
Simulation-based analysis of E2E voting systems

Olivier de Marneffe, Olivier Pereira, Jean-Jacques Quisquater

Crypto Group – Université catholique de Louvain
Place du Levant, 3

B-1348 Louvain-La-Neuve, Belgium
{olivier.demarneffe, olivier.pereira,

jean-jacques.quisquater}@uclouvain.be

Abstract. End-to-end auditable voting systems are expected to guar-
antee very interesting, and often sophisticated security properties, in-
cluding correctness, privacy, fairness, receipt-freeness, . . . However, for
many well-known protocols, these properties have never been analyzed
in a systematic way. In this paper, we investigate the use of techniques
from the simulation-based security tradition for the analysis of these
protocols, through a case-study on the ThreeBallot protocol.
Our analysis shows that the ThreeBallot protocol fails to emulate some
natural voting functionality, reflecting the lack of election fairness guar-
antee from this protocol. Guided by the reasons that make our security
proof fail, we propose a simple variant of the ThreeBallot protocol and
show that this variant emulates our functionality.

1 Introduction

End-to-end (E2E) universally auditable voting systems, which include Punch-
scan [1, 2], Prêt à Voter [3], ThreeBallot, VAV, and Twin [4] for instance, attract
more and more attention from the scientific community due to the highly desir-
able security properties they can offer while preserving a high level of usability.
By including the delivery of receipts that can be used for verification on a public
bulletin board, those systems allow voters to get confidence into the facts that
their ballot selection has been cast as intended, properly recorded, and included
in the final tally. A central challenge in the design of these systems is the con-
struction of vote receipts that can be efficiently used for auditing elections, while
not introducing the possibility of coercing voters.

While these voting systems are expected to guarantee sophisticated secu-
rity properties, like correctness of the tally, ballot secrecy, election fairness, and
receipt-freeness, only very few works address the precise definition (and proof)
of the properties guaranteed by these protocols. This fuzziness on the properties
guaranteed by protocols is actually also reflected in the definition of these proper-
ties: as an example, the notions of coercion resistance and/or receipt-freeness [5],
which informally guarantee that a voter should not be able to convince anyone
else of her vote, is defined in three different ways by Juels et al. [6], Delaune et
al. [7], and Moran and Naor [8].

Dagstuhl Seminar Proceedings 07311
Frontiers of Electronic Voting
http://drops.dagstuhl.de/opus/volltexte/2008/1297

In this paper, we investigate the modeling and analysis of E2E voting sys-
tems through the case-study of the ThreeBallot system [4, 9], which presents the
interesting characteristic of not relying on the use of any cryptographic scheme.
We perform our analysis by comparing the considered E2E protocol to an ideal
functionality, following the simulation-based security approach [10, 11] and the
notion of secure protocol emulation, as used in the UC [12] and RSim [13] frame-
works for instance.

To this purpose, we define a generic ideal functionality for voting, capturing
the functionalities used by Groth [14] and Moran and Naor [8] for instance. We
then describe the ThreeBallot protocol and compare it to a natural instance
of our functionality. This analysis shows that the ThreeBallot protocol actually
does not realize the considered functionality, reflecting the fact the election fair-
ness in not guaranteed by this protocol (this has also been observed by Araujo
et al. [15] and Clark et al. [16]). As a result, we propose a relaxed version of our
functionality, which quantifies the information leaked by the receipts issued in
ThreeBallot elections.

Observing the reasons that made the emulation proof fail for our original
functionality, we then propose a simple variant of the ThreeBallot protocol and
show that it securely emulates our original functionality. Relying on the compos-
ability of the secure protocol emulation notion, we split our proof into two stages:
in a first stage, we show that the use of the ThreeBallot receipts guarantees the
authenticity of the public bulletin board. Then, relying on this first result, we
show that the ThreeBallot protocol with authentic bulletin boards emulates our
functionality. We eventually observe that, up to the forced abstention case that
we did not consider here, a protocol securely emulating the functionality we
consider here also satisfies the receipt-freeness property proposed by Moran and
Naor [8].

2 Modeling voting systems

2.1 Voting in an ideal world

Voting systems involve sophisticated protocols, designed to be used in complex
environments. Specifying their properties in such context might therefore be a
challenging task. A more accessible challenge would probably be to specify the
expected behavior of a voting system in an ideal world, where parties can be
trusted, and communication channels are assumed to be private and authentic.
Intuitively, in such a context, each voter Vi from a set {V1, . . . Vn} will simply
identify herself by showing her identifier Ui to a trusted party Fvote, and give
this party her vote xi. Then, when Fvote has received all votes, it will compute
the election result as f(x1, . . . , xn), and broadcast it.

This specification of a voting system probably corresponds to the first intu-
ition we have from a voting process: all votes are as private as possible (nobody
will ever be able to infer more about them than what can be inferred from
the election outcome), and the election outcome is always correct, as Fvote is
assumed to be trusted.

2

However, this specification is clearly too strong: we usually cannot expect a
voting systems to hide the mere fact that someone voted to external observers.
Besides, it should probably be tolerated that an adversary can make an election
fail, by sabotaging some part of the election process or corrupting some parties.
The way it is tolerated that an adversary interferes with a voting system will
typically change from one system to another. Therefore, we will leave this part
of the voting functionality unspecified for the moment, and simply consider that
Fvote accepts to play some protocol π with the adversary, in the ideal world. (We
will see concrete instances of π later). The behavior of the functionality Fvote is
illustrated in Fig. 1.

2.2 Voting in the real world

We now would like to show that a real voting system securely emulates this
ideal functionality. To this purpose, we use the notion of secure emulation, as
proposed in the universally composable (UC) security framework [12], or in the
reactive simulatability framework [13] for instance.

Intuitively, one says that a protocol emulates an ideal functionality if every-
thing an adversary can do by interacting with the protocol can be matched by
another adversary interacting with the ideal functionality. Now, if the behavior of
the ideal functionality can be regarded as safe, this implies that the adversaries
interacting with the protocol do not harm. The simulation-based approach of
security has two main benefits: first, the ideal functionality being typically much
simpler than the protocol, it is much easier to understand what a sophisticated
protocol really does by looking at the functionality it emulates. Secondly, secure
emulation definitions usually come with secure composition theorems, which al-
low using a functionality as a component of larger protocols while guaranteeing
that the security properties will be preserved when the functionality is replaced
by any protocol emulating it.

In the following sections we investigate the use of this secure emulation notion
on a example: the ThreeBallot voting system.

Fvote

Vi

A

(Ui, xi)
f(x1, . . . , xn)/FAIL

π

Fig. 1. Template of the ideal functionality for an E2E voting system

3

3 The ThreeBallot E2E voting system

The ThreeBallot system, originally proposed by Rivest [9] and later improved in
collaboration with Smith [4], is a paper-based E2E system with the appealing
specificity that it does not make use of any cryptographic algorithm or any
other sophisticated computational procedure in any stage of its use. We briefly
summarize the ThreeBallot system definition and the related analysis works.

3.1 Protocol description

A voter taking part to an election using the ThreeBallot system receives a paper
multi-ballot made of three ballots, each containing the list of candidates with
bullets next to them, but all differing by a ballot-ID present at the bottom of
each ballot. Those ballot-IDs are unique, random, all generated independently
of each other, and assumed to be too complex to be memorized. An example of
multi-ballot that can be used for a race of five candidates is proposed in Fig 2.

BALLOT

Alice ©
Bob ©
Carol ©
David ©
Ed ©

397124768

BALLOT

Alice ©
Bob ©
Carol ©
David ©
Ed ©

519372049

BALLOT

Alice ©
Bob ©
Carol ©
David ©
Ed ©

109374926

Fig. 2. An example of empty multi-ballot for a single race election with five candidates.

In order to express her opinion, the voter places the three ballots side-by-side
in the voting booth, and fills them as follows: (i) if she approves a candidate, she
randomly fills two of the three bullets corresponding to that candidate, while
(ii) she randomly fills one of the three bullets corresponding to the candidates
she rejects. As a result, each row of a filled multi-ballot contains one or two filled
bullets (not zero, nor three).

When this is done, the multi-ballot is inserted into a “checker machine” that
verifies whether it was correctly filled. If it is the case, the voter asks the checker
machine to produce a copy of one of the three ballots, which will be used as a
take-home receipt, and the machine then drops all three original ballots in the
ballot box. One may observe that the receipt cannot be used by the voter to
convince a third party of the candidate(s) for which she voted: given one ballot,
it is possible to build a pair of ballots so that the reconstructed multi-ballot is
a valid vote for any candidate(s) of the election.

4

Once the election is over, all the casted ballots are mixed and published on a
Public Bulletin Board (PBB). The outcome of the election can then be computed
by anyone: the number of votes for one candidate is the number of filled bullets
for this candidate minus the number of voters. Each voter can also be assured
that her vote was taken into account properly by checking that her receipt is
on the PBB (using the ballot-ID). This verification process guarantees that, if
everyone checks the integrity of its receipt on the PBB, the probability that
someone can alter t ballots without being noticed is actually equal to (2/3)t.

3.2 Related works – Analysis and critics of ThreeBallot

It has been observed and discussed by several authors that, when the number of
election candidates is large, the receipt-freeness property of ThreeBallot cannot
be guaranteed. Notably, Appel [17] and Strauss [18, 19] showed that a receipt
associated with the PBB may result in the multi-ballot reconstruction and thus
to voter privacy loss, which can lead to attacks by coercion or vote-selling. This
attack is essentially possible because the number of ways of filling a ballot grows
exponentially with the number of candidates, which makes it highly probable,
when the number of voters is small, that only two ballots can be gathered with
one given receipt to make a valid vote. Some Rivest’s students at MIT showed
that this kind of attack is practical [20]: they corrupted a mock election orga-
nized for a course. As a result, Rivest and Smith [4] introduced the Short Ballot
Assumption, stating that the length of the ballots must be kept small (possibly
by splitting them into several parts), which guarantees that a reconstruction is
not likely to be possible. Concrete bounds on the length of the ballots have been
estimated by several authors, including [19, 21].

Another issue, which we address in more detail in this paper, is the fairness
of the elections: Araujo et al. [15] and Clark et al. [16] show that it is possible
to approximate the outcome of an election by using a few receipts only. As far
as we know, no practical solution to this problem has been proposed.

Although these researches pointed issues in ThreeBallot, we are still con-
vinces that this protocol remains quite appealing considering the simplicity of
the proposed solution.

4 Modeling the ThreeBallot protocol

We now describe our modeling of the ThreeBallot protocol, and a simple in-
stance Fvote(πTB) of the Fvote ideal functionality, that we would expect to be
emulated by this protocol. However, we will observe that the ThreeBallot pro-
tocol does not emulate our candidate Fvote(πTB) functionality. Examining the
reasons that make the secure emulation proof fail, we will propose a relaxed ver-
sion of the Fvote(πTB) functionality, which will give a better idea of the quantity
of information leaked by the ThreeBallot protocol.

5

Vi

PS A PBB Auth

multi
-ba

llot
i,
j

ri

Ui

f(x1, . . . , xn)/
FAIL

BB
BB′ check

r i

re
q i

check

complain

Fvote

Vi

S A

(Ui, xi)

f(x1, . . . , xn)/FAIL

Ui

f(x1, . . . , xn)

OK/FAIL

Ui

reqi

ri

BB

BB′

Fig. 3. Real world model (top) — Ideal world model (bottom)

4.1 Ideal world and real world definitions

Real world model Our modeling of the real world interactions taking place in
the ThreeBallot system is depicted on top of Fig. 3. These interactions take place
as follows. First, the voter Vi casts her vote using a (valid) multi-ballot i sent to
the poling station (PS), together with the index j of the ballot she would like to
have as a receipt. The polling station then sends this receipt, ri, back to Vi. It
also informs the adversary A that this voter voted by sending him the identifier
of the voter (Ui). The adversary may now ask Vi to show him her receipt through
the instruction reqi. We consider that the voters answer this request every time
but we will bound the number of times the adversary can issue it.

Once the casting period is over, the polling station sends the ballot box (BB)
to the adversary who can modify it as he wishes in order to produce a new ballot
box (BB′) which is sent to the public bulletin board (PBB). So, we assume that
the adversary is not able to make any change in the ballot box until the end of
the vote casting process.

The audit process consists in several interactions between the voters, the PBB
and an authority centralizing the complains. Voters check whether their receipts
are present on the bulletin board and complain to the authority if it is not the
case. After verification, the authority records the objections and, when the time

6

for complaining is over, broadcasts the outcome of the election f(x1, . . . , xn)
(that is, the number of votes casted for the different candidates), or declares
that the election failed (due to tampering detected during the audit phase).

Ideal world model We now describe a candidate ideal functionality Fvote(πTB)
for the ThreeBallot protocol, based on the Fvote functionality described in Sec-
tion 2.1, and in which the πTB protocol describes the interactions between the
ideal voting functionality and the adversary.
Fvote(πTB) executes as follows:
1. On input xi from voter Vi, Fvote(πTB) stores xi and transmits Vi’s identifier
Ui to the adversary;

2. When the vote casting process is complete, Fvote(πTB) sends the election
outcome f(x1, . . . , xn) to the adversary;

3. On input OK or FAIL from the adversary, Fvote(πTB) broadcasts f(x1, . . . , xn)
or FAIL (respectively) as election outcome.
We observe that, in this definition, the protocol πTB counts three types of

messages. Messages of the first type notify the adversary that the voter Vi casted
her vote. The same information is transmitted to the adversary in our model of
the ThreeBallot protocol. The second message type corresponds to the sending
of the election outcome to the adversary, waiting for an approval which is sent
through the last message of the πTB protocol. This corresponds to the fact
that, in the ThreeBallot protocol, the adversary is assumed to be able to access
and change the ballot box before it appears on the bulletin board. However,
the election integrity is perfectly guaranteed here: the ideal adversary is able
to make the election fail, but not to make it result in a wrong tally. (Actually,
small discrepancies between the ideal and real worlds will however be tolerated,
reflecting the fact that the ThreeBallot adversary has a noticeable probability
to make small changes in the ballot box content without being noticed.)

It is worth noting that, as identity of voters is considered to be public infor-
mation, this ideal functionality guarantees all the classical security requirements
for a voting protocol (correctness, privacy, fairness...). The only available infor-
mation about the cast votes is what can be inferred from the election outcome,
once it has been revealed.

4.2 Simulatability of the ThreeBallot protocol

Following the secure emulation notion discussed in Section 2.2, we now would
like to show that everything that can be done by an adversary interacting with
the ThreeBallot protocol can be matched by another adversary interacting with
the Fvote(πTB) functionality. To this purpose, we build a simulator S which will
interact with Fvote(πTB) and use these interactions to feed A with a consistent
view of the real world protocol execution. So, the ideal world adversary is actually
made of a simulator S that runs a copy of the real world adversary A. A high-
level view of these interactions is represented in the lower part of Fig. 3.

7

Fvote(πT B)-based simulation impossibility In order to simulate a real
world protocol execution, the simulator S has to (i) provide A with the user-id
of the voters, (ii) answers A’s requests for vote receipts, (iii) send A a ballot-box
that is going to be consistent with the election result, (iv) decide whether A’s
changes in the fake ballot box are supposed to lead to an election fail.

The first part of this simulation is trivial, as Fvote(πTB) gives S the user-id
of the voters: S can just forward this message to A. However, the second and
third parts are much more problematic.

Consider, for the sake of simplicity, a single race election with only two tra-
ditional candidates, Alice and Bob. We can observe that, for each of these can-
didates, a voter has actually 9 ways to express her vote: these votes are depicted
in Tab. 1.

Multi-ballots for Alice Multi-ballots for Bobˆ ◦
◦

˜ˆ •
◦

˜ˆ •
•

˜ ˆ ◦
◦

˜ˆ •
•

˜ˆ •
◦

˜ ˆ •
◦

˜ˆ ◦
◦

˜ˆ •
•

˜ ˆ ◦
◦

˜ˆ ◦
•

˜ˆ •
•

˜ ˆ ◦
◦

˜ˆ •
•

˜ˆ ◦
•

˜ ˆ ◦
•

˜ˆ ◦
◦

˜ˆ •
•

˜ˆ •
◦

˜ˆ •
•

˜ˆ ◦
◦

˜ ˆ •
•

˜ˆ ◦
◦

˜ˆ •
◦

˜ ˆ •
•

˜ˆ •
◦

˜ˆ ◦
◦

˜ ˆ ◦
•

˜ˆ •
•

˜ˆ ◦
◦

˜ ˆ •
•

˜ˆ ◦
◦

˜ˆ ◦
•

˜ ˆ •
•

˜ˆ ◦
•

˜ˆ ◦
◦

˜ˆ •
◦

˜ˆ •
◦

˜ˆ ◦
•

˜ ˆ •
◦

˜ˆ ◦
•

˜ˆ •
◦

˜ ˆ ◦
•

˜ˆ •
◦

˜ˆ •
◦

˜ ˆ ◦
•

˜ˆ ◦
•

˜ˆ •
◦

˜ ˆ ◦
•

˜ˆ •
◦

˜ˆ ◦
•

˜ ˆ •
◦

˜ˆ ◦
•

˜ˆ ◦
•

˜
Table 1. Possible multi-ballots in a two candidates election

We can see every possible ballot does not occur with the same probability.
Tab. 2 shows the different distribution for specific election outcomes. The last line
of the table gives the distribution of the receipts for any election outcome when
there is a proportion p of votes for Alice. Obviously, this is also the distribution
of the ballots in the ballot box.

Receipts r =
ˆ ◦
◦

˜
r =

ˆ •
◦

˜
r =

ˆ ◦
•

˜
r =

ˆ •
•

˜
100% “Alice” 2/9 4/9 1/9 2/9

Tie 2/9 5/18 5/18 2/9

100% “Bob” 2/9 1/9 4/9 2/9

Prop. p for Alice 2
9

1
9

+ p
3

1
9

+ 1−p
3

2
9

Table 2. Distribution {ri} for different election outcomes – in the real world

However, the simulator may have to produce receipts during the election
process: the adversary is able to ask parties for their receipts before all votes
have been cast. Looking at the distributions in Tab. 2, he will however not be
able to produce receipts distributed as in the ideal world if he does not know p,
that is, if he does not know the election outcome in advance.

8

This impossibility to simulate a view of the real world election by interacting
with Fvote(πTB) actually reflects the lack of election fairness guarantee of the
ThreeBallot protocol: by looking at receipts, a real world adversary is actually
able to obtain an estimation of the election outcome.

A vote leaking version of Fvote(πT B) In order to reflect this lack of fairness
in the ThreeBallot protocol, we propose a variant of our ideal functionality,
which we call Fvote(πTBL), which is an instance of the Fvote functionality with
a protocol πTBL leaking some information on the votes casted to the adversary
(while the πTB protocol was keeping those votes perfectly private).

The Fvote(πTBL) functionality is essentially the same as the Fvote(πTB) func-
tionality, except that the first part of its definition is modified as follows:

On input xi from voter Vi, Fvote(πTBL) stores xi and tosses a biased coin c
giving “heads” with probability 4/9. Then if:
– if c is “heads”, Fvote(πTBL) transmits Vi’s identifier Ui to the adversary

(as Fvote(πTB) does)
– if c is “tails”, Fvote(πTBL) transmits Ui together with the vote xi to A

with probability 4/5, or with a fake vote xi with probability 1/5
Essentially, the Fvote(πTBL) functionality leaks vote information following

the distributions described in Tab. 2: with probability 4/9, the receipt chosen by
the voter will have two identical bullets, and this is independent of the cast vote
(so, no information is leaked); while with probability 5/9, the receipt contains
two different bullets, and these bullets give a 4/5 probability of correctly guessing
the candidate supported by the voter (so, the correct vote is transmitted with
probability 4/5).

So, by interacting with Fvote(πTBL), a simulator can produce a convincing
receipt ri for Vi as follows, assuming di a random bit chosen by the simulator
and bi is the (possibly wrong) vote information transmitted by Fvote(πTBL):

when receiving (Vi) if di = 0, choose ri =
[◦
◦
]

else ri =
[•
•
]

when receiving (Vi, bi) if bi = Alice, choose ri =
[•
◦
]

else ri =
[◦
•
]
.

5 A tweak on the ThreeBallot protocol

In the previous section, we showed that the ThreeBallot protocol does not se-
curely emulate the Fvote(πTB) functionality. Essentially, the reason of this non-
emulation comes from the fact that the receipt of each voter contains some
probabilistic information about the way she voted, which in turn prevents a
simulator to produce a convincing receipt if he has no information about the
content of the vote.

So, in order to securely emulate the Fvote(πTB) functionality, a protocol
should not leak any noticeable information about the votes. This suggests a
simple modification in the ThreeBallot protocol, which we present and analyze
in this section.

9

5.1 Definition of the modified protocol

A simple way to modify the original protocol in order to achieve simulatability
is to choose the receipt before expressing any voting preference: therefore, no
information about the vote can be leaked by any receipt. The protocol variant
we suggest is as follows:

(i) While in the voting booth, the voter first randomly fills one bullet per row
of the multi-ballot (or receives such a pre-filled multi-ballot);

(ii) She decides which of the three ballots she wants to be copied and taken
away as a receipt;

(iii) She casts her vote as in the original protocol, except that she is no more
allowed to modify the ballot she pointed out as the receipt.

It is worth noting that she is still able to express her vote by filling one bullet
on the row(s) she wants to vote for on the two remaining ballots.

How to insure that the voter follows the procedure, not modifying the receipt-
ballot, is a practical issue we leave out of this study. For instance, this could
be achieved by committing on the multi-ballot to the checker machine before
stage (iii), and by requiring the checker machine to verify that the receipt is not
modified during that stage.

5.2 Simulatability of the modified ThreeBallot protocol

We claim that our variant of the ThreeBallot protocol securely emulates the
Fvote(πTB) functionality, under the following assumptions:
– there is a large proportion of the receipts which are unknown to the adver-

sary, and
– the Short Ballot Assumption is satisfied.

We split our analysis into two steps, introducing an intermediate system IS
between the real world system RWS and the ideal world system IWS depicted
in Fig. 3.

The intermediate system Our intermediate system IS, which is depicted in
Fig. 4, differs from RWS by the fact that the ballot box used in the tally is
guaranteed to be authentic. In order to reflect this, we assume the existence of
an authentic transmission functionality Fauth, inspired from Canneti’s message
authentication functionality [12, Section 6.2], which behaves as follows: when it
receives a ballot box, it forwards it to the adversary, then waits for an OK or
FAIL message and, according to the value of this message, forwards the ballot
box or the FAIL signal (respectively) to the authority.

IS is then built from RWS as follows: the polling station PS remains iden-
tical; each voter Vi is replaced by a voter V ′i that behaves as Vi except that it
does not take part into any audit phase, the PBB is removed (it is not needed
anymore as election integrity is now guaranteed), and the authority Auth is re-
placed by an authority Auth′ that simply receives the ballot box or the FAIL
signal and broadcasts the election outcome accordingly. The IS adversary is now
built as a copy of the RWS adversary A interacting with a simulator S ′.

10

V ′i

PS AS ′

Fauth

Auth′

mult
i-b

all
ot i,

j

ri

Ui

f(x1, . . . , xn)/
FAIL

BB

BB
/FA

IL

BB OK/
FAIL

rireqi Ui

reqi

ri

BB

BB′

Fig. 4. Intermediate System (IS) for ThreeBallot

From RWS to IS The distinction from the the view of A in RWS and in
IS can come from one single place: the election outcome. Indeed, S ′ can see all
other messages that A sends or receives in RWS, and can just forward them
transparently.

So, the challenge for S ′ is essentially to decide when it must send the signal
OK or FAIL to Fauth. We claim that S ′ can adopt the following strategy:
– If the ballot box BB′ differs from BB by a ballot that S ′ forwarded between

a voter and A, then send the FAIL instruction to Fauth;
– If any other ballots have been modified by A, then estimate the probability

that this modification would be detected in RWS, and send the OK/FAIL
message to Fauth accordingly.
The probability that any change in the ballot box will be noticed can be

estimated from the distribution of the receipts in RWS, which is given in Tab. 3.

Receipts r =
ˆ ◦
◦

˜
r =

ˆ •
◦

˜
r =

ˆ ◦
•

˜
r =

ˆ •
•

˜
Probability 4

9
2
9

2
9

1
9

Table 3. Distribution of receipts in the real world (modified protocol)

The behavior we just described guarantees that the election will fail with the
same probability inRWS and IS. On the other hand, when the election succeeds,
discrepancies may appear between the election outcomes in these two worlds, as
the outcome in IS does not reflect the changes in the ballot box performed by
A. However, we observe that the difference between the two distributions of the
election outcome is small if the SBA assumption is satisfied, that is, when ballots
are short, the number of voters is large, and the number of receipts obtained by
the adversary is small.

11

For instance, in the case of our two candidates election, we can observe that
the adversary’s best strategy is to change ballots of the form

[•
•
]
. If we assume

that the adversary does not see any receipt, a change in such a ballot will only
be noticed with probability 1/9. Therefore, if the adversary tampers t of those
receipts, he will get caught during the audit process with probability 1− (8/9)t

which is above 1/2 for t > 6 and around 1 − 10−5 for t = 100 (we expect that
the strong impact of a single modification notice will convince him to keep the
ballot box integrity).

So, we can consider that the audit process of the ThreeBallot guarantees that
the tally of a ThreeBallot election will be very close from the correct one.

From IS to IWS We just showed that everything that an adversary can do by
interacting with the real world system can essentially be done by an adversary
interacting with our intermediate system. We now show that this behavior can
also be matched by an adversary interacting with the ideal world system.

The main difference between IS and IWS lies in the fact that the IWS
adversary does not see the real world receipts and ballot box anymore. Instead,
he only sees the election tally before it is made public. So, we need to adapt the
strategy of our simulator accordingly, transforming S ′ into the IWS simulator
S depicted in Fig. 3.

The strategy of S in order to produce the receipts and the ballot box can be
as follows:
– WhenA asks for a receipt from the voter Vi, S produces a receipt by selecting

a ballot randomly according to the receipt distribution indicated in Tab. 3;
– When A receives the tally from Fvote(πTB), it produces a ballot box by

internally playing an election leading to the same tally, while being consistent
with the already produced receipts.

The rest of S’s behavior can be taken from the behavior of S ′.
We observe that the distribution of the receipts sent by S to A perfectly

matches the one of the receipts transmitted in RWS and IS. Besides, the Short
Ballot Assumption guarantees that the adversary is not able to reconstruct the
multi-ballot corresponding to a receipt (linked to a voter) by finding the two
missing parts in the ballot box. Therefore, A will not be able to distinguish the
distribution of the ballot box he receives in IWS from the one he receives in the
other systems. This shows that our variant of the ThreeBallot protocol emulates
the Fvote(πTB) functionality and concludes our analysis.

6 Conclusion

Throughout this paper, we reported a case-study on the use of standard cryp-
tographic protocol analysis techniques, namely simulation-based security in the
line of the UC framework, on the ThreeBallot end-to-end voting protocol.

These techniques provided a systematic way to detect potential issues in the
ThreeBallot scheme, and suggested ways to avoid those issues: we propose a

12

variant of ThreeBallot that guarantees election fairness at the price of a linear
loss in the precision of the election tally.

References

1. Fisher, K., Carback, R., Sherman, A.T.: Punchscan: Introduction and system
definition of a high-integrity election system. In Ryan, P., ed.: IAVoSS Workshop
On Trustworthy Elections (WOTE 2006). (June 2006)

2. Popoveniuc, S., Hosp, B.: An introduction to punchscan. In Ryan, P., ed.: IAVoSS
Workshop On Trustworthy Elections (WOTE 2006). (June 2006)

3. Chaum, D., Ryan, P.Y.A., Schneider, S.A.: A practical, voter-verifiable election
scheme. Technical Report CS-TR: 880, School of Computing Science, Newcastle
University (December 2004)

4. Rivest, R.L., Smith, W.D.: ThreeVotingProtocols: ThreeBallot, VAV, and Twin.
In: Electronic Voting Technology Workshop (EVT’07). (August 2007)

5. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: Proceedings of
the 26th ACM Symposium on Theory of Computing, Montreal, PQ, ACM (May
1994) 544–553

6. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
ACM Workshop on Privacy in the Electronic Society, ACM (2005) 61–70

7. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in elec-
tronic voting. In: 19th IEEE Computer Security Foundations Workshop, (CSFW-
19), IEEE Computer Society (2006) 28–42

8. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting
privacy. In Dwork, C., ed.: CRYPTO 2006. Volume 4117 of Lecture Notes in
Computer Science., Springer (September 2006) 373–392

9. Rivest, R.L.: The ThreeBallot voting system. Avaiable from http://people.

csail.mit.edu/rivest/Rivest-TheThreeBallotVotingSystem.pdf. Accessed on
Aug 12, 2007. (October 2006)

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. In: Proceedings of the 17th Annual ACM Symposium on Theory
of Computing (STOC’85). (1985) 291–304

11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on the Theory of Computing (STOC), ACM Press (1987)
218–229

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In Naor, M., ed.: Proceedings of the 42nd Annual Symposium on Foun-
dations of Computer Science, IEEE Computer Society (2001) 136–145 Full version
available on http://eprint.iacr.org/2000/067.

13. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: IEEE Symposium on Security and
Privacy, Oakland, CA, IEEE Computer Society (May 2001) 184–200

14. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In Jakobsson, M., Yung, M., Zhou, J., eds.: Applied Cryptography
and Network Security, Second International Conference, ACNS 2004. Volume 3089
of LNCS., Springer (2004) 46–60

15. Araujo, R., Custodio, R.F., van de Graaf, J.: A verifiable voting protocol based on
Farnel. In Benaloh, J., ed.: IAVoSS Workshop On Trustworthy Elections (WOTE
2007). (July 2007)

13

16. Clark, J., Essex, A., Adams, C.: On the security of ballot receipts in e2e voting
systems. In Benaloh, J., ed.: IAVoSS Workshop On Trustworthy Elections (WOTE
2007). (July 2007)

17. Appel, A.A.: How to defeat rivest’s threeballot voting system. Available from http:

//www.cs.princeton.edu/~appel/papers/DefeatingThreeBallot.pdf. Accessed
on Aug. 12, 2007 (October 2006)

18. Strauss, C.: The trouble with triples. a critical review of the triple ballot
(3ballot) scheme. Available from http://www.cs.princeton.edu/~appel/voting/

Strauss-TroubleWithTriples.pdf. Accessed on Aug. 12, 2007. (October 2006)
19. Strauss, C.: A critical review of the triple ballot voting system, part2: Crack-

ing the triple ballot encryption. Available from http://www.cs.princeton.edu/

~appel/voting/Strauss-ThreeBallotCritique2v1.5.pdf. Accessed on Aug. 12,
2007. (October 2006)

20. Jones, H., Juang, J., Belote, G.: Threeballot in the field. Term paper for MIT course
6.857. Available from http://theory.csail.mit.edu/classes/6.857/projects/

threeBallotPaper.pdf.. Accessed on Aug. 12, 2007. (December 2006)
21. Henry, K., Stinson, D.R., Sui, J.: The effectiveness of receipt-based attacks on

threeballot. Cryptology ePrint Archive, Report 2007/287 (2007) http://eprint.

iacr.org/.

14

