeorem 4.2(2)) are
all necessary by showing PRSs that satisfy each three obthiednditions, but do not
satisfy weak maximum transitivity. Some of these systemasgaiite artificial, while
others are interesting and useful.
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Proposition 5.1. There exists a PRS that satisfies strong quasi transitiRityA and
strong incentive compatibility, but not self confidenceweak maximum transitivity.

Proof. Let F';; be the PRS that ranks strictly the opposite of the depth sysig.

That is,v; jggs Vg & Vg ngs vi. The proofF; satisfies strong quasi transitivity,
RIIA and strong incentive compatibility follows the prodfleroposition 3.12, with the
following rule for ranking comparison profiles:

(al,ag,...,an) < (bl,bg,...,bm)<:>a1 Sbl

F, does not satisfy self confidence, because, by definitimweaker than all other
agents, and does not satisfy weak maximum transitivity sea graph from Figure
la, F;; ranksz andy equally even though the strongest predecessgr which isz,
is stronger than the strongest predecessat, @fhich iss. O

This PRS is highly unintuitive, as the most trusted agergsta ones furthest from
the source, which is by itself the least trusted.
Relaxing strong quasi transitivity leads to a PRS that isoalrrivial:

Proposition 5.2. There exists a PRS that satisfies self confidence, rankednidA a
strong incentive compatibility, but not strong quasi trdingty nor weak maximum
transitivity.

Proof. Let F' be theP RS which ranks for everyz = (V, E), for every source € V,
and for everyy, v € V' \ {s}: v1 =~ v < s. Thatis,F rankss on the top, and all of
the other agents equally: trivially satisfies self confidence, RIIA and strong inceati
compatibility, ass is indeed stronger than all other agents and every compapiso

file is ranked equally.F" does not satisfy strong quasi transitivity or weak maximum
transitivity, because in a chain of vertices starting fremll excepts will be ranked
equally, O

5.1 Relaxing Ranked IIA
When Ranked IIA is relaxed, we find a new ranking system th@tsaccording to the
distance frons, breaking ties according to the number of shortest pattms £:0

Notation5.3. LetG = (V, E) be some directed graph and v € V' be some vertices,
we will use ng(v1,v2) to denote the number of directed paths of minimum length
betweernw; andvs in G. We will sloppily use the notationg(v) andn(v) to denote
de(s,v)andng (s, v) respectively.

Definition 5.4. The Path Count PR% is defined as follows: Given a gragh =
(V, E) and a source, for all vy, v; € V'\ {s}:

v1 jgl,)s ve & dg(s,v1) > da(s,v2) V
(da(s,v1) = dg(s,v2) A
Ang(s,v1) < ng(s,v2))
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Proposition 5.5. The path count PR8p satisfies self confidence, strong quasi tran-
sitivity and strong incentive compatibility undr,;, , but not ranked IIA nor weak
maximum transitivity.

Proof. Self confidence is trivial ag(s) = 0 < d(v) for all v # s.

To prove Fp satisfies quasi transitivity consider a graph= (V, E), a source
s € V and two vertices, v € V' \ {s}. Assume for contradiction that < v; and
there exists a 1-1 functiofi : P(v1) — P(vy) such that < f(v) forallv € P(v1).
By the definition of Fp: d(v1) < d(v2), but

d(v = min d(v)+1> min dw)4+1> min d(wv)+1=d(vs),
(1) o Sin | dv) ve FR ) 4 S ) (v2)

and thusi(v;) = d(vs). Now,

n(vy) = Z n(v) <

veP(v1)Ad(v)+1=d(v1)

> n(v) <

vEf(P(v1))Ad(f~H(v))+1=d(v1)

Z n(v) = n(ve).

vEP(v2)Ad(v)+1=d(v2)

IN

IN

Thereforep; = v9 in contradiction to our assumption.

For strong quasi transitivity, assume now that< v1, P(v1) # (), and there exists
a 1-1 functionf : P(v1) — P(ve) such thaw < f(v) forall v € P(v1). As above we
find thatd(v1) = d(v2). Now,

n(vy) = Z n(v) <

vEP(v1)Ad(v)+1=d(v1)

< Z TL(’U) < n(UQ)a

vEf(P(v1))Ad(f~1 (v))+1=d(v1)

which yieldsv; < v in contradiction to our assumption.

To showFp satisfies strong incentive compatibility undet;,,;,, note that a ma-
nipulation bywv cannot changé(v) or d(v') Vo' : d(v') < d(v). Moreover,v and
its sybils cannot gain any new edges from vertices closer @o change their inter-
nal edges. For this reasom(v) cannot increase and(v’) cannot decrease for all
s.t. d(v") < d(v). Thus,Fp does indeed satisfy strong incentive compatibility under
Mooth-

To showFp does not satisfy ranked IIA nor weak maximum transitivitynsider
the graph in Figure 5Fp ranks this graph as follows: < b < y < z < & < s.
Consider the profilé(2); (1,1)). If we comparer andy we get(1,1) < (2), but if we
compare: andb we get(2) < (1,1), in violation of ranked IIA. Furthermore, the latter
comparison is in violation of weak maximum transitivity,resjuired. O

19



Figure 5: ProofF'» does not satisfy axioms.

5.2 Relaxing incentive compatibility

When we relax incentive compatibility we find an interestiagily of PRSs that rank
the agents according to their in-degree, breaking ties loypewing the ranks of the
strongest predecessors. These recursive in-degree systakby assigning a rational
number trust value for every vertex, that is based on thevatlg idea: rank first based
on the in-degree. If there is a tie, rank based on the stropgedecessor’s trust, and
so on. Loops are ranked as periodical rational numbers ia (pas- 2) with a period
the length of the loop, only if continuing on the loop is theximaally ranked option.

The recursive in-degree systems differ in the way diffeiardegrees are com-
pared. Any monotone increasing mapping of the in-degreetddoe used for the
initial ranking. To show these systems are well-defined hatlthe trust values can be
calculated we define these systems algorithmically asvistio

Definition 5.6. Let » : N — N be a monotone nondecreasing function such that
r(i) < iforalli € N. Therecursive in-degree PRS with rank functiois defined as
follows: Given a grapltz = (V, E) and source,

v1 <ETPr vy & valug. s(v1) < valug. s(v2),
where value is defined as:

value s(v) = max VP,  (a 2
(V) i VP (a) (2)

where the maximum is over the set of almost-simple pathsrtot passing througk
(but which may start at):

Path(v) ={ (w=a1,a9,...,an)]
(@my ..., a1)isapathinG A (ap—1,...,a1)is simpleA
Vie{l...m—1}:a; # s}.
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Figure 6: Values assigned by the recursive in-degree algori

and valuation function vpV* — Q is defined as:

n+1 a; =S
r(|P(ay)|) Otherwise
_ 1 +
Vp"’S(al’az"“’am)_n—w 0 m=1
Vpr,s(a21"'aam7a2) alzam/\m>1
Vpr,s(aQa ceey ) Otherwise.
3)
Note that vp (a1, as, . .., a,,) is infinitely recursive in the case when = a,y, A
m > 1. For computation sake we can redefine this case finitely as:
S 1 Kr(Pay))
\ A1y ey Qm, @ = i o
pr,s( 1 1) ; (n+2)mz ; (7’L+2)-7
(n+2)"
= ——F—V e O
Gy TP )

Further note that when thefunction is constantr{ = 1), then the recursive in-
degree system becomes the distance systefri,pwhere the vertices iV \ V; are
ranked weaker, and the ordering among them is set accorditigetlength of the
longest path (simple or not) leading to the vertex.

An example of the values assigned for a particular graph whisnthe identity
function is given in Figure 6. As = 8, the trust values are decimal. Note that the loop
(b, d) generates a periodical decimal valuéh) = vp, ,(b,d) = 0.32 by the infinite
recursion in (3).

These systems satisfy the axioms as required:

Proposition 5.7. Letr : N — N be a monotone nondecreasing function such that
r(i) < iforalli € Nand define(0) = 0. The recursive in-degree ranking system with
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rank functionr satisfies self-confidence, strong quasi-transitivity ahléRf r is not
constant then the recursive in-degree system further does not gatisk maximum
transitivity nor strong incentive compatibility underfetr M. or Mgy pi.

Proof. We will prove that in the entire graph (not jukt) every comparison profile
(a,b) wherea = (ay,...,ar), b= (b1,...,b) is ranked as follows:

flaaby=1 < (E=0)V (r(k) <rl)VI[rk) =rD)A (ax <b)].

Note that this ranking of comparison profiles also implieersf) quasi transitivity. To
show comparison profiles are ranked as such, we will prove tha

0 v£sAP)=0
valug. ,(v) = ntl v=s (4)

— [r(|P(v)]) + max,e p() value. s(p)]  Otherwise

and note thad < valug. ;(v) < Z—j;é and thus vertices other tharare ordered first by
r(|P(v)]) and then bymax,c p(,y value. s(p), as required. Moreover, self confidence
is satisfied because for all# s: valug. s(v) < Z—jrré

The two edge cases are trivial, we shall now concentrate emptimary case in
(4). Letv € V' \ {s} be some vertex wherB(v) # (. Denote Path(p, v) as the set
of almost-simple directed paths gostopping ats which do not pass throughunless

immediately looping back tp:

Path (p,v) ={ (p=ai,az2,...,am)
(@m,...,a1)isapathinG A (am-1,...,a1)is simplen
Vie{l..m—1}:a; #sA
Vie{l,....m—2,m}:a; ZVNGn-1 =0 an, = p}.

Now we see that:

value. ;(v) = max Vp, . (a)=
() acPath (v) Pr.s()
1 [ 7’(|P(’U)|) + max(v:al,...,am)EPath(v)
= 5 vp, ((az,...,am,a2) a1 =anAm>1 | =(5)
n L va_’S(aQ,...,am) Otherwise.
LT
= r(|P(v)|) + max max VP, (a)| = (6)
n+2| (1P peP(v) acPath(p,v) ( )]
LT
= r(|P(v)|) + max max Vp, . (a)| =
3 [TIPED + m g ve >]
1
= P I s .
g PP + max valve, ()

4If r is constant, the system still does not satisfy strong ineermompatibility under eitheiM ., or
Mybir, but only if we allow vertices that have no path fram
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’G a = (p7x7v7p/"r)
O-CECL ] A
C

= (p/7x7v7pl)

Figure 7: Example of paths from the proof of Proposition 5.7.

=50

Figure 8: Graph from proof that Recursive In-degree doesaititfy axioms
To show that the equality (6) holds, assume for contradidtiat there exists € P(v)
anda € Path (p) such that

v a) > max max v a’). 7
pr,s( ) P/GP(U)a/GPat}i(p/_’u) pr,s( ) ( )

Froma € Path(p) \ Patt(p,v), we know thata; = v for somei € {1,...,m}.

Assume wlog that is minimal. Letb denote the patkp = a4, a2,...,a;,p) and let
c denote the patly’ = ait1,...,am,aj41,...,0i41) if an = a; for somej < i or
(p' = ait1,-..,an) otherwise. An example of such paths is given in Figure 7. Note

thatb € Path (p,v) andc € Path (p’, v), wherep,p’ € P(v). Now, note that

n+2)7 -1 1
vp,(a) = %Vpﬁs(b) + mVPT,S(C%
and thus vp ,(a) must be between yp (b) and vp. ,(c), in contradiction to assump-
tion (7). ' '

We shall now prove that recursive in-degree is not incentempatible under
Mot OF Mgy @and does not satisfy weak maximum transitivity. ket N be the
minimum number such thaii) > 1. Consider the grapty in Figure 8, where there
arei vertices labeled:. This graph is ranked < ¢ < s, wherex refers to all ver-
tices labeled:. Weak maximum transitivity is not satisfied because t even though
s = x. Letz’ be one of the vertices labeled It can perform a manipulation M,
by removing its edge te, and thus changing the rankingto~ 2/ ~ ¢t < s. It can
also perform a manipulation iM,.; by creating: additional sybils of themselves
and create a complete clique thus changing the rankingtov ~ 2’ ~ ¢ < s, where
v are the new vertices involved from the manipulation. O



For an extensive study of the recursive in-degree systeimeirtontext of general
ranking systems see [6].

6 Concluding Remarks

We have presented a method for the evaluation of persodalaking systems by
using axioms adapted from the ranking systems literatume exaluated existing and
new personalized ranking systems according to these axidmmost existing PRSs
do not satisfy these axioms, we have presented several rebpraatical personalized
ranking systems that satisfy subsets, or indeed all, oéthgms. We argue that these
new ranking systems have a more solid theoretical basisttarsdmay very well be
successful in practice.

Furthermore, we have proven a representation theoremddstitong Count rank-
ing systems, which are the only systems that satisfy allagio

This study is far from exhaustive. Further research is duerimulating new ax-
ioms, and proving representation theorems for the vari®@&ssuggested in this paper.
An additional avenue for research is modifying the settimgrder to accommodate for
more elaborate input such as trust/distrust relations orarical trust ratings, as seen
in some existing personalized ranking systems used inipeact
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