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Abstract: Ranking theory delivers an account of iterated contraction; each ranking function
induces a specific iterated contraction behavior. The paper gives a complete axiomatization
of that behavior, i.e., a complete set of laws of iterated contraction. It does so by showing
how to reconstruct a ranking function from its iterated contraction behavior uniquely up to
multiplicative constant and thus how to measure ranks on a ratio scale.

1. Introduction

Ranking theory, as first presented in Spohn (1983, sect. 5.3, and 1988) is well
known by now to offer a complete model of the dynamics of belief, i.e., it allows
to state an arbitrarily iterable rule of belief change. By contrast, AGM belief revi-
sion theory, as beautifully summarized by Gärdenfors (1988), founders at the
problem of iterated belief change, as observed in Spohn (1983, sect. 5.2, and
1988, sect. 3), because it violates the principle of categorical matching, as Gärden-
fors, Rott (1995, p. 37) called it. Both theories agree, though, on single belief
changes.

There is a price to pay for the greater strength of ranking theory; it makes sub-
stantial use of numerical degrees of (dis-)belief. While one can well see how the
dynamics of belief works on the basis of these degrees, one may wonder about
their meaning; they look arbitrary and seem to lack intuitive access (unlike sub-
jective probabilities, for instance). By contrast, AGM belief revision theory, in
order to justify its revision postulates, only appeals to entrenchment orderings, an
ordinal and intuitively well manageable notion.

                                                  
1 This paper is a short version of the paper „The Measurement of Ranks and the Laws of Iterated
Contraction“ by Matthias Hild and me, the first version of which has been under consideration at
Artificial Intelligence Journal and a second version of which is in work. All further details and
proofs are to be found there.
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This difference does not weigh much for those only interested in computing,
but for the more philosophically minded – recall that both, AGM and ranking
theorizing, originated in philosophy – there remains a problem. What do numeri-
cal ranks mean? Where exactly is the difference between two numerically differ-
ent, but ordinally equivalent ranking functions? Just in vague feelings concerning
the strength of belief? This would certainly be a poor answer.

Is there really an objection? Yes, to some extent. Cardinal utility became ac-
ceptable only after von Neumann, Morgenstern (1944, ch. 3) proved that prefer-
ences conforming to certain axioms determine cardinal utilities on an interval
scale. Thus, the cardinal concept turned out to be definable by, or reducible to, the
ordinal concept; one cannot accept the one and reject the other. Ranks likewise are
psychological magnitudes, and hence it appears legitimate to demand a measure-
ment theory for them, too.

Presumably, though, the issue is not about measurement, but about logic. Cus-
tomarily, any logical calculus is ennobled by a correctness and completeness, i.e.,
soundness theorem. We need not rehearse here the historic examples for the tre-
mendous insight delivered by such soundness theorems. If the calculus looks sen-
sible, if the semantics is intelligible, and if a soundness theorem proves them to be
equivalent, then mutual support makes for a nearly unassailable theory.

AGM belief revision theory has these virtues. Originally, it came in a logical
disguise; its beginnings reach back to Gärdenfors’ (1978) epistemic approach to
the logic of counterfactuals. Its soundness theorem was that the revision postulates
(K∗1-8) (cf. Gärdenfors 1988, sect. 3.3) and the contraction postulates (K÷1-8)
(cf. Gärdenfors 1988, sect. 3.4) were proved to be exactly those justified by an
underlying entrenchment relation (cf. Gärdenfors 1988, ch. 4). By contrast, rank-
ing theory did not offer a comparable result, thus abetting the appearance of ranks
somehow being arbitrary.

There is no need, though, to ponder about the weight of these objections. They
simply do not apply, as this paper will constructively show. It will present a rigor-
ous measurement of ranks on a ratio scale in terms of iterated contractions; and in
the course of this measurement it will specify a complete set of laws of iterated
contraction, something much desired in its own right and in the present context
comparable to a soundness theorem in logic.

The basic idea of this paper is quite simple. It is to exploit iterated contractions
for getting information about the comparative size of rank differences. If the iter-



3

ated contractions behave appropriately, these rank difference comparisons will
behave appropriately, too, i.e., such that the theory of difference measurement as
propounded in Krantz et al. (1971, ch. 4) applies. It requires some skill, though, to
find an elaboration of this guiding idea that is intuitively illuminating as well as
formally sound.

The first elaboration of this idea is found in Hild (1997) that remained unpub-
lished. Independently, I had the same idea realized in Spohn (1999) in a still
awkward and incomplete way. To our knowledge, the present paper is the first
mature presentation of the issue.

The plan of the paper is straightforward. In section 2 we shall briefly introduce
ranking theory and its details as far as they will be required in the rest of the pa-
per. Section 3 works up to the desired measurement theorem. Section 4, finally,
inquires the laws of iterated contraction entailed by this account of rank measure-
ment.

2. A Brief Sketch of Ranking Theory

Ranking theory assumes propositions to be the objects of belief, and not sen-
tences or sentence-like representations. This is an important and debatable deci-
sion right at the beginning of all epistemological theorizing. As things presently
stand, it is at the same time a decision between being able and not being able to
pursue a substantial way of epistemological theorizing. So, let us make this as-
sumption without further discussion. Let W be a set of possibilities, e.g., possible
worlds, centered worlds, or small worlds, or what have you, and let A be any
Boolean algebra of subsets of W; the elements of A are called propositions. Only
in section 3 we shall require some further assumptions about the richness of the
Boolean algebra considered.

The core notion of ranking theory is this:

Definition 1: κ is a negative ranking function for A iff κ is a function from A into
R+ = R ∪ {∞} such that for all A, B ∈ A:
(a) κ(A) ≥ 0, κ(W) = 0, and κ(∅) = ∞,
(b) κ(A ∪ B) = min {κ(A), κ(B)} [the law of disjunction (for negative ranks)].
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Spohn (1983, 1988) originally referred to such functions as ordinal conditional
functions. Later on, they were mostly called ranking functions. We have now
added the adjective “negative”. The reason is their standard interpretation: nega-
tive ranks (that are non-negative numbers) are degrees of disbelief. Thus, κ(A) = 0
says that A is not disbelieved at all according to κ; κ(A) > 0 says that A is disbe-
lieved, and the stronger the larger κ(A). Hence, A is believed iff A  is disbelieved
to some degree, i.e., iff κ( A ) > 0. So, the axioms (1a) and (1b) say that ∅ is
maximally disbelieved and W thus maximally believed and in any case not disbe-
lieved, and that a disjunction is exactly as disbelieved as its less disbelieved dis-
junct. (1a) and (1b) entail:

(2) either κ(A) = 0 or κ( A ) = 0 or both [the law of negation].

We shall neither need nor presuppose the strengthening of axiom (1b) to infi-
nite disjunctions (without weakening minimum to infimum). This would force the
range to be well-ordered; and then ordinal or natural numbers are a natural choice.
For the more general theory without this strengthening the a range of real numbers
is more natural. This is also the more suitable choice for the present purpose of
developing a theory of measurement.

The structure introduced so far is well known in the literature under varying la-
bels, in the present negative version about disbelief or in the easily definable
positive version about belief. The distinctive feature of ranking functions is that
they are supplemented by a reasonable notion of conditional ranks; this is their
advantage, e.g., over Shackle’s (1961) functions of potential surprise or Cohen’s
(1970) operators of inductive support as well as over the possibility measures of
Dubois, Prade (1988) who had difficulties to intuitively motivate conditional de-
grees of possibility:

Definition 3: Let κ be a negative ranking function for A, and A ∈ A with κ(A) <
∞. Then, for any B ∈ A the conditional negative rank of B given A is defined as
κ(B | A) = κ(A ∩ B) – κ(A).

This is tantamount to:

(4) κ(A ∩ B) = κ(A) + κ(B | A) [the law of conjunction (for negative ranks)]
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The notion of conditional ranks helps us to various further notions of deep sig-
nificance. (Just think of the importance of conditional probabilities.) One such
notion is that of confirmation or of a reason, a terminological choice intended to
maintain the connection with traditional epistemology. A is a reason for B if A
supports or speaks for B or if A strengthens the belief in B, that is, if the belief in
B given A is firmer (or the disbelief weaker) than given A , or, in still other words,
if A is positively relevant to B. Of course, positive relevance is accompanied by
the derivative notion of negative relevance and irrelevance and their conditional
versions. All this is directly expressed in terms of ranking theory:

Definition 5: Let κ be a negative ranking function for A, and A, B ∈ A. Then A is
a reason for B or positively relevant to B w.r.t. κ iff κ( B  | A) > κ( B  | A ) or κ(B |
A) < κ(B | A ). A is a reason against B or negatively relevant to B w.r.t. κ iff κ( B  |
A) < κ( B  | A ) or κ(B | A) > κ(B | A ). Finally, A is irrelevant to or independent of
B w.r.t. κ iff A is a reason neither for nor against B w.r.t. κ. Conditional versions
of these notions are defined in a straightforward way.

The formal behavior of these notions is quite remarkable. Trivially, the reason
or positive relevance relation is reflexive. It is easy to see, moreover, that positive
relevance (like the other relevance notions) is symmetric, but not transitive, in
sharp contrast to what we are used from deductive reasons. So, reasons rather
yield mutual support and not arbitrarily extendible chains of inference. It is obvi-
ously an important task to describe and defend the philosophical significance of
this notion of a reason, though not a task for this paper. Here, we must be content
with the fact that we have an excellent intuitive grasp of positive relevance, i.e., of
reasons thus explained, a fact heavily exploited by the subsequent method of
measuring ranks.

The next important point is that conditional ranks allow us to state a general
dynamic law for ranking functions. The idea is not that upon receiving informa-
tion A you move to the ranks conditional on A. Since the rank of A  would then
rise to ∞, this would make sense only if you were absolutely certain of A. The idea
is rather to copy generalized probabilistic conditionalization as proposed by Jef-
frey (1965, ch. 11), that is, to assume that upon directly receiving information
only about A you assign to A and A  new degrees of belief depending on the firm-
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ness of information, while your ranks conditional on A and A  remain the same.
This suffices to completely determine the dynamic law:

Definition 6: Let κ be a negative ranking function for A and A  ∈  A such that
κ(A), κ( A ) < ∞, and x ∈ R+. Then the A→x-conditionalization κA→x of κ is de-
fined by κA→x(B) = min {κ(B | A), κ(B | A ) + x}.

Thus, the effect of the A→x-conditionalization is to shift the possibilities in A
(upwards) so that κA→x(A) = 0 and the possibilities in A  (downwards or maybe
upwards) so that κA→x( A ) = x. The parameter x characterizes the information
process (and its interaction with the prior doxastic state); no fixed value of x is the
right one for all cases. The crucial point is that this dynamic law is iterable; this
kind of conditionalization may be arbitrarily repeated as long as the condition of
definition 6 is satisfied.

Intuitively, A→x-conditionalization comprises expansion, revision, and con-
traction, the three kinds of belief changes studied in AGM belief revision theory.
For any x > 0, the A→x-conditionalization of κ is an expansion, if κ(A) = κ( A ) =
0, i.e., if A is initially neutral, and a revision, if κ(A) > 0, i.e., if A is initially dis-
believed. And the A→0-conditionalization of κ, after which neither A nor A  is
believed, is a (genuine or vacuous) contraction by A, if κ(A) = 0, i.e., if A is ini-
tially not disbelieved, and a contraction by A , if κ( A ) = 0. Obviously, not all
ways of A→x-conditionalization are thereby exhausted; conditionalization is a
substantially more general notion.

The conceptions of expansion, revision, and contraction indeed agree also for-
mally (as already noted in Spohn 1988, footnote 20, and elaborated in Gärdenfors
1988, sect. 3.7). It will be useful to state this precisely:

First, within our propositional framework a belief set K is any subset of A
containing W, but not ∅ and closed under intersection and the superset relation,
i.e.: W ∈ K; ∅ ∉ K, if A, B ∈ K, then A ∩ B ∈ K; and if A ∈ K and A ⊆ B ∈ A,
then B ∈ K. In other words, K is a filter in the mathematical sense. Let F(A) de-
note the set of filters or belief sets in A. Moreover, we say that the filter or belief
set K is generated by B ⊆ A iff K is the smallest filter in F(A) comprising B.

The complementary notion is that of an ideal. For any set B ⊆ A of proposi-
tions, let Bc = { A  | A ∈ B}. Then I ⊆ A is an ideal iff Ic is a filter, i.e., if I con-
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tains ∅, but not W and is closed under union and the subset relation. Let I(A) de-
note the set of ideals in A.

AGM belief revision theory defines their belief change operators for all belief
sets. As often noticed, it is better to have them defined for a single belief set only;
this allows the belief change disposition to change with the belief set. With this in
mind we may define:

Definition 7: Let N ∈ I(A) be an ideal in A. Then ∗ is a single revision for A – N
iff ∗ is a function assigning to each proposition A  ∈  A – N a belief set ∗(A) ∈
F(A) such that:
(a) A ∈ ∗(A),
(b) if B  ∉ ∗(A), then ∗(A ∩ B) is the belief set generated by ∗(A) ∪ {B}.

It is obvious that (7a+b) is equivalent to the revision postulates (K∗1) – (K∗8) of
Gärdenfors (1988, sect. 3.3). Gärdenfors prefers to have revisions defined for all
propositions; some revisions then result in the universal or contradictory belief
set. In the present context it is slightly preferable to deny to the whole of A the
status of a belief set and thus to have revision undefined for the exceptional set N
(of ‘null’ propositions).

Likewise, we may define:

Definition 8: Let N ∈ I(A) be an ideal in A. Then ÷ is a single contraction for A –
Nc iff ÷ is a function assigning to each proposition A ∈ A – Nc a belief set ÷(A) ∈
F(A) such that:
(a) A ∉ ÷(A) ⊆ ÷(∅),
(b) if A ∉ ÷(A ∩ B), then ÷(A) ∩ ÷(B) ⊆ ÷(A ∩ B) ⊆ ÷(A).

Again, it is obvious that (8a+b) is equivalent to the contraction postulates (K÷1) –
(K÷8) of Gärdenfors (1988, sect. 3.4), when contraction remains undefined for W
(the belief in W cannot be given up) and some other propositions forming a filter
Nc.

Moreover, single revisions and contractions are related by the Levi and the
Harper identity: if ÷ is a single contraction and ∗(A) is the belief set generated by
÷( A ) ∪ {A}, then ∗ is a single revision; and conversely, if ÷(A) is defined as ∗(W)
∩ ∗( A ).
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All this is directly related to ranking theory. Obviously, a belief set K(κ) = {A
∈ A | κ( A ) > 0} is associated with each negative ranking function κ for A. This
allows us to define and observe:

(9) Let κ be a negative ranking function for A. Then the single revision ∗κ in-
duced by κ is defined by ∗κ(A) = K(κA→x) for all A with κ(A) < ∞ and some
x > 0. ∗κ is indeed a single revision for A – N, where N = {A | κ(A) = ∞}.

Similarly, we may define and observe:

(10) Let κ be a negative ranking function for A and A ∈ A such that κ( A ) < ∞.
Then the contraction κ÷A of κ by A is defined as

κ÷A = 
κ, if κ(A) = 0,
κA→0 , if  κ(A) > 0
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

The single contraction ÷κ induced by κ is then defined as the function as-
signing to each A ∈ A such that κ( A ) < ∞ the belief set ÷κ(A) = K(κ÷A). ÷κ

is indeed a single contraction for A – Nc, where N = {A | κ(A) = ∞}.

Again, ∗κ and ÷κ are related by the Levi and the Harper identity.
There is a salient difference between (9) and (10). In (10) it made sense to de-

fine contraction on the level of ranking functions, since this contraction is unique
on this level; it then induces contraction on the level of belief sets. By contrast,
there is no unique revision on the level of ranking functions; for each x > 0 A→x-
conditionalization gives a different result. However, on the level of belief sets it
does not matter on which x > 0 we base the revision; hence (9) is well-defined.

This difference has an important consequence. If revision and contraction are
special cases of conditionalization and if the latter is iterable, then, one might
think, (9) and (10) help us to notions of iterated revision and contraction. This is
indeed true for contraction. Contraction on the level of ranking functions is clearly
iterable; it thus induces a unique behavior of iterated contraction on the level of
belief sets. It is this feature that we shall exploit in the rest of the paper for a
measurement of ranks and a complete axiomatization of iterated contraction as
induced by a ranking function. The same does not work for revision, however,
since only the first, but not the subsequent revisions are independent of the condi-
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tionalization parameter x. Does iterated contraction induce iterated revision via
the Levi identity? No, since expansion, too, is not unique on the level of ranking
functions.

Now we have collected all the material we shall need, and we may immediately
proceed to the proposed measurement theory for ranks.

3. Measuring Ranks by Iterated Contractions

To begin with, let us make explicit our talk about iterated contraction. The
ranking theoretic terminology is fixed in

Definition 11: Let κ be a negative ranking function for A and A1, …, An ∈ A (n ≥
0) such that κ( Ai ) < ∞ (i = 1,…,n). Then the iterated contraction κ÷ A1 ,...,An

 of κ

by 〈A1, …, An〉 is defined as κ÷ A1 ,...,An
 = (…(κ÷A1 )…) ÷An ; this includes the iter-

ated contraction κ÷〈〉 = κ by the empty sequence 〈〉. The iterated contraction ÷κ

induced by κ is defined as that function which assign to any finite sequence 〈A1,
…, A n〉 of propositions with κ( Ai ) < ∞  the belief set ÷κ〈A1, …, An〉  =
K(κ÷ A1 ,...,An

). Hence, ÷κ〈〉 = K(κ).

Let us note right away that iterated contraction as induced by a ranking func-
tion is not commutative. It is so only under special conditions:

Theorem 12: Let κ be a negative ranking function for A and A, B ∈ A. Then ÷κ〈A,
B〉 ≠ ÷κ〈B, A〉 if and only if A, B ∈ K(κ), κ(B | A ) = 0 or κ(A | B ) = 0, and κ( B  |
A ) < κ( B  | A) (which is equivalent to κ( A  | B ) < κ( A  | B)).

This may at first be surprising. However, Hansson (1993, p. 648) gives an intui-
tively compelling example showing that this is exactly what we should expect. Let
us sketch the gist of the matter. It is, roughly, that the last condition requires the
positive relevance of A to B (and vice versa) and that the first conditions then have
the effect either that A ∩ B  is disbelieved (or, “if A, then B” believed) after con-
tracting first by A and then by B, but not after the reverse contraction, or that A  ∩
B is disbelieved (or “if B, then A” believed) after contracting first by B and then
by A, but not after the reverse contraction (or that both is the case). This is exactly
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how non-commutativity of contraction may come about. Indeed, the survival of
material implication in iterated contractions will play a crucial role below.

The general format of our discussion is fixed in

Definition 13: Let A be an algebra of propositions over W and N ∈ I(A) an ideal
in A. Let AN denote the set of all finite (possibly empty) sequences of proposi-
tions from A – Nc. Then ÷ is a potential iterated contraction, a potential IC, for
(A, N) iff ÷ is a function from AN into F(A). A potential IC ÷ is an iterated
ranking contraction, an IRC, for (A, N) iff there is a negative ranking function κ
such that N = {A ∈ A | κ(A) = ∞} and ÷ = ÷κ.

Given this terminology, our principal aim is to measure ranks with the help of
iterated contraction on a ratio scale. This means to reconstruct a ranking function
κ from its iterated contraction ÷κ, indeed uniquely up to a multiplicative constant.
This is what we shall do in this section. The further aim, completing the investi-
gation in the next section, is to state which properties a potential IC must have in
order to be an IRC, i.e., an IC suitable for measuring ranks. Of course, (13) does
not count as an answer; we shall be searching for informative properties not refer-
ring to ranking functions.

We shall reach our principal aim in four simple steps. The first step is familiar;
it consists in the observation already made in AGM belief revision theory that the
ordering of negative ranks, i.e., of disbelief, may be inferred from single contrac-
tions. In our terms, this means that we have for each negative ranking function κ
and all A, B ∈ A:

(14) κ(A) ≤ κ(B) iff ÷κ is not defined for 〈B 〉 or A  ∉ ÷κ〈A  ∩ B 〉.

That is, B is at least as disbelieved as A, or B  is at least as firmly believed as A ,
either if B  is maximally believed or if giving up the belief in A  ∩  B  entails
giving up the belief in A  (cf. Gärdenfors 1988, p. 96). Let us fix this connection
without reference to ranks:

Definition 15: Let ÷ be a potential IC for (A , N). Then the potential disbelief
comparison  ÷  associated with ÷ is the binary relation on A such that for all A, B
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∈ A: A  ÷  B iff B ∈ N or A  ∉ ÷〈A  ∩ B 〉. The associated disbelief equivalence

  ÷  and the strict disbelief comparison  ÷  are defined in the usual way. The dis-
belief comparison associated with the IRC ÷κ is denoted by  κ , so that (14) en-
tails that A  κ  B iff κ(A) ≤ κ(B).

Of course, such a potential disbelief comparison  ÷  is well-behaved and thus a
proper disbelief comparison only if the associated potential IC ÷ is well-behaved.
For instance,  ÷  is a weak order only if the potential IC ÷ restricted to one-term
sequences is a single contraction according to (8) (cf. Gärdenfors 1988, sect. 4.6).
Let us defer, though, the systematic inquiry what good behavior amounts to in the
end. At present, the relevant point is that single contractions yield no more than a
measurement of ranks on an ordinal scale.

Hence, we must take further steps. The second step is the crucial one. Hild
(1997) was the first to invent it, Spohn (1999) independently had the same idea. It
consists in the observation that the reason relations as defined in (5), i.e., positive
relevance, negative relevance, and irrelevance, can also be expressed in terms of
contractions, albeit only iterated ones. For our measurement purposes the most
convenient notion is non-negative relevance from which we may define the other
ones. Moreover, we have to more generally refer to conditional relevance. These
two points are taken care of in the next

Theorem 16: Let κ be a negative ranking function for A and A, B, C ∈ A such that
κ(C) < ∞. Then A is not a reason against B, or non-negatively relevant to B, given
C w.r.t. κ iff κ(A | C) or κ( A  | C) or κ(B | C) or κ( B  | C) is infinite or κ(A ∩ B ∩
C) – κ(A ∩ B  ∩ C) ≤ κ( A  ∩ B ∩ C) – κ( A  ∩ B  ∩ C), i.e., iff neither (C ∩ A)
→ B  nor (C ∩ A ) → B is a member of ÷κ〈C → A, C → A , C → B, C → B 〉 or
the latter is undefined.

For a proof see the full paper. Note that we can express the equivalence of (16)
also in the following way: For any four mutually disjoint propositions A, B, C, D
∈ A with finite ranks κ(A) – κ(B) ≤ κ(C) – κ(D) iff A ∪ B is non-negatively rele-
vant to A ∪ C given A ∪ B ∪ C ∪ D w.r.t. κ, i.e., iff neither A  nor D  is a mem-
ber of ÷κ〈A∩ B , C∩ D , A∩C , B∩ D 〉.

Thus, we can now make the same transition as we did from (14) to (15) and
adopt the following
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Definition 17: Let ÷ be a potential IC for (A, N). Then the potential disjoint dif-
ference comparison (potential DisDC)   ÷

d  associated with ÷ is the four-place re-
lation defined for all quadruples of mutually disjoint propositions in A – N such
that for all such propositions A, B, C, D  (A - B)   ÷

d  (C - D) iff A , D  ∉ ÷〈A∩ B ,
C∩ D , A∩C , B∩ D 〉 – where the ordered pair of A and B is denoted by (A -
B) simply for mnemonic reasons. The associated disjoint difference equivalence
≈÷
d  and the strict disjoint difference comparison   ÷

d  are defined in the usual way.
The potential DisDC associated with the IRC ÷κ is denoted by  κ

d , so that (19)
entails that (A - B)  κ

d  (C - D) iff κ(A) – κ(B) ≤ κ(C) – κ(D).

Now, one can already see what we are heading for. On the one hand, we have
shown how to derive such a difference comparison from iterated contractions. On
the other hand, we know that if such a difference comparison behaves in the ap-
propriate way, we can use it for a difference measurement of ranking functions.
Put the pieces together and you have a measurement of ranks in terms of iterated
contractions.

However, we are not yet fully prepared for this final step. If we want to apply
the general theory of difference measurement to the present case, the difference
comparison must hold for any four propositions, not only for any four mutually
disjoint propositions. The required extension is the third step of our measurement
procedure.

There are various options at this point, and the details are not so important.
Probably the simplest idea is to straightforwardly require that for each proposition
with a finite rank there are at least n mutually disjoint equally ranked propositions
for some n ≥ 4; let us call this assumption n-richness. With this assumption we
can extend any potential DisDC to all quadruples of propositions. Such an exten-
sion will be called a potential doxastic difference comparison (potential DoxDC)
and denoted by  ÷ if associated with the potential IC ÷. The associated doxastic
difference equivalence ≈÷  and the strict doxastic difference comparison   ÷ are
again defined in the usual way.

After this auxiliary move, we can take the fourth step and complete our meas-
urement procedure. If potential DoxDC’s have the right properties, we can con-
struct a ratio scale from them. What this means and how this goes can be directly
read off from the standard theory of difference measurement; cf. Krantz et al.
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(1971, ch. 4). We have to do no more than copy definition 3 and theorem 2 from
there, p. 151, and slightly adapt it for our purposes:

Definition 18:    is a doxastic difference comparison (DoxDC) for (A, N) (with ≈
being the associated equivalence and    the associated strict comparison) iff    is
a quarternary relation on A – N such that for all A, B, C, D, E, F ∈ A:
(a)    is a weak order on (A – N) × (A – N) [weak order],
(b) if (A - B)    (C - D), then (D - C)    (B - A) [sign reversal],
(c) if (A - B)    (D - E) and (B - C)    (E - F), then (A - C)    (D - F)

[monotonicity],
(d) if (A - W)    (B - W), then (A - W) ≈ (A ∪ B - W) [law of disjunction].
The DoxDC    is Archimedean iff, moreover, for any sequence A1, A2, … in A –
N:
(e) if A1, A2, … is a strictly bounded standard sequence, i.e., if for all i (A1 - A1)

   (A2 - A1) ≈  (Ai+1 - Ai) and if there is a D ∈ A – N such that for all i (Ai -
A1)    (D - W), then the sequence A1, A2, … is finite.

Finally, the DoxDC    is full iff for all A, B, C, D ∈ A – N:
(f) if (A - A)    (A - B)    (C - D), then there exist ′C , ′D  ∈ A such that (A - B)

≈ ( ′C  - D) ≈ (C - ′D ).

It is obvious that (18a-d) are axioms necessary for the measurement of ranks.
The Archimedean axiom (18e) is also necessary. (18f), finally, is a structural
axiom which is not entailed by ranking theory, but which is required for the solv-
ability of all the measurement inequalities. (Likewise, the move from disjoint to
doxastic difference comparisons also required a certain structural richness of the
underlying algebra of propositions.)

We are not claiming that DoxDC’s are intuitively well accessible. Indeed, they
are not, we find. Disbelief comparisons or their positive counterparts, entrench-
ment relations, are highly accessible. By contrast, we have no safe intuitive as-
sessment of doxastic differences between four arbitrary propositions, even if they
are mutually disjoint. Therefore we did not start this section with (18) that plays
only a mediating role, but rather explained how difference judgments reduce to
well accessible relevance judgments and how all these assessments reduce to even
better accessible iterated contractions.
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The theorem appertaining to (18) finally establishes the measurability of rank-
ing functions.

Theorem 19: Let    be a full Archimedean DoxDC for (A, N). Then there is a
negative ranking function κ for A such that for all A ∈ A  κ(A) = ∞ iff A ∈ N and
for all A, B, C, D ∈ A – N  (A - B)    (C - D) iff κ(A) – κ(B) ≤ κ(C) – κ(D). If ′κ
is another negative ranking function with these properties, then there is an x > 0
such that ′κ  = x ⋅ κ.

To sum up: We have seen how potential IC’s induce potential DisDC’s, how
rich potential IC’s induce potential DoxDC’s, that the right kind of potential IC’s,
for instance, IRC’s, indeed induce DoxDC’s, and that DoxDC’s, if they are full
and Archimedean, determine ranking functions uniquely up to a multiplicative
constant. In particular, this means that we may start from a rich ranking function
κ, then consider only the rich IRC ÷κ associated with κ, and finally reconstruct the
whole of κ from ÷κ in the unique way indicated. This appears to be a most satis-
fying representation result. The only data we need are the beliefs under various
iterated contractions. These data reflect not only the comparative strength of be-
liefs, they also reflect the comparative nature of reasons and relevance. And these
inferred comparisons suffice to fix the cardinal structure of ranking functions.

4. The Laws of Iterated Contraction

We are not yet finished, though. We just stated that the right kind of potential
IC’s measure ranks and that IRC’s are the right kind. However, we still miss a
general characterization of what the right kind is avoiding reference to ranking
functions. The required information is, of course, implicit in (18) and the auxiliary
steps leading to (18). Yet, the implicit information needs to be explicitly elabo-
rated in a perspicuous way, so that content and import of our measurement result
becomes intelligible. Spohn (1999) still neglected the issue, whereas Hild (1997)
started to answer it.

Thereby we can also close a gap in the current literature. Despite 15 years of
discussion, it was not possible to find and agree upon a stronger or even complete
set of laws of iterated contraction (cf. the overview in Rott 2006). In our view, this
is so because there was no accepted semantics or no model to guide the search for
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such laws. As explained, ranking theory provides such a model, and hence these
laws will fall right into our lap as a consequence of our measurement theory. That
is, theorem 24 shows that the laws we shall find are complete given the structural
conditions of richness and fullness.

So, let us start with the required characterization and let us then work out its
consequences up to their intended goal:

Definition 20: Let A be an algebra of propositions over W and N ∈ I(A) an ideal
in A. Let again be Nc = {A | A  ∈  N} and AN the set of all finite sequences of
propositions from A – Nc. We shall use S as a variable for elements of AN. Then
÷ is an iterated contraction (IC) for (A, N) iff ÷ is a potential IC for (A, N) such
that for all A, B, C ∈ A – Nc, and S ∈ AN :
(IC1) the function A   ÷〈A〉 is a single contraction [single contraction],
(IC2) if A ∉ ÷〈∅〉, then ÷〈A, S〉 = ÷〈S〉 [strong vacuity],
(IC3) if A∩ B =∅,  then ÷〈A, B, S〉 = ÷〈B, A, S〉 [restricted commutativity],
(IC4) if A ⊆ B and A ∪ B  ∉ ÷〈A〉, then ÷〈A ∪ B , B, S〉 = ÷〈A, B, S〉

[path independence],
(IC5) if A ⊆ C  or A, B ⊆ C and A  ÷ B, then A  ÷〈C 〉 B, and if the inequality in

the antecedent is strict, that of the consequent is strict, too
[order preservation],

(IC6) ÷〈S〉 is an IC [iterability].

A notational slip occurs in (IC5). Disbelief comparisons, difference compari-
sons, etc., are explained relative to potential IC’s; thus, strictly taken, the notation
“ ÷〈C 〉 ” is nonsense. However, for typographic reasons we shall always to write
“ ÷〈S 〉 ” instead of the more correct “

 
÷〈S 〉

”; there is no danger of confusion.
Before proceeding to the formal business, we should first look at the intuitive

and formal content of these axioms. At the same time, it is interesting to examine
the extent to which they go beyond the existing efforts to come to grips with iter-
ated contraction.

Iterated contractions must, of course, behave like single contractions at each
single step; therefore (IC1). Strong vacuity (IC2) goes beyond vacuity for single
contractions (expressed by (8b) for B = ∅), since it says that a vacuous contrac-
tion does not only leave the beliefs unchanged, but indeed the entire doxastic state
as reflected in possible further contractions. This is certainly how vacuous con-
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tractions were intended, even though it was not expressible in terms of single
contractions. (IC6) goes without saying; it lies at the heart of iteration that it can
be carried out without limit. Of course, (IC6) does not make definition 25 circular;
it only states succinctly what we could have attained by stating all the other axi-
oms more clumsily for all ÷〈S〉.

Obviously, hence, (IC3) – (IC5) are the proper laws of iterated contraction. We
find them intuitively convincing, though, of course, our intuitions are already
shaped by ranking theory. Let us briefly discuss them.

A first important point to note is that (IC5) may be seen to be equivalent to the
postulates proposed by Darwiche, Pearl (1997) or rather, since these are postulates
of iterated revision, to the postulates of interated contraction corresponding to
them. Hence, (IC5) may be assumed to be as widely accepted a the Dar-
wiche/Pearl postulates.

Thus, it is exactly (IC3) and (IC4) by which our axiomatization of iterated
contraction goes beyond the present state of the art. As to (IC3), restricted com-
mutativity, we had mentioned that iterated contractions cannot be expected to al-
ways commute, and (12) described the conditions under which they do not do so.
One condition was that the two contracted propositions A and B  are positively
relevant to each other (and the point then was that, though at least one of the two
material implications expressing the positive relevance must survive the two con-
tractions, it may be the one after ÷〈A, B〉 and the other after ÷〈B, A〉). However, in
(IC3) we assumed an extreme negative relevance, i.e., that “if A, then not B” is
logically true. This deductive relation holds across all doxastic states whatsoever.
So, (12) can never apply to such A and B, whatever the doxastic state, and we may
accept restricted commutativity as an axiom. In other words, if two disbeliefs are
logically incompatible, there can be no interaction between giving up these disbe-
liefs, and hence it seems also intuitively convincing that the order in which they
are given up should not matter at all.

The intuitive content of (IC4), path independence, may be described as fol-
lows: Suppose you believe A. Then you also believe the logical consequences of
A. Let B one of them; B → A is another. Now you contract by A. This entails that
you have to give up at least one of B and B → A. Suppose you keep B and give up
B → A. What path independence claims is that it does not make a difference then
whether you give up A (= (B → A) ∩ B) and then B or whether you give up B → A
right away and then B. The description is still simpler in terms of disbelief: Sup-
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pose you disbelieve two logically incompatible propositions, and you have to
contract both of them. Then you can either contract one after the other. Or you can
first contract their disjunction, and if you still disbelieve one of them, you then
contract it as well. (IC4) says that both ways result in the same doxastic state. This
seems entirely right to us. This may suffice as an explanation of the intuitive ap-
peal of our iterated contraction axioms.

Let us turn, at last, to the formal business. What we have to show is that the
potential DoxDC   ÷  generated by an IC ÷ is indeed a DoxDC. In order to reach
this peak, we have to climb some antecedent hills.

First, we may observe that the disbelief comparison induced by an IC has the
expected properties:

(21) For any IC ÷   ÷  is a weak order on A [weak order],

(22) for any IC ÷ if A  ÷  B, then A   ÷  A ∪ B [law of disjunction].

These are the familiar consequences of (IC1), i.e., of the properties of single con-
tractions.

Next, we should note that for IC’s we can express the induced potential DisDC
in terms of the induced disbelief comparison:

(23) For any IC ÷ and any four mutually disjoint A, B, C, D ∈ A – N, (A - B)  ÷
d

(C - D) iff 
 
A ÷〈A∩B,  C∩D 〉 C  and 

 
D ÷〈A∩B,  C∩D 〉 B ; and the strict inequality

holds on the left hand side iff at least one of the inequalities of the right
hand side is strict.

It may indeed be shown in a series of lemmata that the binary disbelief com-
parison and the quaternary disjoint difference comparison induced by an IC co-
here in the expected way.

These lemmata help us to reach our next goal, i.e., to establish that the disjoint
difference comparison   ÷

d  induced by an IC ÷ already has the pertinent properties
of a DoxDC. That is, we can prove (again for all the missing lemmata and proofs
see the full paper):
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(24) For any IC÷ and four mutually disjoint A, B, C, D ∈ A – N, either (A - B)

  ÷
d  (C - D) or (C - D)   ÷

d  (A - B) or both [completeness].

(25) For any IC÷ and six mutually disjoint A, B, C, D, E, F ∈ A – N, if (A - B)

  ÷
d  (C - D) and (C - D)   ÷

d  (E - F), then (A - B)   ÷
d  (E - F) [transitivity].

(26) For any IC÷ and four mutually disjoint A, B, C, D ∈ A – N, if (A - B)   ÷
d  (C

- D), then (D - C)   ÷
d  (B - A) [sign reversal].

(27) For any IC÷ and six mutually disjoint A, B, C, D, E, F ∈ A – N, if (A - B)

  ÷
d  (D - E) and (B - C)   ÷

d  (E - F), then (A - C)   ÷
d  (D - F) [monotonicity].

The rest is easy walking. It remains to show that all the properties established
for disjoint difference comparisons carry over to unrestricted doxastic difference
comparisons. This step is only tedious, but nor difficult; it only requires the al-
ready mentioned structural assumption of n-richness, more specifically of 6-
richness, which gets us from potential DisDC’s to potential DoxDC’s.

Concerning the remaining properties of IC’s we have no ambitions. Let us
simply accept

Definition 28: Let ÷ be an IC for (A, N). Then ÷ is called Archimedean iff the
DoxDC   ÷  induced by ÷ is Archimedean. And ÷ is called full iff the DoxDC   ÷

induced by ÷ is full.

We did not attempt to express the Archimedean property purely in terms of iter-
ated contraction; this appears to be an unilluminating exercise. Likewise, though
fullness is easily translated into contractions, its original explanation in terms of
difference comparisons is the most perspicuous.

All this can be summed up in the following

Theorem 29: For any IC ÷ for (A, N), the potential DoxDC   ÷  induced by ÷ is a
DoxDC for (A, N). And any 6-rich full Archimedean IC ÷ for (A, N) is an IRC
for (A, N), i.e., there is a negative ranking function κ for A with ÷ = ÷κ. Moreo-
ver, for each ranking function ′κ  with ÷ = ÷ ′κ  there is an x > 0 such that ′κ  = x ⋅
κ.
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Each part of this theorem is already proved. It concludes our presentation of the
method of measuring ranking functions through iterated contractions and thus our
justification of using numerical ranks. It also shows that (IC1) – (IC6) are neces-
sary properties of iterated contraction and (together with the Archimedean prop-
erty) jointly sufficient ones in the presence of richness and fullness; under such
structural assumptions they offer a complete characterization of iterated contrac-
tions – at least if iterated contraction is conceived as proposed in the ranking theo-
retic way.
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