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Abstract. One of the standard basic steps in drawing hierarchical graphs
is to invert some arcs of the given graph to make the graph acyclic. We
discuss exact and parameterized algorithms for this problem. In par-
ticular we examine a graph class called (1,n)-graphs, which contains
cubic graphs. We discuss exact and parameterized algorithms, where
we use a non-standard measure approach for the analysis. Especially
the analysis of the parameterized algorithm is of special interest, as it
is not an amortized analysis modelled by ’finite states’ but is rather a
‘top-down’ amortized analysis. For (1,n)-graphs we achieve a running
time of O*(1.1871™) and O*(1.212%), for cubic graphs O*(1.1798™) and
O*(1.201%), respectively. As a by-product the the trivial bound of 2" for
FEEDBACK VERTEX SET on planar directed graphs is broken.

1 Introduction and Definitions

Our problem. The Sugiyama approach [2,3,22] is the most popular way to draw
graphs in a hierarchical fashion. In the first phase of this approach, as few arcs as
possible are re-oriented in order to make the graph acyclic. This re-orientation
of arcs is equivalent to the MAXIMUM ACYCLIC SUBGRAPH problem, MAS,
and to the FEEDBACK ARCSET PROBLEM, FAS, see [2,3,22], which is on the
list of 21 problems that was presented by Karp [15] in 1972 when showing the
first N"P-complete problems. It has numerous further applications [11], ranging
from program verification, VLSI to other network applications. More formally,
we consider the following problem: MAXIMUM ACYCLIC SUBGRAPH MAS

Given a directed graph G(V, A), and the parameter k.
We ask: Is there a subset A’ C A, with |A’| > k, which is acyclic ?

In this paper, we deal with finding exact and parameterized algorithms for MAS.
So, we continue studies on using exact algorithmics within the Sugiyama ap-
proach, see [6,7,9,20,21].

A new class of graphs. Mostly, we focus on a class of graphs that, to our
knowledge, has not been previously described in the literature. Let us call a
directed graph G = (V, E) (1,n)-graph if, for each vertex v € V, its indegree
d™(v) obeys d™(v) < 1 or its outdegree d~ (v) satisfies d~ (v) < 1. In short, we can
write this condition as follows: Vv € V' : min{d " (v),d™ (v)} < 1. In particular,
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graphs of maximum degree three are (1,n)-graphs. Notice that MAS, restricted
to cubic graphs, is still A"P-complete.

For some applications from graph drawing (e.g., laying out “binary decision
diagrams” where vertices correspond to yes/no decisions) even the latter restric-
tion is not so severe at all. Having a closer look at the famous paper of Nassi
and Shneiderman [18] where they introduce structograms to aid structured pro-
gramming (and restricting the use of GOTOs), the resulting class of flowchart
graphs will be (1,n)-graphs.

The degree restriction to three has also been discussed in relation to approx-
imation algorithms. Newman [19] showed that MAS can be approximated up to
a factor of % Having a closer look at her algorithm reveals that it also works
for (1,n)-graphs with the same approximation factor. This largely improves on
the general situation, where only a factor of 2 is known [3], although Eades, Lin
and Smith [8] obtained an improvement displayed in Eq. (1).

Our framework: Parameterized Complexity. We will focus on studying
MAS within this framework. A parameterized problem P is a subset of X* x
N, where X is a fixed alphabet and N is the set of all non-negative integers.
Therefore, each instance of the parameterized problem P is a pair (I, k), where
the second component k is called the parameter. The language L(P) is the set
of all YES-instances of P. We say that the parameterized problem P is fized-
parameter tractable [5] if there is an algorithm that decides whether an input
(I, k) is amember of L(P) in time f(k)|I]¢, where ¢ is a fixed constant and f(k) is
a function independent of the overall input length |I|. We will also write O*(f(k))
for this run-time bound. Equivalently, one can define the class of fixed-parameter
tractable problems as follows: strive to find a polynomial-time transformation
that, given an instance (I,k), produces another instance (I’,k’) of the same
problem, where |I’| and k' are bounded by some function g(k); in this case,
(I’ k") is also called a (problem) kernel.

Discussion of related results. It should be noticed that the “dual” problem
of finding a minimum feedback arc set (in general graphs) is known to possess a
factor log nlog log n-approximation, see [11], and hence shows an approximability
behavior much worse than MAS. This might indicate that FAS is also hard
from a parameterized perspective, although this is still unknown. Interestingly,
it seems to be even unknown if FAS, restricted to cubic graphs, is constant-
factor-approximable or if this problem is fixed-parameter tractable.

The complexity picture changes when one considers undirected graphs. The
task of removing a minimum number of edges to obtain an acyclic graph can
be accomplished in polynomial time basically by finding a spanning forest. The
task of removing a minimum number of vertices to obtain an acyclic graph is
(again) N'P-complete, but can be approximated to a factor of two and is known
to be fixed-parameter tractable, see [1,4,11,14]. Also, exact (non-parameterized)
algorithms have been derived for this problem [12].

Our contributions. Our main technical contribution of this paper is to de-
rive a parameterized 0*(1.212%)-algorithm for MAS on (1,n)-graphs. However,
notice that the analysis also works for graphs where only few vertices v show



up with min{d*(v),d”(v)} > 1, since one could first branch at their adjacent
arcs and then quickly derive a situation when our analysis applies. In practice,
our restriction should therefore not be considered harmful. We also derive exact
algorithms for MAS on (1, n)-graphs.

Besides being a nice combinatorial problem on its own right, we think that

our contribution is also interesting from the more general perspective of a devel-
opment of tools for constructing efficient parameterized algorithms. Namely, the
algorithm we present is of a quite simple overall structure, similar in simplicity
as, e.g., the recently presented algorithms for HITTING SET [10]. But the analysis
is quite intricate and seems to offer a novel way of amortized search tree anal-
ysis that might be applicable in other situations in parameterized algorithmics,
as well. It appears to be the first ever application of the “measure & conquer”
paradigm [13] in parameterized algorithmics. We mention that due to lack of
space proofs can be found in the appendix.
We first link approximability and parameterized algorithmics by a simple but
interesting observation. We call a maximization problem P a set maximization
problem if its task, given instance I, is to identify a subset S (satisfying addi-
tional requirements) of a ground set M of maximum cardinality. The natural
parameterized problem related to P (denoted by Pp.) is to find, given (I,k) a
subset S (satisfying additional requirements) of cardinality at least k.

Proposition 1. If a set mazimization problem P has a c-approximation, where
the ratio is measured with respect to the whole ground set M that is part of the
input I so that the size |I| is measured in terms of the cardinality |M| of M,
then Ppar, parameterized by k, has a kernel of size upper-bounded by ck.

Both above mentioned approximations exhibit the required properties of propo-
sition 1, entailing a 2k-kernel for the general case of MAS, as well as a %k—kernel
when restricted to (1,n)-graphs.

Corollary 1. MAS is fized-parameter tractable.

More precisely, an easy exhaustive search can be run on the kernel, yielding
an O*(4F)-algorithm for the general case. For a planar graph G = (V, E), we can
slightly improve on this result by using the estimate

B], V] 5lE]

> =
|S|_2 6 — 9

(1)
for a solution S returned by the algorithm ELS from [8] (together with Euler’s
formula that yields |E| < 3|V]):

Corollary 2. MAS on planar graphs can be solved in time O*(3.445%).

Finally fixing terminology. We consider directed multigraphs G(V, A) in the
course of our algorithm, where V is the vertex set and A the arc set. From A to
V' we have two kinds of mappings: For a € A, init(a) denotes the vertex at the
beginning of the arc a and ter(a) the end. We distinguish between two kinds of



arc-neighborhoods of a vertex v which are E*(v) = {a € A | ter(a) = v} and
E~(v) ={a € A |init(a) = v}. We have an in- and outdegree of a vertex, that
is d*(v) = |ET(v)] and d~(v) = |[E~(v)|. We set F(v) = ET(v) U E~(v) and
d(v) = |E(v)] called the degree of v. We also define a neighborhood for arcs a
Na(a) = {a1,a2 € A | ter(a1) = init(a),ter(a) = init(az)} and for A" C A
we set Na(A') := U, ca Na(a’). For V! CV weset A(V') = {a € A|Ju,v e
V' init(a) = u,ter(a) = v}. We call an arc (u,v) a fork if d~(v) > 2 (but
dT(v) = 1) and a join if d™(u) > 2 (but d~(u) = 1). With MAS , we refer to
a set of arcs, which is acyclic and is a partial solution. A undirected cycle is an
acyclic arc set, which is a cycle in the underlying undirected graph.

2 Preprocessing & Reduction Rules

Firstly, we can assume that our instance G(V, A) forms a strongly connected
component. Every arc not in such a component can be taken into a solution,
and two solutions of two such components can be simply joined. We will mark
those reduction rules that are sound for any graph by an asterisk in the following.

Preprocessing. In [11,16,19] a set of preprocessing rules is already mentioned:

Pre-1: () For every v € V with d*(v) = 0 or d™ (v) = 0, delete v and E(v)
and decrement k by |E(v)].

Pre-2: (x) For every v € V with E(v) = {(i,v), (v,0)}, delete v and E(v) and
introduce a new arc (i,0). Decrease k by one.

If in Pre-2 i = o, a cycle of length one results. Basically, i.e., without referring to
the adaptation to the parameterized setting as done in this paper, the reduction
rules we used were known before; their power has been experimentally verified by
Koehler in [16], where he showed, e.g., that the rules could completely solve one
third of randomly created 10.000-vertex-digraphs, and on average the number
of remaining vertices was reduced to one thirtieth. After carrying out Pre-1 to
Pre-2 the resulting graph has no vertices of degree less than three.

Definition 1. An arc g is an a-arc if it is a fork and a join.

We need the next lemma, which is a sharpened version of [19, Lemma 2.1] and
follows the same lines of reasoning.

Lemma 1. Any two nondisjoint cycles in a (1,n)-graph with minimum degree
at most 3 share an a-arc.

We partition A in two parts, namely A, = {g | g € A, g is an a-arc} and
Agr = A\ A,. Let G := G[Ay,]. By Lemma 1, the remaining cycles in G’ must
be arc disjoint. This justifies the next preprocessing rule.

Pre-3 In G delete the arc set of every cycle C' in G'. For an arbitrary a € A(C)
adjoin A(C) \ {a} to MAS and decrease k by |A(C)| — 1.



After exhaustively applying Preprocess() (shown in Figure 1), every cycle has an
a-arc. For v € V with E*(v) = {a1,...,as} (E*(v) = {c}, resp.) and £~ (v) =
{c} (B~ (v) ={a1,...,as}), it is always better to delete ¢ than one of ay,. .., as.
Therefore, we adjoin aq, . . . , a, to MAS, adjusting k accordingly. Having applied
this rule on every vertex, we adjoined Ag4, to MAS, and the remaining arcs are
exactly A,. So, the next task is to find S C A4, with [MAS U S| > k so that

Procedure: Procedure:
Preprocess(MAS,G(V, A),k): Reduce(MAS,G(V, A)),k,k" wy wyr):
1: repeat 1: repeat
2:  cont <+ false 2 cont « false
3 for i=1 to 3 do 3 for i=1 to 6 do
4 apply Pre-i exhaustively. 4 apply RR~i exhaustively.
5 if Pre-i applied then 5: if RR-i applied then
6: cont < true 6: cont < true
7: until cont=false 7: until cont=false
8: return (MAS,G(V, A),k,k,1,1) 8: return (MAS,G(V, A),kk i, wyr)

Fig. 1. The procedures Preprocess() and Reduce().

GIMAS U S] is acyclic. We have to branch on the a-arcs, deciding whether we
take them into MAS or if we delete them. a-arcs which we take into MAS will
be called red. For the purpose of measuring the complexity of the algorithm, we
will deal with two parameters k& and k’, where k is the size of the solution and
k" will be used for purposes of run-time estimation. The big difference is that
we do not count the arcs in Ay, immediately into k’. For every branching on an
a-arc, we want to count only a portion of them into &’. More precisely, upon first
seeing an arc b € Ay, within the neighborhood N4(g) of an a-arc g we branch
on, we will count b only partially, by an amount of w, where 0 < w < 0.5 will be
determined later. So, we will have two weighting functions wy, and wys for k and
k' with wg(a) € {0,1} and wy (a) € {0,(1 —w),1} for a € A, indicating each
how much of the arc has not been counted into k, or k' respectively, yet. In the
very beginning, we have wy(a) = wy(a) = 1 for all a € A. For a set A’ C A, we
define wy (A") := 3, c 4 wi (@) and wy(A) accordingly.

The preprocessing rules, together with the mentioned kernel of %k arcs,

gives us another simple brute-force algorithm for MAS: Within the kernel with
m arcs, there could be at most m/3 arcs that are a-arcs. It is obviously sufficient
to test all possible 2/3 < 2(4/1Dk ~ 1 9288% many possibilities of choosing a-
arcs into the (potential) feedback arc set, also beating the enumeration of all
k-subsets of the 12k-kernel in time O*(1.367%).

Reduction Rules. There is a set of reduction rules from [19], which we adapted
and modified to deal with weighted arcs. Also, we define a (linear time checkable)



predicate contractible for all a € A.

0:wk(a) =1,3 cycle C with a € C and w,(C \ {a}) =0

contractible(a) = { 1 else

The meaning of this predicate is the following: if contractible(a) = 0, then a is
the only remaining arc of some cycle, which is not already determined to be put
into MAS. Thus, a has to be deleted. In the following, RR~i-1 is always carried
out exhaustively before RR-i.

RR-1 For v € V with d*(v) =0 or d~(v) = 0, take E(v) into MAS, delete v
and E(v) and decrease k by wy(E(v)) and k' by wi (E(v)).

RR-2 For v € V with E(v) = {a,b} let z = argmax{wy (a), wy (b)} and y €
E(v) \ {z}. If contractible(y) = 1, then contract y, decrement k by wy(y),
k' by wi (y). If y was red, then z becomes red.

RR-3 If for g € A, we have contractible(g) = 0, then delete g.

a-arcs a which are not red are called unprocessed and are referred to as AY.
We classify the unprocessed a-arcs in thin a-arcs, which are contained in exactly
one cycle, and thick a-arcs, which are contained in at least 2 cycles. Because G
is strongly connected, there are no a-arcs which are contained in no cycle. We
can distinguish them as follows: For every a-arc g, find the smallest cycle C
which contains ¢g via Breadth-First-Search (BFS). If ¢ is contained in a second
cycle Oy, then there is an arc a € A(Cy) with a ¢ A(CY). So for every arc a of
Cy, remove a and restart BFS. If we find this way another cycle, we know g is
on two cycles. When running Algorithm 1, we guarantee that every unprocessed
a-arc has value one for both weights, yielding:

RR-4 If g € AY is thin and contractible(g) = 1, then take g into MAS and
decrease k by wi(g), k' by wy(g) and set wy(g) < 0, wi (g) < 0.

RR-5 If a,b € A form an undirected 2-cycle then delete z = arg min{wy (a),
wy (b)}, decrease k by wy(z) and k¥’ by wy () and take z into MAS.

RR-6 Having (u,v), (v,w), (v,w) € A (an undirected 3-cycle), delete (u,w),
decrease k by wy((u,w)) and k" by wy ((u,w)), and take (u,w) into MAS.

Theorem 1. The reduction rules are sound.

Proposition 2. After the application of Reduce(), see Figure 1, we are left with
a (1,n)-graph G with only thick a-arcs and with no directed or undirected 2- or
3-cycle.

3 The Algorithm and its Analysis

3.1 The Algorithm

We are ready now to state our main Algorithm 1; observe that the handling of
the second parameter k' is only needed for the run-time analysis and could be
avoided when implementing the algorithm. Therefore, the branching structure
of the algorithm is quite simple, as expressed in the following;:



Algorithm 1 A parameterized algorithm for MAXIMUM ACYCLIC SUBGRAPH

on (1,n)-graphs

1: (MAS,G(V, A),k,k" wy wys )+ Preprocess(MAS,G(V, A) k).
20 MAS+— AgrUMAS K — k, k — k —wi(Agr), wi(Agr) < 0

3: SolBMAS(MAS,G(V, A),k,k' wyr wy)

Procedure: Sol3MAS(MAS,G(V, A),k,k’ wp,wp):
1: (MAS,G(V, A), kK wp,wyr )« Reduce(MAS,G(V, A),k,k' wi,wyr)

2: if kK <0 then
3:  return YES

4: else if there is a component C with at most 9 arcs then
5:  Test all possible solutions for C'.

6: else if there is an unprocessed a-arc g then

7:  if not Sol3MAS(MAS ,G[A\ {g}],k,k ;w,,wis) then
8: k—k—1,k" — k' —wy (9), we(g9) <« wi (g9) < 0, MAS— MAS UNA(g9)U{g}
9: for all a € Na(g) do

10: Adjust wy/, see Figure 2.

11: return Sol3MAS(MAS ,G(V, A),k,k wp,wr)

12:  else

13: return YES

14: else

15:  return NO

Adjust wy:
1: if wis(a) =1 then
2: if 3b € (Na(a) \ (Na(g) U {g})) with
wys (b) = 0 then

3: E — kK —1, wp(a) <« 0, k — k —
wi(a), w(a) — 0 (case a.)

4:  else

5: E — kK —w, wy(a) « (1 —w), k «—

k —wi(a), wr(a) < 0 (case b.)
6: else
7 K~k —(1-w), ww(a) — 0. (case c.)

Fig.2. In case a. we set
wi (a) = 0, because there will
not be any other unprocessed
neighboring a-arc of a. In case
b., this might not be the case,
so we count only a portion of
w. In case c., we will prove that
wis(a) = (1 — w) and that there
will be no other unprocessed
neighboring a-arc of a, see The-
orem 2.6

Lemma 2. Branching in Alg. 1 either puts a selected a-arc a into MAS, or it
deletes a. Only if arcs are deleted, reduction rules will be triggered in the subse-
quent recursive call. This can can be also due to triggering RR-3 after putting a

mto MAS.

3.2 Analysis

Basic Combinatorial Observations. While running the algorithm, & < k’.
Now, substitute in line 2 of Sol3MAS of Algorithm 1 & by &’. If we run the
algorithm, it will create a search tree Tj/. The search tree T} of the original
algorithm must be contained in T/, because k < k'. If |Tj/| < ck/, then it follows



that also |T| < ¢ = ¢*, because in the very beginning, k = k’. So in the
following, we will state the different recurrences derived from algorithm 1 in
terms of k’. For a good estimate, we have to calculate an optimal value for w.

Table 1. We summarize by which amount &’ can
a-arc g |a. b. ¢ | be decreased for a € N(g), subject to if we take g

MAS |1 w (I —w)| into MAS or we delete ¢ and to the case applying
Deletion| 1|1 + (1 = w)|(1 =w)] t¢ 4.

Theorem 2. In every node of the search tree, after applying Reduce(), we have:

1. For all a = (u,v) € Ay with wy (a) = (1 — w), there exists an incident red
arc d, which is a fork or a join.

2. For all non-red a = (u,v) € Ay with wy (a) = 0, we find red arcs (v, u), (v,v").
We will also say that a is protected (by the red arcs).

3. For all red arcs d = (u,v) with wy (d) = 0, if we have only non-red arcs in
E(u)\ {d} (E(v)\ {d}, resp.), then d is a join (d is a fork).

4. For all red arcs d = (u,v), if there is a non-red arc a € E*(u)\ {d} (a €
E~(v) \ {d}, resp.) with wy(a) = 0 and only non-red arcs in E(u) \ {a,d}
(in E(v) \ {a,d}, resp.), then d is a join (d is a fork).

5. For each red arc d = (u,v) with wy (d) = 0 that is not a join (fork, resp.), if
there is at least one red arc in E(u) \ {d} (in E(v)\ {d}, resp.), then there
is a fork (join, resp.) in G[E(u)] (G[E(v)]).

6. For all g € AY and for all a € Na(g), we have: wy(a) > 0.

There, we use induction on the depth of the search tree. Clearly, all claims
are trivially true for the original graph instance, i.e., the root node. Notice that
each claim has the form Va € A(X(a) = Y(a)). Here, X and Y express
local situations affecting a. Therefore, we have to analyse how X (a) could have
been created by branching. According to Lemma 2, we have to discuss what
happens (1) if a certain a-arc had been turned red and (2) if reduction rules
were triggered. As a third point, we must consider the possibility that X (a) is
true both in the currently observed search tree node s and in its predecessor,
but that Y (a) was possibly affected upon entering s.

Estimating the running time for maximum degree 3 graphs. In Algo-
rithm 1, depending in which case of Figure 2 we end up, we decrement k' by a
different amount for each arc a € Na(g) in the case that we put g into MAS.
We can be sure that we may decrement k' by at least (1 — w) for each neighbor
a € Na(g) due to the last property of the Theorem 2. If we put g into FAS, we
delete g and we will delete N4(g) immediately by RR-1, and we can decrement
k" accordingly (by wg (Na(g))). Moreover, if case b. applies to a € Na(g), we
know that the two arcs d,e € (Na(a) \ (Na(g) Ug})) (observe that we do not
have triangles) obey wy (d)wys (e) > 0. By deleting a, no matter whether RR-1



or RR-2 applies to d and e (this depends on the direction of the arcs) we can
decrement k' by an extra amount of at least (1 — w), cf. the handling of k" by
these reduction rules. This is true even if V(d), V(e) C V(Na(g)). Note that if
V(Na(Na(g))) CV(Na(g)), then A(V(Na(g))) is a component of 9 arcs (which
are handled separately).

Let i denote the number of arcs a € N4(g) for which case a. applies. In the
analogous sense j stands for the case b. and ¢ for c.. For every positive inte-
ger solution of i + j + ¢ = 4, we can state a total of 15 recursions according
to Table 1 depending on w. A table with all 15 recursions T1,...,T15 can be
found in appendix C. For every T; and for a fixed w, we can calculate a con-
stant ¢;(w) such that T;[k] € O*(c;(w)*). We want to find a w with subject
to minimize max{c;(w),...,c15(w)}. We numerically obtained w = 0.1687 so
that max{c;(w),...,c15(w)} evaluates to 1.201. The dominating cases are when
i=0,j=4,¢q=0 (T5) and i =4, =0,g =0 (T15).

Theorem 3. Algorithm 1 solves MAS on graphs G with A(G) < 3 in O*(1.201%).

Measuring the run time in terms of m := |A| the same way is also possible.
Observe that if we take an a-arc into FAS, we can decrement m by one more.
By adjusting 717, . .., T15 according to this and by choosing w = 0.2016, it follows:

Theorem 4. On graphs G with A(G) < 3 MAS is solvable in O*(1.1798™).

Note that if we run this exact algorithm on the %k—kernel, we finish in
O*(1.1977%), which is slightly better than the pure parameterized algorithm.
We will obtain a better bound for the search tree by a precedence rule, aiming
to improve recurrence T5. If we branch on an a-arc g according to this recurrence,
for all a € Na(g) we have wis(a) > (1 —w). Such a-arcs will be called as-arcs.
We add the following rule: branch on as-arcs with least priority. Let [ := |AY].

Lemma 3. Branching on an as-arc, we can assume: in the underlying undi-

rected graph,
1 / ]‘ /
Y P E— < _ .
e e el

Employing this lemma, we can find a good combinatorial estimate for a brute-
force search at the end of the algorithm. This allows us to conclude:

Theorem 5. MAS is solvable in time O*(1.1960%) on mazimum-degree-3-graphs

Estimating the running time for (1,n)-graphs. There is a difference to
maximum degree 3 graphs, namely the entry for case b. in case of deletion in
Table 1. For a € N4 (g) it might be the case that |[Na(a) \ (Na(g) U {g}| >
3, so that when we delete g and afterwards a by RR1 that whether RR-1
nor RR-2 applies (due to the lack of sources, sinks or degree two vertices).
We call this case b’. Remember, case b. refers to the same setting but with
[Na(a)\ (Na(g)U{g}| = 2. Thus the mentioned entry should be 1 here. As long
as |[Na(g)| > 6 the reduction in &’ is great enough for the modified table, but for
the other cases we must argue more detailed. We introduce two more reduction
rules, the first already mentioned in [19].
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RR-7 Contract and adjoin to MAS any (u,v) € A with d™(u) = d*(v) =1
(d (u) = d (v) =1, resp.). If (u,v) was red the unique arc a := (z,u)
((v,y), resp.) will be red. Decrease k' by min{wy ((u,v)), wr(a)} and set
wis (a) «+— max{wy ((u,v)),wr (a)}. Proceed similarly with (v, y).

RR-8 Forared ¢’ € Ay with wy(¢') > 0, set k' — k' —wy (¢') and wyr (¢") < 0.

Lemma 4. RR-7 and RR-8 are sound and do not violate Theorem 2.
We add the following rules to Algorithm 1:

1. After Reduce(), first apply RR-7 and then RR-8 exhaustively.

2. Prefer a-arcs g such that |[N4(g)| is maximal for branching.

3. Forced to branch on g € AY with |[Na(g)| = 5, choose an a-arc with the
least occurrences of case b/

Lemma 5. We will never have to branch on a g = (u,v) € AY with |[Na(g)| =5
and & occurrences of case V'

Lemma 6. When we branch on g = (u,v) € AY with [Na(g)| = 4 there is no
case b occurrence.

Let z,y,z denote the occurrences of cases a., b’ and c.. To upperbound the
branchings according to a-arcs g with |[Na(g)| > 6, we put up all recurrences
resulting from integer solutions of = + y + z = 6. Note herefore we use the
modification of table 1. To upperbound branchings with |[N4(g)| = 5 we put up
all recurrences obtained from integer solutions of = + y + z = 5, except when
x =2z =0 and y = 5 due to Lemma 5. Additionally we have to put up the
recurrence covering the case where we have 4 occurrences of case v’ and one of
case b.. To upperbound the case where |[N4(g)| = 4 the recurrences derived from
table 1 for the integer solutions of x + y + z = 4 suffice due to Lemma 6

Theorem 6. On (1,n)-graphs with m arcs, MAS is solvable in time O*(1.1871™)
(w = 0.2392) and O*(1.212F) (w = 0.21689), respectively.

Corollary 3. FEEDBACK VERTEX SET on directed maximum degree 3 graphs
can be solved in O*(1.282™) and on planar directed graphs in O*(1.986™).

3.3 Reparameterization

Mahajan, Raman and Sidkar [17] have discussed a rather general setup for re-
parameterization of problems according to a “guaranteed value.” In order to
use their framework, we only need to exhibit a family of example graphs where
Newman’s approximation bound is sharp.

Corollary 4. For any € > 0, the following question is not fized-parameter
tractable unless P = N'P: Given a cubic directed graph G(V, E) and a parameter
k, does G possess an acyclic subgraph with at least (% + e) |E| + k many arcs ¢
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4 Conclusions

We presented exact and parameterized algorithms for MAS. How well can they
work in practice ? In exact algorithmics, one of the yardsticks commonly used
is the so-called klam value, see [5]. This means that we look for a value of k
(or m in our case) such that for the exponential run time estimate c¢*, we find
that ¢® < 10%°. We end up with a klam value of about 300, which indicates
that, at least for hiearchichal drawings that need to be nice but need not be
immediately displayed (i.e., there is some time to process a nice layout), one
can afford using exact algorithms in the first phase of the Sugiyama approach
for graphs of moderate size. We have to underline once more that our run time
estimates are pure worst-case bounds. Suderman [20] showed quite convincingly
that (even for parameterized algorithms with much worse worst-case run-time
bounds) exact algorithmics may lead to practical algorithms in the context of
graph drawing. Coming back to our problem, notice that it is quite known that
the heuristics that splits the graph in strongly connected components does al-

Fig. 3. A bad example for a well-known heuristics

ready a good job on practical instances, and this heuristic is built-in into our
approach by assuming always working on strongly connected graphs. We also
refer again to the paper of Koehler [16] who showed how well the preprocessing
rules work on random graphs.

Let us conclude with an example that shows that quite some arcs can be
“saved” with the exact approach as opposed to the often used heuristics of
Eades, Lin and Smyth (ELM for short): In Figure 3, ELM would possibly pick
arc b) first, because the incident vertices of a), b) and c¢) are all equal with respect
to the difference between the in- and outdegree. Afterwards, of course, a) and
¢) have to be deleted, too. So, the ratio between the arcs deleted this way and
the optimal number is % Admittedly, the ratio between the cardinality of the
maximum acyclic subgraph and the solution of the heuristic is not so bad: g
Furthermore, Newman’s algorithm would (possibly) yield a solution no better
than ELM. Similar but larger graphs displaying the same ratios are easily found.
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A More an general graphs

In the introduction, we claimed that one could use our algorithm (including its
analysis) also in the case when only a few vertices violate the (1,n)-condition.
We give more details in this section.

Let v be a vertex with £ := min{d* (v),d ™ (v)} > 2. Without loss of generality,
assume that £ = d*(v) < d~(v). Let a,...,a; be the arcs pointing towards v.
Then, we branch on all 2¢ bitvectors (b1,...,bs) that indicate whether or not
to take a; into MAS. More precisely, we take a; into MAS iff b, = 1. We
discuss the situation immediately after this branching for a specific bitvector
b= (b1,...,b). Of course, we can modify our graph instance by deleting those
arcs a; for which b; = 0. Define B = > b;. If B < 1, then we would find
min{d*(v),d” (v)} <1 as required for (1,n)-graphs. If B > 1, let us split v into
vy and vy as follows:

Add a new arc (v1,v2) known to belong to MAS.
Then, replace those a; with b; =1 by (init(a;),v1) and
replace all arcs of the form (v, ) by (ve,u).

Finally, remove v (and all incident arcs).

Ll

In addition, one could now exhaustively apply the first two reduction rules.
It is straightforward to see that our construction yields an equivalent instance
of MAS, Moreover, it has (at least) one vertex less that violates the (1,n)-
condition. Therefore, after only a few bad branches, we arrive at a situation
where our algorithm (with the corresponding analysis) applies.
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B Omitted Proofs

B.1 Proof of Proposition 1

Proof. Consider the parameterized problem with input (I, k). So, I is an instance
of P. Start the c-approximation on I, obtaining a solution set S. If |S| > k, we

are done. Otherwise, we know that % <c,andso |I|=|M|<c-|S|<c-k.

B.2 Reduction Rules & Preprocessing Correctness
Lemma 7. Pre-1 and RR-1 are correct.

Proof. A vertex v € V with d*(v) =0 or d” (v) = 0 cannot be entered and left
by a cycle, so the incident arcs are not part of any cycle.

Lemma 8. Pre-2 and RR-2 are sound.

Proof. For a vertex v with E(v) = {a,b}, we have to delete at most one arc
from {a, b} in order to cut a cycle. So we can take one into MAS and contract
it. In the case of RR-~2, we must check if the arc we want to contract is not
the last remaining arc on a cycle, which is not in M.AS. This check is done be
contractible(). If so, we have to delete it.

Also RR-2 differs from the one in [19] by the fact that red arcs are dominant.
It is possible that we create an new a-arc (w,v) by this rule, (w,v) being red.
This is justified by the following observations. This type of application of RR-~2
to (w,v) and a red arc (z,t) is only possible, because at the time when (z,)
became red, there was, w.l.o.g., a directed path P = z,¢,uq,...,u;,w,v, and
during the algorithm we deleted again and again those arcs incident to the u;’s
which are not on P, see Figure 4.

Fig. 4.

At the point when we want to merge (w,v) and (z,t), think of unwrapping P.
To destroy any cycle passing through P, we have to delete at most one arc. But
by already branching on (z,t) as a kind of representative of P, we have already
decided that this arc should not be deleted, so we do not have to consider to
delete (w,v) anymore, which means we do not have to branch here.

Lemma 9. RR-3 and RR-4 are sound.
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Proof. If an a-arc is not contractible, it must be deleted because it is the only
arc not in MAS for some cycle, so RR-3 is correct.

If g € AY is thin, it can cut only one cycle C. Because it is contractible, there
must be another a-arc ¢’ which is able to cut C' (possibly also some other cycle).
We take g into MAS because it is no worse to delete ¢’ than to delete g.

Lemma 10. RR-5 is sound.

Proof. Let u,v € V be the endpoints of an undirected 2-cycle. W.l.o.g., there
are arcs ay, as with init(a;) = init(az) = u and ter(ay) = ter(az) = v. Because
having no vertices of degree less than three and the (1,n)-property, there are
distinct ares (¢, u) and (v,b). Clearly, it is better to delete one of these arcs than
to delete a1 and az (we have to delete both because they form an undirected 2-
cycle). So by deleting, w.l.o.g., a1, eventually we trigger RR-2 on as. If, w.l.o.g,
(¢, u) will be contracted and a1 deleted, we also should exchange these properties
in a post-processing step, i.e., we delete (¢,v) and take a; into MAS.

Lemma 11. RR-6 is sound.

Proof. Tf we have (u,v), (v,w), (u,w) € A, there must be also (a,u), (w,b) € A
and w.l.o.g., (¢c,v) € A, because of the absence of vertices of degree less than
three. It is always better to delete (w, b) or (a, w) than to delete (u, v), (v, w), (u, w).
Also, any cycle C' passing through (u,w) passes also through (u,v), (v,w). So
we have to take care only of cycles passing through (u,v), (v,w). This justifies
the deletion of (u,w). By deleting (u,w), RR-2 eventually will be applied to
(u,v) and (v, w). Again, if eventually (v, w) will be deleted and (w, b) taken into
MAS, we should exchange these properties in a post-processing step. The same
is true for (u,v) and (a,w).

B.3 Proof of Theorem 2

Proof. We proceed by induction on the depth of the search tree. Clearly, all
claims are trivially true for the original graph instance, i.e., at the root node.
As induction hypothesis, we assume that the claim is true for all search tree
nodes up to depth n. Let us discuss a certain search tree node s at depth n + 1.
Let G = (V, A) be the graph instance associated with s. Let & and k' be the
parameter values at node s. Let 5 be the immediate predecessor node of s in the
search tree. We will refer with G = (V, A), k, k’ to the corresponding instance
and parameter values.

Exemplarily, we will give a very detailed proof of the very first assertion. The
other parts can be similarly shown, so that we only indicate the basic steps of a
complete formal proof.

1. Consider an arc a = (u,v) € Ay with wy (a) = (1 —w). This situation could
have been due to three reasons:
(A) In node 5, we branched at an arc d € Na(a) with wy, (@) = 1, see Figure
5. We consider here the case that d is turned red. Namely, according to case
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b. of the procedure “Adjust”, wy/(a) = (1 — w). Since we only branch at
a-arcs, d is even both a fork and a join. As detailed in (B), @ could give rise
to a € V by a sequence of RR~2-applications in possible combination with
other rule applications, such that wy (a) = (1 —w). As described in (C),
d will yield, as a red neighbor of @, again by a (possibly empty) sequence
of reduction rule applications, in particular of RR-~2-applications, a fork or
join that is neighbor of a in G as required.

(B) In node §, we branched at some arc c¢. We consider here the case
that (possibly due to an application of RR~3) b is deleted. This triggers
some reduction rules. How could the situation have been created by reduc-
tion rule applications ? The only possibility is to (eventually) use RR-2.
In that case, there would have been two neighbored arcs a/,a” in G with
max{wg (a'), wp (a")} = (1 — w). Hence, at least one of these arcs, say a’,
actually carried the weight (1 — w). Moreover, since a € Ay, a’,a” € A,
In actual fact, there could have been a whole cascade of RR-2. applications
along a path P in G (P consists of a sequence of subsequently neighbored
arcs from Ag,.), eventually leading to a, but by an easy inductive argument
one can see that there must have been some a € flg,« within this cascade to
which the induction hypothesis applies, so that we conclude that, in G, @
has a neighboring arc d that is a fork or a join. Since d is red, d is not on the
path P. Since d is a fork or a join, it cannot be neighbor to two subsequent
arcs from the path P. Therefore, w.l.o.g., @ is the first arc on P (without
predecessors on P), and d is a fork. We will show in (C) that the fork d will
eventually lead to a fork d that is neighbor of a in G.

(C) We consider the scenario that already in node s, wj, (a) = (1 — w). By
induction hypothesis, assume that (w.l.o.g.) @ = (u,v) has a neighbored red
fork d = (u’,u). If d is deleted by using reduction rules, then u would have
(intermediately) in-degree zero, so that RR-1 triggers on a, contradicting
our very scenario in G that we are discussing. Therefore, the local situation
could only change by applications of RR-2 involving d. If those mergers
refer to neighbors of d via the tip of d, then either a is directly deleted or
merged with d. Both possibilities would destroy the scenario we discuss, since
a would disappear. Therefore, such mergers could be only via the tail of d.
Since d is red, a merger with d will be red, as well. Moreover, this merger
would be also a fork. Again by an easy induction, one can conclude that
the neighbor d of a in GG that results from a sequence of mergers using rule
RR-2 on a path ending at d in G would be a red fork as required.

<

Fig. 5.
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2.

We will actually prove points 2. through 4. by a parallel induction.

To improve readability of our main argument, we refrain from giving all
possible details how the employment of RR~2 may affect (but not drastically
change) the situation in particular. These discussions are very similar to the
ones given under item 1.

How can a = (u,v) € Ay with wi (a) = 0 have been created ?

Firstly, it could be due to a RR2-contraction with a non-red arc t with
wy (t) = 0. But then, either a or t was not protected, which is a contradiction
to the induction hypothesis.

Secondly, it could be due to branching on a neighboring a-arc b, say b =
(v, w), in two different ways:

(1) either we branched at b at a point of time when wy, (a) = (1 — w) (case
c. of Procedure “Adjust”), or

(2) we branched at b when wg, (a) =1 (case a.)

In case (1), there must have been another red arc e incident to a by item 1,
see Figure 6.1). of our property list. e is not incident to v, since it is a fork
or a join. Hence, e = (y, u). This displays the two required red arcs (namely
b and e) in this case.

In case (2), a was created by case a. of Procedure “Adjust.” Obviously, b
is red after branching. Since we have branched according to case a, there is
another arc h incident with a (but not with b) such that wy, (h) = 0. There
are four subcases to be considered:

(a) h = (u,u’) is not red, see Figure 6.2.a). By induction, there must be a
red fork arc (v, u). Hence, a is protected.

(b) h = (u,u) is red, see Figure 6.2.b). Consider the all other arcs incident
to u. Since we are dealing with reduced instances, they must be of the form
¢ = (u”,u), since otherwise u would be a sink. Now, by item 3. (induction),
one of these arcs must be red. Therefore, a is protected.

(¢) h = (u/,u) is not red. All other arcs incident to u could be of the form
(u”,u), see Figure 6.2.c.1). Since h must be protected, by induction, a should
be red, contradicting our assumption on a. Therefore, all these arcs are of
the form (u,u”), see Figure 6.2.c.1), and one of them, say ¢, is the red
arc protecting h. This situation contradicts item 4. by induction, since c is
neither fork nor join.

(d) h = (v, u) is red, see Figure 6.2.d). Hence, a will be protected.

How could d have been created ?

If it had been created by branching, then there are two cases: (1) d was put
into MAS; (2) d was neighbor of an arc b which we put into MAS.

In case (1), the claim is obviously true. In case (2), let, w.l.o.g., u be the
common neighbor of b and d, see Figure 7.1). After putting b into MAS,
there will be a red arc (namely b), incident to u, so that there could be only
non-red arcs incident with v that have the claimed property by induction. If
d has been created by reduction rules, it must have been through RR-~2. So,
there have been (w.l.o.g.) two arcs (u,w) and (w,v) with wg,-weights zero.
W.lo.g., assume that (u,w) is red. If (w,v) is red, see Figure 7.2), then the
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claim holds by induction. If (w,v) is not red, see Figure 7.3), then (w,v)
must be protected.

\4
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4. Again, we discuss cases how a with wy(a) = 0 could have been created. We

can exclude that a has been created by using reduction rules as in the proof
of item 2.
If @ has been created by branching, then the claim is obviously true if we
branched on d. Hence, we can assume that we actually branched on another
(now red) arc b in the neighborhood of a. Without loss of generality, we have
the following setting: d = (u,v), a = (y,u), b = (z,y), see Figure 8. If, before
branching, wg, (a) = (1 — w), then by item 1., d is a join. If the situation
before branching was that wjy, (a) = 1, then, by claim 3., wz, (d) > 0 (or item
4. is shown). Since we are branching on b due to case a. of ’Adjust’ and we
can assume that wg, (d) > 0, we must have another ¢ € Na(a) N Na(d) with
wiy (¢) = 0, since otherwise we would not find wg (a) = 1. Hence, we can
apply the induction hypothesis of claim 2: if ¢ would not point towards u, it
would not be protected, since a is not red. By the (1,n)-property, all other
arcs in N4 (a) N Na(d) must point towards the common endpoint of a and d.
Hence, in all cases, d is a join. The other case (in which d would be a fork)
is symmetric.

5. We again discuss the possibilities that may create a red d with wy/ (d) = 0.
If d was created by taking it into MAS during branching, then d would be
both fork and join in contrast to our assumptions.

If we branch in the neighborhood of d, then the claim could be easily verified
directly.
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Fig. 8.

Finally, d could be obtained from merging two arcs e = (u,w), f = (w,v)
with wg/ (e) = wj (f) = 0. If both e and f are red, the claim follows by
induction. If only f is red and e is non-red, then consider the neighboring
arc h of e, with h being red by claim 2. and directed as h = (z,u) and the

other arcs ji, ..., J; also incident to u, see Figure 9.1). If all j1,...,j; are of
the form (u,u’), see Figure 9.2), then h is a fork and the claim is true.. If
all j1,...,7; are of the form (v, ), see Figure 9.3), then e is a join and so is
the resulting d. Thus the premise is falsified. Because of the (1,n)-property,
there are no other possibilities for ji,..., j;.
z z Z
®. u w v & u w v @ u w v
/‘J e f :] e f | € f
y
y 1) y 2) 3)
Fig.9.

6. Assume the contrary. Discuss a neighbor arc a of g with wy(a) = 0.
If @ is not red, then g must be red due to item 2.
If a is red, then discuss another arc b that is incident to the common endpoint
of a and g.
If b is not red, then the situation contradicts item 3. due to the direction of
b. So, b must be red. This picture contradicts item 5.

B.4 Proof of Lemma 3

Proof. If | > [ﬁk’—‘ then by deleting AY, we decrement k' by at least

1-4(1 —w) > k', returning YES. If [ < {mkj’J then by taking AY into

MAS we decrement k' by at most [ - (1 4+ 4(1 —w)) < &/, returning NO.

B.5 Proof of Theorem 5

Proof. So using Lemma 3, in general we can find b > 1 such that [ = [ﬁ kK — b—‘ .
Again, if we decided to delete AY we decrement k' by at least [-4(1 —w), so that
afterwards &' < b4(1—w). If & > k > 0, we have to step back and take some arcs
of AY into MAS. For any such arc we can decrement k¥’ by one more than by
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deleting it. Finally, we have to find at most [b4(1 — w)] arcs from AY, which we
can take in to MAS without causing any cyclicity. For this we have ( b 4(1l7w)] )

choices, which is biggest for I = 2 [b4(1 — w)]. So for b = mk’ this can

be upper bounded asymptotically by O* < ( 4“*“)?(9*8‘“) k: >) c o (4mk/) .
I(1—w)(9—8w)

We mention that we have to take care of the case where &/ = [. In this case we
have to check whether GIMASUAU] is acyclic and give the appropriate answer.
Then the above mentioned run time for recurrence 75 can be assumed. For
w = 0.2012 we get an improved run time of O*(1.1960%), where recurrences T}
and Tp5 are dominating. Further note that we can not make use of Lemma 3
when we measure the running time in terms of m.

B.6 Proof of Lemma 4

Proof. Tt should be rather obvious that applying RR-8 is sound and does not
interfere with Theorem 2.

Let us discuss the following scenario: Assume arcs (u,v) and (v, w) such that v
and w have indegree one. Hence, RR~7 could apply. Before applying RR-7, we
find: (u,v) is a fork. (v, w) is not a join. (v, w) is a fork.

Hence, after applying RR-7, (u,v) is a fork. It will be an a-arc iff (u,v) was
an a-arc before applying RR-7.

The soundness of the rule follows by induction. As well as the fact that the
assertions of Theorem 2 will also hold after applying RR-7.

Namely, if some arc (that is not removed by rule RR-7) was neighbor of
some fork or of some join or of some red arc before applying RR-~7, this will be
true after applying RR-7.

Moreover, observe that through applying RR-~7 or RR-8, no other reduction
rule (numbered up to 6) could be triggered.

B.7 Proof of Lemma 5

Proof. Suppose the contrary holds. W.l.o.g. d~(v) = 2. For (v,a) case b’ must
match. This means that d~(a) = 1 and d* (v) > 3 or otherwise RR-1 or RR-2
could be applied to a after the deletion of (v,a). For the distinct arc b = (a,y)
we must have d~(y) > 1 or otherwise RR-7 could be applied. Thus b must be
an non-red a-arc (otherwise RR~8 could be applied due to having case b’ and
therefore wy/(b) > 0.). Also we must have |[N4(b)| = 5 and at most 4 case b’
and at least one case b. occurrences. This contradicts the choice of the a-arc g,
because we would have preferred b.

B.8 Proof of Lemma 6

Proof. Suppose the contrary holds. W.l.o.g. take an arc (v, a). As in the previous
lemma we can deduce that d~(a) = 1 and d*(v) > 3 and that there is a distinct
non-red a-arc (a,y) with [Na((a,y))| > 5. This is a contradiction to the choice
of g.
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B.9 Proof of Corollary 3

Proof. Given a graph G(V, A) use the construction (a well-known transformation
form DIRECTED FEEDBACK VERTEX SET to DIRECTED FEEDBACK ARC SET)
in appendix A to obtain an instance G'(V’, A’). Every v € V has a corresponding
arc a,, € A’. Due to the (1, n)-property of G’, these new introduced arcs will be
reduced away by RR-2, if we run Algorithm 1 on G’. Thus it suffices to run the
Algorithm on G. For every a-arc (u,v) ¢ MAS, choose u or v for deletion. The
remaining vertices are a minimum feedback vertex set. From |A| < 2|V| follows
that Algorithm 1 solves this problem in (9*(1.17983”).

Given a planar graph G(V, A), again use the construction in appendix A to obtain
an instance G'(V’, A") . G’ now has the (1,n)-property and we have |A’| < 4n.
Thus the running of Algorithm 1 is O*(1.1871%").

B.10 Proof of corollary 4

Proof. Consider G,.(V,, E,.), r > 2, with V., = {(4,7) | 0< i< r,0<j <7}, and
FE,. contains two types of arcs:

1. ((4,7), (4, (j + 1) mod 8) for 0 <4 <r.

2a. ((4,7),((t +1) mod r, (1 — j) mod 8) for 0 <i < rand j=1,2.

2b. (((# + 1) mod r, (1 — j) mod 8, (¢,7)) for 0 <i < r and j = 3,4.

See figure 10 for an example of the case where r = 2. The graph is cubic and has
8r vertices, thus it has 12r arcs. Its a-arcs are ((¢,0), (¢,1) and ((,4), (i,5)) for
0 <i < r. Since we have to destroy all “rings” as described by the arcs from 1.,
any feasible solution to this M AS-instance requires 7 arcs to go into the feedback
arc set. However, also r arcs suffice, namely ((0,4), (0,5)) and ((¢,0), (¢,1)) for
0 < i < r. This gives the “tight example” as required in [17] to conclude:

Fig. 10. G5 (V}, 4,)
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C Recursions and running times

C.1 The maximum degree three case

In Table 2 we state the 15 recurrences necessary for solving the parameterized
version of MAS on maximum degree 3 graphs, which we needed to estimate the
run time in theorem 3. They are derived from the positive integer solutions of
14+ j + q = 4. Similarly, Table 3 displays the recurrences for the exact, non-
parameterized case (measured in m).

No.|j|q|? |Derived recursion

1 |0|0|4|T[k] <T[k—4] 4+ Tk — 5]

2 [0|13|Tk] <Tk—-(4—-—w)]+Tk—-(5-w)]

3 0[2|12|Tk] <T[k—(4—2w)]+T[k — (5—2w)

4 |013|1|Tk] <Tk—(4—3w)]+T[k—(5—3w)

5 (0|40 |TTk] < Tk — (4 —4w)] + Tk — (5 — 4w)

6 |1{0|13|Tk] <T[k—(5—-w)]+T[k— 4+ w)]

T LL2|Tk] < Tk —(5—2w)]+ Tk —4]

8 [112[1|Tk] <Tlk—(5—-3w)]+Tk—(4—w)

9 |1(3|10|Tk] <T[k—(5—4w)]+T[k — (4 — 2w)

10 [2|0(2|T'[k] < Tk — (6 —2w)] + Tk — (34 2w)

11 |2{1|1|Tk] < Tk — (6 — 3w)] + T[k — (3 + w)]

12 |212|10|T'[k] < T[k — (6 — 4w)] + T[k — 3]

13 |3[0|1|T'[k] < Tk —(7T—3w)]+ Tk — (2 + 3w)

14 (3|10 |Tk] < Tk — (7T —4w)] + Tk — (24 2w)

15 |4[0|0|T'[k] < Tk — (8 —4w)] + T[k — (1 + 4w)
Table 2

C.2 The (1,n)-case

We state Table 5, which covers all recursions derived from integer solutions of
x+y+ 2z =25, where z, y and z are the number of occurrences of cases a., b’
and c. in Table 4. Table 6 covers all recursions derived from integer solutions
of x +y 4+ z = 6. Both tables refer to the parameterized version on MAS on
(1,n)-graphs. To derive the corresponding tables when we measure in m, simply
transform any T'[k] < Tk —a]+ Tk —b] to T[m] < T[m — (a+1)] +T[m — b].

Notice again that these tables are correct upper bounds in particular because
we have shown in point 6. of Theorem 2 that we will always find some non-null
value still attached to neighbors of arcs we branch on.
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No.|j|q|? |Derived recursion
1 10]0|4|T[m] < T[m — 5] + T[m — 5]
2 |0[113|Tm] <Tm— (5 —w)]|+Tm— (5—w)]
3 101212|Tm] < Tim— (5—2w)]+T[m— (5—2w)
4 (0(3|1|T[m] < T[m — (5 —3w)] +T[m — (5 — 3w)
5 (0|40 |Tm] < Tim — (5 —4w)] + T'[m — (5 — 4w)
6 |110{3|T[m] <T[m — (6 —w)]+T[m — (4 + w)]
7 (1|12 |T[m] < Tm — (6 — 2w)] + T[m — 4]
8 |112{1|Tm] <T[m — (6 —3w)] +T[m — (4 — w)]
9 [113[0|T[m] < Tim — (6 —4w)] + T[m — (4 — 2w)
10 12(0]12|Tm] < Tm — (7 — 2w)] + Tm — (3 + 2w)
11 |2(1{1|Tm] < Tm — (7 — 3w)] + Tim — (3 + w)]
12 [2|2(0|T'[m] < T'm — (7 — 4w)] + T'[m — 3]
13 13[0|1|T[m] < Tm — (8 — 3w)] + Tm — (2 + 3w)
14 [3[1]0[T]m] < Tim — (8 — 4w)] + T[m — (2 + 2w)
15 {4100 |T'[m] < T'm — (9 — 4w)] + Tm — (1 + 4w)
Table 3.

a-arc g |a.| b c.

MAS 1| w |(1—-w)

Deletion|1| 1 |(1—w)

Table 4.

No.|z|y|z |Derived recursion
1 [5|0[0|T[k] < Tk —5]+T[k— 6]
2 [4[1[0|Tk] < T1k — 5] + Tk — (5 + w)]
3 [4[0[T|T[k] < Tlk — (5 —w)] + TTk — (6 — w)]
1 [3[2[0|TK < T1k —5] + Tk — (4 + 2w)]
5 [3[1[1|TR < T1k— (5 —w)] + ITk — 5]
6 [3[012|TTk < TTk — (5 — 2w)] + Tk — (6 — 20)]
7 [2[3[0|T[k] < T[k — 5] + Tk — (3 + 3w)]
8 RR(I[TH <Tk—0 )]+ Tk — (4 + )]
9 [2[1[2[Tk] < Tk — (5 —2w)] + 1Tk — (5 — w)]
10 [2[0[3 [Tk < Tk — (5 — 3w)] + Tk — (6 — 3w)]
11 [L[4]0[T[k] < Tk — 5] + TTk — (2 + 4w)]
12 [1[3[T[Tk] < Tk — (5 —w)]+ Tk — (3 + 2w)]
13 [12]2|T[k] < Tk — (5 — 2w)] + Tk — 4]
4 113|Tk < Tk — (5 —3w)] + Tk — (5 2w)
15 1|04 | T[] < Tk — (5 — 4w)] + Tk — (6 — 4w)
16 [0[5]0 [Tk < Tk — 5] + TTk — (1 + 50)]
17 [0[A[T[TkR < Tk — (5 —w)] + Tk — (2 + 3w)
S [0B2[Tk < Tk —(—2w)] +TTk— (3 +w)
19 [0[2[3| TR < Tk — (5 —30)] + Tk — (4—w)
20 |0 1[4[TTk] < TTk — (5 — 4w)] + Tk — (5 — Bw)
21 (0]0[5 [Tk < Tk — T Tk — (6—50)




No.|z|y|z |Derived recursion

1 (6]0|0|Tk] <T[k—6]+T[k—"17

2 |5|1|10|Tk] < T[k —6]+T[k — (6 + w)]

3 5|0[1|Tk] <Tlk—(6—-—w)]+Tk—(7T—w)]
4 |41210|Tk] <Tk—-6]+Tk—-(5+w)

5 |4|1|11|Tk] <Tk—(6—-w)]+T[k—6

6 |4|0|12|Tk] <T[k — (6 —2w)]+ T[k — (7T — 2w)]
7 13|30 |T'k] < T[k—6]+T[k— (4+ 3w)]

8 |312|1|Tk] <T[k— (6 —w)]+T[k— (5+ w)]
9 |3|1|12|Tk] < T[k — (6 —2w)]+T[k — (6 —w)]
10 |3|0[3|T'[k] < Tk — (6 —3w)] + Tk — (7T — 3w)]
11 |2(4|0|T'[k] < T[k — (6)] + T[k — (3 + 4w)]

12 |123|1|Tk] < Tk — (6 —w)]+ Tk — (4+ 2w)]
13 |2|2(2|T'[k] < Tk — (6 —2w)] + Tk — 5]

14 |12(1|13|T'[k] < Tk — (6 —3w)] +T[k — (6 — 2w)
15 |2(0|4|T'[k] < Tk — (6 —4w)] + T[k — (7 — 4w)
16 |1|5(0|T'[k] < Tk — 6] + T[k — (2 + 5w)]

17 |1{4|1|Tk] < Tk — (6 —w)]+ Tk — (34 3w)
18 |1(3|12|Tk] < Tk — (6 —2w)]+ Tk — (4+w)
19 |1|2(3|Tk] < Tk — (6 —3w)]+Tk—(5—w)
20 |1(1|4|T[k] < Tk — (6 —4w)] + T[k — (6 — 3w)
21 [1|0|5|T[k] < T[k — (6 — 5w)] + Tk — (7 — 5w)
22 |0(6|0|T[k] <T[k—6]4+ Tk — (14 6w)]

23 |0[5|1|Tk] <T[k— (6 —w)]+Tk—(2+4w)]
24 10|4|2|T[k] < Tk — (6 —2w)] + T[k — (3 + 2w)]
25 |0(3|3|T[k] < Tk — (6 — 3w)] + Tk — 4]

26 |0(2|14|T[k] <T[k— (6 —4w)]+ Tk — (5 — 2w)
27 10|115|T[k] < T[k — (6 —5w)] + Tk — (6 — 4w)
28 (0|0|6|T'[k] <T k— (7 —6w)
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