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Abstract. This paper makes a foundational contribution to the discus-
sions on the very nature of belief change operations. Belief revision and
belief update are investigated within an abstract framework of epistemic
states and (qualitative or quantitative) conditionals. Moreover, we dis-
tinguish between background knowledge and contextual information in
order to analyse belief change more appropriately. The rich epistemic rep-
resentation framework allows us to make a clear conceptual distinction
between revision and update on the one side, while revealing structural
similarities on the other side. We propose generic postulates for revision
and update that also apply to iterated change. Furthermore, we complete
the unifying picture by introducing universal inference operations as a
proper counterpart in nonmonotonic reasoning to iterated belief change.

1 Introduction

Nonmonotonic reasoning and belief change theory are closely related in that they
both deal with reasoning under uncertainty and try to reveal sensible lines of
reasoning in response to incoming information. The crucial difference between
both areas is the role of the current belief state which is only implicit in non-
monotonic reasoning, but explicit and in fact in the focus of interest in belief
revision. So the correspondences between axioms of belief change and properties
of nonmonotonic inference operations are usually elaborated only in the case
that revisions are based on a fixed theory (cf. [MG91]), and very little work has
been done to incorporate iterated belief revision in that framework.

However, belief revision theory is not homogeneous in itself. Genuine belief
revision following the AGM-theory [AGM85] is different from belief update, as
defined by Katsuno and Mendelzon [KM91], although it seems to be difficult to
draw a clear line between these two change operations. Usually, belief revision
means the process of adjusting prior beliefs to new information in a static world,
whereas belief update should be used to adjust prior beliefs to new information
in a possibly changing world. This distinction has raised considerably numerous
and deep discussions in the past, and it is not clear how nonmonotonic reason-
ing as the process of deriving plausible beliefs from given knowledge or beliefs,
respectively, can be linked to either change operation.

To sum up, it is well-known, that
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– belief revision and belief update are closely related, but may yield different
results;

– belief revision and nonmonotonic reasoning are also closely related, but pro-
vide different views and options.

In this paper, we will present a unifying framework that allows us to understand
and explore these relationships thoroughly. Basically, we will follow the tradi-
tional line to relate belief change and nonmonotonic reasoning via the Ramsey
test [Ram50]

A |∼ (Ψ)B iff Ψ ∗A |= B,

with Ψ denoting some epistemic state. That is to say that B is plausibly derived
from A, given the epistemic background Ψ , iff incorporating A into Ψ yields
belief in B. This last statement is often seen to be equivalent to saying that the
conditional belief (B|A) is accepted in Ψ , Ψ |= (B|A). As revision strategies,
conditionals are of major importance when dealing with iterated belief change.

Therefore, we will explore the relationships between nonmonotonic reasoning
and general belief change by considering epistemic states and sets of condition-
als instead of theories and propositional beliefs. We will provide a more general
framework that not only allows a more accurate representation of belief change
via nonmonotonic formalisms, but also gives, vice versa, an important impe-
tus to handle iterated changes. So we will generalize the notion of an inference
operation and introduce universal inference operations in nonmonotonic logics
as a suitable counterpart to (full) change operators. And instead of taking a
(propositional) theory as a reference point for inferences and revisions, we will
make use of the more comprehensive notion of an epistemic state to base in-
ferences on. In a purely qualitative environment, a preorder might be enough
to represent an epistemic state, but one might also choose more sophisticated
representation frameworks, such as possibility distributions, ranking functions,
and probability distributions. In this paper, Ψ will denote an abstract epistemic
state. For the purpose of illustration, we will use a probabilistic environment as
a particularly rich epistemic structure but most of the ideas are applicable in
qualitative frameworks as well.

Leaving the classical framework also allows a more accurate view on iterated
change operations by differentiating between simultaneous and successive revi-
sion. The former will be seen to handle genuine revisions appropriately, while
the latter may also model updating. This distinction is based on clearly separat-
ing background or generic knowledge from evidential or contextual knowledge,
a feature that is listed in [DP96] as one of three basic requirements a plausible
exception-tolerant inference system has to meet.

The new information the agent is going to incorporate into his beliefs is as-
sumed to provide information about the context the agent is focusing on. Since
this context may be complex, the information can be complex as well, consist-
ing of a simple fact, some uncertain evidence, or even conditional beliefs. For
instance, being situated in some region that has been devastated by a natural
disaster, the agent might find that the rules of daily life have changed drastically,
and adopting these new conditional beliefs is essential for him to survive. The
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new information may encompass different chunks of information all pertaining to
the given context, so we assume it to be specified by a setR containing condition-
als as the most general items in our framework that may express information.
This includes also facts, since facts are considered as degenerate conditionals
with tautological antecedents.

The problems we will be dealing with in this paper can be stated as follows:

Given some epistemic state Ψ , possibly consisting of background
knowledge and contextual prior information, how to change Ψ so
as to incorporate a set of (conditional) beliefs R?

(1)

How can plausible inferences drawn on the base of the posterior
epistemic state be related to those drawn from the prior state? (2)

These problems can be split up further into the following subproblems:

– Technically, given some epistemic state Ψ and some set of conditional beliefs
R, how to compute Ψ ∗ R?

– Conceptually, how to handle background knowledge as well as prior contex-
tual and new contextual information?

– How to take epistemic background explicitly into account in plausible infer-
ence?

The outline of the paper is as follows: In the next section, we will introduce
some formal notations for epistemic states and conditionals. Section 3 is ded-
icated to universal inference operations that allow to deal with nonmonotonic
inference operations based on different epistemic backgrounds. In section 4, we
first discuss update as a basic, imperative change operation. A list of postulates
is given providing formal properties of (iterated) belief update. Section 5 links
update to universal inference operations. Finally, belief revision is dealt with in
section 6, and its connection to universal inference operations and belief update
is elaborated in section 7. We conclude in section 8 with a summary and a brief
outlook on future work.

2 Epistemic states and conditionals

We will use propositions A,B, . . . as the basic atoms of a propositional logical
language L with the junctors ∧ and ¬. The ∧-junctor will mostly be omitted,
so that AB stands for A ∧ B, and ¬ will usually be indicated by barring the
corresponding proposition, i.e. A means ¬A. L is extended to a conditional
language (L | L) by introducing a conditional operator |:

(L | L) = {(B|A) | A,B ∈ L}.

(L | L) is a flat conditional language, no nesting of conditionals is allowed.
Conditionals are usually considered within richer structures such as epistemic

states. Besides certain knowledge, epistemic states also allow the representation
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of preferences, beliefs, assumptions etc of an intelligent agent. In a purely quali-
tative setting, epistemic states can be represented by systems of spheres [Lew73],
or simply by a pre-ordering on L (which is mostly induced by a pre-ordering on
worlds). In a (semi-)quantitative setting, also degrees of plausibility, probabil-
ity, possibility, necessity etc can be expressed. As illustrative examples, we will
briefly describe two well-known representations of epistemic states, probability
distributions and ordinal conditional functions.

Probability distributions in a logical environment can be identified with prob-
ability functions P : Ω → [0, 1] with

∑
ω∈Ω P (ω) = 1. The probability of

a formula A ∈ L is given by P (A) =
∑

ω|=A P (ω). Conditionals are inter-

preted via conditional probabilities, so that P (B|A) = P (AB)
P (A) for P (A) > 0,

and P |= (B|A) [x] iff P (A) > 0 and P (B|A) = x (x ∈ [0, 1]).
Ordinal conditional functions (OCFs), (also called ranking functions) κ :

Ω → N ∪ {∞} with κ−1(0) 6= ∅, were introduced first by Spohn [Spo88]. They
express degrees of plausibility of propositional formulas A by specifying degrees
of disbeliefs of their negations A. More formally, we have κ(A) := min{κ(ω) |
ω |= A}, so that κ(A ∨ B) = min{κ(A), κ(B)}. Hence, due to κ−1(0) 6= ∅,
at least one of κ(A), κ(A) must be 0. A proposition A is believed if κ(A) >
0 (which implies particularly κ(A) = 0). Degrees of plausibility can also be
assigned to conditionals by setting κ(B|A) = κ(AB)−κ(A). A conditional (B|A)
is accepted in the epistemic state represented by κ, or κ satisfies (B|A), written
as κ |= (B|A), iff κ(AB) < κ(AB), i.e. iff AB is more plausible than AB. We
can also specify a numerical degree of plausibility of a conditional by defining
κ |= (B|A) [n] iff κ(AB) + n < κ(AB) (n ∈ N). OCF’s are the qualitative
counterpart of probability distributions. Their plausibility degrees may be taken
as order-of-magnitude abstractions of probabilities (cf. [GMP93,GP96]).

Both probability distributions and ordinal conditional functions belong to
the class of so-called conditional valuation functions which were introduced in
[KI01] to abstract from numbers and reveal more clearly and uniformly the
way in which (conditional) knowledge may be represented and treated within
epistemic states. As an adequate formal structure, we assume an algebra A =
(A,6A,⊕,�, 0A, 1A) of (real) numbers to be equipped with two operations, ⊕
and �, such that

– (A,⊕) is an associative and commutative structure with neutral element 0A;
– (A− {0A},�) is a commutative group with neutral element 1A;
– the rule of distributivity holds, i.e. x�(y⊕z) = (x�y)⊕(x�z) for x, y, z ∈ A;
– A is totally ordered by 6A with minimum 0A and maximum 1A, such that

6A is compatible with ⊕ and � in that x 6A y implies both x⊕ z 6A y⊕ z
and x� z 6A y � z for all x, y, z ∈ A.

So A is close to be an ordered field, except that the elements of A need not
be invertible with respect to ⊕. Conditional valuation functions will make use
of two different operations in A to distinguish between the handling of purely
propositional information and conditionals, respectively.

iv



Definition 1 (conditional valuation function). A conditional valuation func-
tion is a (partial) function V : L ∪ (L | L) → A from the sets of formulas and
conditionals into the algebra A satisfying the following conditions:

1. V |L is total such that V (⊥) = 0A, V (>) = 1A, and for exclusive formulas
A,B (i.e. AB ≡ ⊥), it holds that V (A ∨B) = V (A)⊕ V (B);

2. for each conditional (B|A) ∈ (L | L) with V (A) 6= 0A,

V (B|A) = V (AB)� V (A)−1

where V (A)−1 is the �-inverse element of V (A) in A; for V (A) = 0A,
V (B|A) is undefined.

Conditional valuation functions assign degrees of certainty, plausibility, pos-
sibility etc to propositional formulas and to conditionals. Making use of two
operations, they provide a framework for considering and treating conditional
knowledge as substantially different from propositional knowledge, a point that
is stressed by various authors and that seems to be indispensable for representing
epistemic states adequately (cf. [DP97]). There is, however, a close relationship
between propositions and conditionals – propositions may be considered as con-
ditionals of a degenerate form by identifying A with (A|>): Indeed, we have
V (A|>) = V (A) � (1V )−1 = V (A). Therefore, conditionals should be regarded
as extending propositional knowledge by a new dimension. For further discus-
sions on conditional valuation functions, please see [KI01,KI04].

In the following, let Ψ be any epistemic state, specified e.g. by a preorder,
some kind of conditional valuation function, or some other structure that is found
appropriate to express conditional beliefs, qualitatively or quantitatively, via a
suitable language (L | L)∗ and an entailment relation |= between epistemic states
and conditionals; basically, Ψ |= (B|A)∗ means that (B|A)∗ is accepted in Ψ . For
instance, for probability distributions and ordinal conditional functions, we take
(L | L)∗ = (L | L)prob and (L | L)OCF , respectively, and in a purely qualitative
setting, we assume (L | L)∗ = (L | L). Usually, we will assume that epistemic
states are complete in that they are uniquely characterized by all conditional
beliefs which they accept (up to equivalence). Let Bel (Ψ) ⊆ L the belief set
associated to Ψ , containing the most plausible (propositional) beliefs.

Let E∗ = E∗V denote the set of all such epistemic states using (L | L)∗ for
representation of (conditional) beliefs. For an epistemic state Ψ ∈ E∗, we have

Th∗(Ψ) = {φ ∈ (L | L)∗ | Ψ |= φ}.

In particular, epistemic states are considered as models of sets of conditionals
R ⊆ (L | L)∗:

Mod ∗(R) = {Ψ ∈ E∗ | Ψ |= R}

This allows us to extend semantical entailment to sets of conditionals by setting

R1 |=∗ R2 iff Mod ∗(R1) ⊆ Mod ∗(R2),
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and to define a (monotonic) consequence operation Cn∗ : 2(L|L)∗ → 2(L|L)∗ by

Cn∗(R) = {φ ∈ (L | L)∗ | R |=∗ φ}, (3)

in analogy to classical consequence. Two sets of conditionals R1,R2 ⊆ (L | L)∗

are called (epistemically) equivalent iff Mod ∗(R1) = Mod ∗(R2). As usual, R ⊆
(L | L)∗ is consistent iff Mod ∗(R) 6= ∅, i.e. iff there is an epistemic state repre-
senting R.

Before discussing belief revision and update in a fully epistemic and condi-
tional environment, we will first develop a framework for general, mostly non-
monotonic inference using epistemic states as background knowledge.

3 Universal inference operations

From quite a general, abstract point of view, inference operations C map sets of
formulas to sets of formulas – given a set of formulas, C is to return which formu-
las can be derived from this set with respect to some classical or commonsense
logic. In this paper, conditionals are assumed to be a basic, most general logical
means to express knowledge or beliefs. Therefore, we will consider (conditional)
inference operations

C : 2(L|L)∗ → 2(L|L)∗ (4)

associating with each set of conditionals a set of inferred conditionals. This also
covers the notion of propositional inference operations, taking propositional facts
as degenerated conditionals.

A straightforward example for a conditional inference operation is given by
the classical operation Cn∗ defined by (3) above.

In order to link conditional inference to epistemic states, complete inference
operations are of particular interest.

Definition 2. A conditional inference operation C is called complete iff it spec-
ifies for each set R ⊆ (L | L)∗ with C(R) 6= ∅, C(R) 6= (L | L)∗, a complete epis-
temic state ΨR, i.e. iff there is an epistemic state ΨR such that C(R) = Th∗(ΨR).

Complete inference operations realize inductive, model based inference, i.e.
they make the information given by some (consistent, non-vacuous) set of con-
ditionals complete.

As we are going to study inference operations which are based on different
epistemic backgrounds, we make this background explicit and define a formal
structure to cover all possible backgrounds, i.e. all epistemic states in E∗.

Definition 3. A universal inference operation C assigns a complete conditional
inference operation

CΨ : 2(L|L)∗ → 2(L|L)∗

to each epistemic state Ψ ∈ E∗:

C : Ψ 7→ CΨ .
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C is said to be reflexive (idempotent, cumulative) iff all its involved inference
operations have the corresponding property.

If C : Ψ 7→ CΨ is a universal inference operation, CΨ is complete for each
Ψ ∈ E∗. That means, for each set R ⊆ (L | L)∗, CΨ (R) is either ∅ or (L | L)∗,
or it specifies completely (up to equivalence) an epistemic state ΦΨ,R:

CΨ (R) = Th∗(ΦΨ,R) (5)

Define the set of all such epistemic states by

E∗(CΨ ) = {Φ ∈ E∗ | ∃R ⊆ (L | L)∗ : CΨ (R) = Th∗(Φ)}.

A basic property of model-based inference operations is that they produce
reasonable outcomes whenever the input set R is consistent.

Definition 4. A universal inference operation C preserves consistency iff for
each epistemic state Ψ ∈ E∗ and for each consistent set R ⊆ (L | L)∗, CΨ (R) 6= ∅
and CΨ (R) 6= (L | L)∗. In a quantitative setting, when Ψ is represented by a
conditional valuation function V , we further presuppose R to be V -consistent,
i.e. R must respect the 0A-values in V (for a more formal definition of V -
consistency, see [KI01]).

We are now going to study more interesting properties of universal inference
operations.

Definition 5. A universal inference operation C is founded iff for each epis-
temic state Ψ and for any R ⊆ (L | L)∗, Ψ |= R implies CΨ (R) = Th∗(Ψ).

The property of foundedness establishes a close and intuitive relationship
between an epistemic state Ψ and its associated inference operation CΨ , dis-
tinguishing Ψ as its stable starting point. In particular, if C is founded then
CΨ (∅) = Th∗(Ψ).

As to the universal inference operation C, foundedness ensures injectivity, as
can be proved easily.

Proposition 1. If C is founded, then it is injective.

In standard nonmonotonic reasoning, as it was developed in [Mak94] and
[KLM90], cumulativity occupies a central and fundamental position, claiming the
inferences from a set S that “lies in between” another setR and its nonmonotonic
consequences C(R) to coincide with C(R).

To establish a similar well-behavedness of C with respect to epistemic states,
we introduce suitable relations to compare epistemic states with one another.

Definition 6. Let C : Ψ 7→ CΨ be a universal inference operation. For each
epistemic state Ψ , define a relation vΨ on E∗(CΨ ) by setting

Φ1 vΨ Φ2

iff there are sets R1 ⊆ R2 ⊆ (L | L)∗ such that

Th∗(Φ1) = CΨ (R1) and Th∗(Φ2) = CΨ (R2)
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For founded universal inference operations, we have in particular CΨ (∅) = Th∗(Ψ)
for all Ψ ∈ E∗, so Ψ is a minimal element of E∗(CΨ ) with respect to vΨ :

Proposition 2. If C is founded, then for all Ψ ∈ E∗ and for all Φ ∈ E∗(CΨ ), it
holds that Ψ vΨ Φ.

We will now generalize the notion of cumulativity for universal inference
relations:

Definition 7. A universal inference operation C is called strongly cumulative
iff for each Ψ ∈ E∗ and for any epistemic states Φ1, Φ2 ∈ E∗(CΨ ), Ψ vΨ Φ1 vΨ

Φ2 implies: whenever R1 ⊆ R2 ⊆ (L | L)∗ such that Th∗(Φ1) = CΨ (R1) and
Th∗(Φ2) = CΨ (R2), then Th∗(Φ2) = CΨ (R2) = CΦ1(R2).

Strong cumulativity describes a relationship between inference operations
based on different epistemic states, thus linking up the inference operations of
C. In the definition above, Φ1 is an epistemic state intermediate between Ψ and
Φ2, with respect to the relation vΨ , and strong cumulativity claims that the
inferences based on Φ1 coincide with the inferences based on Ψ within the scope
of Φ2.

The next proposition is immediate:

Proposition 3. Let C be a universal inference operation which is strongly cu-
mulative. Suppose Ψ ∈ E∗, Φ ∈ E∗(CΨ ) such that Th∗(Φ) = CΨ (R), R ⊆
(L | L)∗. Then

CΨ (S) = CΦ(S)

for any S ⊆ (L | L)∗ with R ⊆ S.

The following theorem justifies the name “strong cumulativity”: It states that
strong cumulativity actually generalizes cumulativity for an important class of
universal inference operations:

Theorem 1. If C is founded, then strong cumulativity implies cumulativity.

Universal inference operations will prove to be an adequate formal counter-
part of iterated change operations on the other side of the coin (for this metaphor,
cf. [Gär92]). Before elaborating this in more detail, we will first develop a com-
parable formal machinery for belief change.

4 Updating epistemic states by conditional beliefs

Basically, from our point of view, the difference between revision and updating
is mainly due to different belief change scenarios. Apparently, this is not over-
whelmingly new, but elaborating this view in all its consequences has not been
done before properly. It implies that the change process should be distinguished
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from scenario assumptions. So, first of all, we think of ∗ to be a basic imperative
change operator that solves our problem (1) successfully:

Ψ ∗ R ∈ E∗ such that Ψ ∗ R |= R. (6)

It is crucial to point out that ∗ is a full change operator taking two entries,
namely an epistemic state Ψ on its left and a (compatible and consistent) set of
conditionals on its right. Classical theories in nonmonotonic reasoning and belief
revision usually focus on handling its right entry, while considering its left entry
– i.e. the theory inferences are based upon – to be given.

Typical situations for updating occur when knowledge about a prior world
is to be adapted to more recent information (e.g. a demographic model gained
from statistical data of past periods should be brushed up by new data, see, for
instance, the Example 2 below).

Beyond success, what can be expected from ∗? Since the epistemic state Ψ is
assumed to be completely characterized by its set of accepted conditional beliefs,
R can be consistent with Ψ only in a trivial way, i.e., in case of Ψ |= R.

Due to this completeness of knowledge we demand for representing epis-
temic states, there is few or no room, respectively, to model ignorance. To check
whether new information is consistent with an epistemic state thus generally
comes down to check whether this information is already represented. On the
other hand, this implies that incorporating R might change lots of (factual) be-
liefs. In a probabilistic framework, for instance, changing a distribution so as to
assimilate to new information will usually change every single atomic probability
(even if the change operation is as simple as conditioning). The propositional
AGM view of obeying minimal change principles which are based on set inclusion
does not make any sense here. This has been recognized already when dealing
with conditional beliefs under revision (cf. e.g. [DP97]). We would rather need
some kind of distance measure between epistemic states that helps us finding
posterior epistemic states closest to prior epistemic states. In the probabilis-
tic framework, cross entropy [JS83] would be a proper candidate for that, and
similar ideas could be realized in other frameworks, too.

But resorting to such quantitative measure is not completely satisfactory
when the aim is to model belief change processes in human minds, as no human
being is able to calculate such things without the help of machinery. This is not
at all to be taken as a general argument against such information measures, as
implemented logical models of reasoning might be very different from cognitive
human models, but nevertheless successful and helpful realizations outside the
human brain. However, there still should be some qualitative close connection
between prior and posterior epistemic state. The key idea here is to postulate that
the reasoning structures underlying Ψ should also be effective in Ψ ∗R to a largest
possible degree, that is, if no new information in R force them to change. Since
in our framework, such reasoning structures are implemented by conditionals, we
should focus on conserving conditional beliefs, hence following a line of thought
similar to that of Darwiche and Pearl in their work on iterated belief revision
[DP97]. In several papers, we have made precise how a principle of conditional
preservation can be realized in different frameworks [KI99,KI02,KI04].
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Here in this paper, we will generalize these ideas to propose reasonable pos-
tulates for an ideal operator ∗ changing epistemic states by sets of conditionals.
The attribute ideal is to be taken in several meanings: First, as we do not stick
to one representation framework, the postulates are quite general. Second, we
are willing to accept that not all of them can be fulfilled in any framework, nev-
ertheless suggesting them as postulates a “good” change operator should strive
to satisfy. Third, even in frameworks where these postulates do not fully apply,
we might think of some ideal change operator that the operator under investiga-
tion can be based upon (e.g. as a projection), hence deriving from the postulates
reasonable properties of belief change in simpler frameworks.

Postulates for updating epistemic states by sets of conditionals:
Let Ψ be an epistemic state, and let R ⊂ (L | L)∗; let Ψ ∗R denote the result of
updating Ψ by R:

(CSR1) Success: Ψ ∗ R |= R.
(CSR2) Stability: If Ψ |= R then Ψ ∗ R = Ψ .
(CSR3) Semantical equivalence: IfR1 andR2 are (semantically) equivalent,

then Ψ ∗ R1 = Ψ ∗ R2.
(CSR4) Reciprocity: If Ψ ∗R1 |= R2 and Ψ ∗R2 |= R1 then Ψ ∗R1 = Ψ ∗R2.
(CSR5) Logical coherence: Ψ ∗ (R1 ∪R2) = (Ψ ∗ R1) ∗ (R1 ∪R2).

Postulates (CSR1) implements success, a crucial property of an imperative
change operator. (CSR2) guarantees stability if the information represented by
R is not new but already believed. As success, also stability might be debatable
in cases where we would like new confirming information to have a strengthening
effect. Again, this is not a matter of pure change processes, but involves different
processes that might better be discussed in a merging framework. (CSR3) means
that for the basic change operation, only the semantics of new pieces of infor-
mation matter. This should, however, not be confused with the idea of syntax
independence which is sometimes used to indicate refraining from using explicit
beliefs in belief bases. (CSR4) states that two changing procedures with respect
to sets R1 and R2 should result in the same epistemic state if each revision rep-
resents the new information of the other. This property is called reciprocity in
the framework of nonmonotonic logics (cf. [Mak94]) and appears as axiom (U6)
in the work of Katsuno and Mendelzon [KM91]. (CSR5) is the only seemingly
extraordinary and new axiom here. It demands that adjusting any intermediate
epistemic state Ψ ∗R1 to the full information R1 ∪R2 should result in the same
epistemic state as adjusting Ψ by R1 ∪ R2 in one step. The rationale behind
this axiom is that if the information about the new world drops in in parts,
changing any intermediate state of belief by the full information should result
unambigously in a final belief state. So, it guarantees the change process to be
logically coherent. Listing (CSR5) here may be innovative, but the axiom itself
is not new. In fact, it is a set-theoretical version of axiom (C1) in [DP97], and
it has proved to be a crucial property for the characterization of probabilistic
belief change via cross entropy (see [KI01]), but actually goes back to [SJ81].
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(CSR5) clearly goes beyond any classical approach to belief change since it
is a postulate on iterated belief change, explicitly linking iterated belief change
to one-step belief change. Note that (CSR5) does not claim (Ψ ∗ R1) ∗ R2 and
(Ψ ∗ R1) ∗ (R1 ∪ R2) to be the same, so it does not boil down iterated belief
change to simple belief change. Just to the contrary – these epistemic states will
be expected to differ in general, because the first is not supposed to maintain
prior contextual information, R1, whereas the second should do so, according to
axiom (CSR1).

As an example of a binary update operator which satisfies all postulates
(CSR1-CSR5), we briefly present the probabilistic update operation via the prin-
ciple of minimum cross-entropy.

Given two probability distributions Q and P , the cross-entropy between them
is defined by

R(Q,P ) =
∑
ω∈Ω

Q(ω) log
Q(ω)
P (ω)

(with 0 log 0
0 = 0 and Q(ω) log Q(ω)

0 = ∞ for Q(ω) 6= 0) Cross-entropy is a well-
known information-theoretic measure of dissimilarity between two distributions
and has been studied extensively (see, for instance, [Csi75,HHJ92,Jay83,Kul68];
for a brief, but informative introduction and further references, cf. [Sho86]; see
also [SJ81]). Cross-entropy is also called directed divergence since it lacks sym-
metry, i.e. R(Q,P ) and R(P,Q) differ in general, so it is not a metric. But
cross-entropy is positive, that means we have R(Q,P ) > 0, and R(Q, P ) = 0 iff
Q = P (cf. [Csi75,HHJ92,Sho86]).

Consider the probabilistic belief revision problem

(∗prob) Given a (prior) distribution P and some set of probabilistic condition-
als R = {(B1|A1) [x1], . . . , (Bn|An) [xn]} ⊆ (L | L)prob , how should P be
modified to yield a (posterior) distribution P ∗ with P ∗ |= R?

When solving (∗prob), the paradigm of informational economy , i.e. of minimal
loss of information (see [Gär88, p. 49]), is realized in an intuitive way by following
the principle of minimum cross-entropy

minR(Q,P ) =
∑
ω∈Ω

Q(ω) log
Q(ω)
P (ω)

(7)

s.t. Q is a probability distribution with Q |= R

For a distribution P and some setR of probabilistic conditionals compatible with
P (cf. [KI01] for the details) there is a (unique) distribution PME = PME (P,R)
that satisfies R and has minimal relative entropy to the prior P (cf. [Csi75]), i.e.
PME solves (7) and thereby (∗prob). Note that (∗prob) exceeds the framework of
the classical AGM-theory with regard to several aspects: an epistemic state (P )
is to be revised by a set of conditionals representing uncertain knowledge. The
ME-change operator ∗ME is defined by

P ∗ME R = PME (P,R). (8)
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This operator will serve to illustrate some ideas presented in this paper. It can
be shown that ∗ME satisfies all postulates (CSR1-5) [KI01].

5 Universal inference operations and belief update

A straightforward relationship between universal inference operations C : Ψ 7→
CΨ and binary update operators ∗ can now be established by setting

Ψ ∗ R ≡ ΦΨ,R

(cf. (5) above) for Ψ ∈ E∗,R ⊆ (L | L)∗, that is

CΨ (R) = Th(Ψ ∗ R). (9)

We will use this relationship as a formal vehicle to make correspondences
between the postulates for updates stated in section 4 and properties of universal
inference operations defined in section 3 explicit.

Proposition 4. Suppose update is being realized via a universal inference oper-
ation as in (9). Then the following coimplications hold:

(i) ∗ satisfies (CSR1) iff C is reflexive.
(ii) ∗ satisfies (CSR2) iff C is founded.
(iii) ∗ satisfies (CSR3) iff C satisfies left logical equivalence.
(iv) Assuming reflexivity resp. the validity of (CSR1), ∗ satisfies (CSR4) iff C is

cumulative.
(v) Assuming foundedness resp. the validity of (CSR2), ∗ satisfies (CSR5) iff C

is strongly cumulative.

The proofs are immediate. From this proposition, a representation result
follows in a straightforward manner:

Theorem 2. If ∗ is defined by (9), it satisfies all of the postulates (CSR1)-
(CSR5) iff the universal inference operation C is reflexive, founded, strongly
cumulative and satisfies left logical equivalence.

So, in particular, the properties of foundedness and strong cumulativity turn
out to be crucial to control iterated change operations.

6 Belief bases and belief revision

Finally, we will turn our attention to belief revision. The usual view on belief
revision is that currently held beliefs are revised by new information, where
conflicts are solved in favor of the new information. If we presuppose that the
revision agent is neither confused nor deceived or stupid, the observations he
makes are correct, and conflicts may only arise between new information and
plausibly derived beliefs. So, we are going to distinguish between background
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knowledge and evidential knowledge, and all evidential information the agent
collects about the “static world” under consideration – which defines the relevant
context – must be consistent.

As epistemic states are not supposed to reveal history, and do not allow one
to distinguish between explicit and implicit knowledge, or between generic and
evidential knowledge, we first take (properly defined) belief bases as primitive
representations of epistemic knowledge, from which epistemic states may be
derived.

Definition 8. A belief base is a pair (Ψ,R), where Ψ is an epistemic state
(background knowledge), and R ⊆ (L | L)∗ is a set of conditionals representing
contextual (or evidential) knowledge.

The transition from belief bases to epistemic states is assumed to be achieved
by the binary belief change operator ∗:

∗(Ψ,R) := Ψ ∗ R (10)

considered in section 4. So, flux of knowledge is modelled quite naturally: Prior
knowledge serves as a base for obtaining an adequate full description of the
present context which may be used again as background knowledge for further
change operations.

In the following, we will develop postulates for revising belief bases (Ψ,R) by
new conditional information S ⊆ (L | L)∗, yielding a new belief base (Ψ,R) ◦ S,
in the sense of the AGM-postulates.

Due to distinguishing background knowledge from context information, we
are able to compare the knowledge stored in different belief bases:

Definition 9. A pre-ordering v on belief bases is defined by

(Ψ1,R1) v (Ψ2,R2) iff Ψ1 = Ψ2 and R2 |=∗ R1

(Ψ1,R1) and (Ψ2,R2) are v-equivalent,

(Ψ1,R1) ≡v (Ψ2,R2),

iff (Ψ1,R1) v (Ψ2,R2) and (Ψ2,R2) v (Ψ1,R1).

Therefore (Ψ1,R1) ≡v (Ψ2,R2) iff Ψ1 = Ψ2 and R1 and R2 are semantically
equivalent, i.e. iff both belief bases reflect the same epistemic (background and
contextual) knowledge.

The following postulates do not make use of the basic change operation ∗,
but are to characterize pure belief base revision by the revision operator ◦:

Postulates for conditional base revision:

Let Ψ be an epistemic state, and let R,R1,S ⊆ (L | L)∗ be sets of conditionals.

(CBR1) (Ψ,R) ◦ S is a belief base.
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(CBR2) If (Ψ,R) ◦ S = (Ψ,R1) then R1 |=∗ S.
(CBR3) (Ψ,R) v (Ψ,R) ◦ S.
(CBR4) (Ψ,R)◦S is a minimal belief base (with respect to v) among all belief

bases satisfying (PR1)-(PR3).

(CBR1) is the most fundamental axiom and coincides with the demand for
categorical matching (cf. [GR94]). (CBR2) is the success postulate here: the new
context information is now represented (up to epistemic equivalence). (CBR3)
states that revision should preserve prior knowledge. Thus it is crucial for re-
vision in contrast to update. Finally, (CBR4) is in the sense of informational
economy (cf. [Gär88]): No unnecessary changes should occur. Admittedly, our
postulates are much simpler than those proposed by Hansson (see, for instance,
[Han89,Han91], and [GR94, p. 61]). They are, however, not based upon classical
logic. So, they are more adequate in the framework of general epistemic states.

The following characterization may be proved easily:

Theorem 3. The revision operator ◦ satisfies the axioms (CBR1) – (CBR4) iff

(Ψ,R) ◦ S ≡v (Ψ,R∪ S). (11)

So, from (CBR1)-(CBR4), other properties of the revision operator also fol-
low in a straightforward manner which are usually found among characterizing
postulates:

Proposition 5. Suppose the revision operator ◦ satisfies (11). Then it fulfills
the following properties:

(i) If R |=∗ S, then (Ψ,R) ◦ S ≡v (Ψ,R);
(ii) If (Ψ1,R1) v (Ψ2,R2) then (Ψ1,R1) ◦ S v (Ψ2,R2) ◦ S;
(iii) ((Ψ,R) ◦ S1) ◦ S2 ≡v (Ψ,R) ◦ (S1 ∪ S2),

where (Ψ,R), (Ψ1,R1), (Ψ2,R2) are belief bases and S,S1,S2 ⊆ (L | L)∗.

(i) shows a minimality of change, while (ii) is stated in [Gär88] as a mono-
tonicity postulate. (iii) deals with the handling of non-conflicting iterated revi-
sions.

Here we investigate revision merely under the assumption that the new in-
formation is compatible with what is already known. Belief revision based on
classical logics is nothing but expansion in this case, and Theorem 3 indeed
shows that revision of belief bases should reasonably mean expanding contex-
tual knowledge.

Note that revising a belief base (Ψ,R) by S ⊆ (L | L)∗ also induces a change
of the corresponding belief state Ψ∗ = Ψ ∗R to (Ψ∗)′ = ∗((Ψ,R)◦S). So, revision
of epistemic states is realized here by making use of base revision and update,
or universal inference operations, respectively. According to Theorem 3, if the
involved update operation satisfies (CSR3), i.e. if the (underlying) universal
inference operation C satisfies left logical equivalence, then the only reasonable
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revision operation (as specified by (CBR1)-(CBR4)) is given on the belief state
level by

∗((Ψ,R) ◦ S) = Ψ ∗ (R∪ S), (12)

and therefore,
Th∗(∗((Ψ,R) ◦ S)) = CΨ (R∪ S)

This parallels the result for the classical belief revision theory, with the inference
operation CΨ replacing the classical consequence operation (cf. [Gär88]).

Nevertheless, we prefer using the more general term “revision” to “expansion”
here. For, if we consider the epistemic states generated by the two belief bases
Ψ ∗R and ∗((Ψ,R)◦S) = Ψ ∗(R∪S), we see that the epistemic status that Ψ ∗R
assigns to (conditional) beliefs occurring in S will normally differ from those in
Ψ as well as from those in Ψ ∗ (R∪S) with expanded contextual knowledge. So
the belief in the conditionals in S is actually revised.

7 Revision and update

Investigating belief change in the generalized framework of epistemic states and
conditionals allows a deeper insight into the mechanisms underlying the belief
change process. As a crucial difference to propositional belief change, it is possible
to distinguish between revising simultaneously and successively : In general, we
have

Ψ ∗ (R∪ S) 6= (Ψ ∗ R) ∗ S; (13)

instead, we may only postulate strong cumulativity or logical coherence, respec-
tively,

Ψ ∗ (R∪ S) = (Ψ ∗ R) ∗ (R∪ S),

which is essentially weaker.
The distinction between revision and update can now be made clear on a con-

ceptual level. Revision is to process pieces of contextual information R1, . . . ,Rn

pertaining to the same background knowledge Ψ , e.g. the epistemic state of the
agent at a given time. Hence, revision should be performed by simultaneous be-
lief change. A proper example for this is the process of making up a consistent
mental picture on some event, like e.g. a plane crash or a crime which marks a
clear point on the time line. Any reliable information an agent obtains on that
event clearly has to be handled on the same level. So, if he receives two pieces
of information, R1 and R2, on that event, one after the other, then he should
revise Ψ ∗R1 by R2 to obtain Ψ ∗(R1∪R2). On the other hand, update is a kind
of successive belief change which is able to override any previously held beliefs,
just using the current epistemic state as background knowledge. In the scenario
with two pieces of information, R1 and R2, coming in one after the other, and Ψ
as a starting point, the agent should update Ψ ∗R1 by R2 to obtain (Ψ ∗R1)∗R2,
which is, as we pointed out, in general different from Ψ ∗ (R1∪R2). The distinc-
tion between update and revision thus becomes primarily a question of making
a proper decision for the situation at hand, not of techniques.
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Example 1. A robot is moving around a room, gathering information about that
room via its sensors. Depending on his actual position, it comes to know the
shape and size of the room, the position of windows, doors and furnitures. Maybe,
according to the task it has to fulfill, it might also be interested in which persons
are in the room, and the state of the paper basket. The pieces of information
clearly come in one after another, at different time points. Nevertheless, the de-
cision whether to use revision or update here depends on the modelling scenario.
If the robot takes his own position into account, it clearly has to use an update
procedure to process the pieces of information, since its world (where its position
is a crucial parameter) constantly changes. On the contrary, if it abstracts from
its actual position, e.g. by noticing objects according to their relative position in
the room (“door1 is between window2 and cupboard1”), revision might be the
proper candidate, as long as we do not expect the room and its object to change
during the time of investigation. Making use of the ideas presented above, even
a mixture of revision and update is possible, e.g. revising by information about
static aspects of the room and updating by information concerning persons in
the room or the state of the paper basket.

This makes clear that in our conceptual framework of belief change, incorpo-
rating several pieces of new information into our stock of belief can be achieved
in different ways by using the same change operator. This allows a more accurate
view on iterated belief change by differentiating between simultaneous and suc-
cessive revision. This means, having to deal with different pieces of information,
the crucial question is not whether one information is more recent than others,
but which pieces of information should be considered to be on the same level
(which may, but is not restricted to be, of temporal type), or to be more precise,
which pieces of information refer to the same context. Basically, informations
on the same level are assumed to be compatible with one another, so simple set
union will return a consistent set of formulas. Otherwise, more complex merging
operations have to be considered. Informations on different levels do not have to
be consistent, here later ones may override those on previous levels.

In the sequel, we will try to get a clearer view on formal parallels and differ-
ences, respectively, between revision and updating. For an adequate comparison,
we have to observe the changes of belief states that are induced by revision of
belief bases. Observing (10), (CBR2) and (CBR3) translate into

(CBR2’) ∗((Ψ,R) ◦ S) |= S.
(CBR3’) ∗((Ψ,R) ◦ S) |= R.

While (CBR2’) parallels (CSR1), (CBR3’) establishes a crucial difference
between revision and updating: revision is supposed to preserve prior knowledge
while updating does not, neither in a classical nor in a generalized framework.

The intended effects of revision and updating on a belief state Ψ ∗ R that is
generated by a belief base (Ψ,R) are made obvious by – informally! – writing

(Ψ ∗ R) ◦ S = Ψ ∗ (R∪ S) 6= (Ψ ∗ R) ∗ S (14)
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(cf. (12)). This reveals clearly the difference, but also the relationship between
revision and updating: Revising Ψ ∗R by S results in the same state of belief as
updating Ψ by (the full contextual information) R∪ S.

The representation of an epistemic state by a belief base, however, is not
unique, different belief bases may generate the same belief state (the same holds
for classical belief bases, cf. [Han89], [GR94, p. 48]). So we could not define gen-
uine epistemic revision on belief states, but had to consider belief bases in order
to separate background and context knowledge unambigously. It is interesting
to observe, however, that the logical coherence property (CSR5) of the basic
change operator ∗ ensures at least a convenient independence of revision from
background knowledge: If two belief bases (Ψ1,R), (Ψ2,R) with different prior
knowledge but the same contextual knowledge give rise to the same belief state

Ψ1 ∗ R = Ψ2 ∗ R,

then, assuming logical coherence to hold,

Ψ1 ∗ (R∪ S) = (Ψ1 ∗ R) ∗ (R∪ S)
= (Ψ2 ∗ R) ∗ (R∪ S)
= Ψ2 ∗ (R∪ S).

So logical coherence guarantees a particular well-behavedness with respect not
only to updating, but also to revision.

In the following example, we will illustrate revision and updating in a prob-
abilistic environment, using the ME operator ∗ME as implementing a proper
change operation.

Example 2. A psychologist has been working with addicted people for a couple
of years. His experiences concerning the propositions

V : a : addicted to alcohol
d : addicted to drugs
y : being young

may be summarized by the following distribution P that expresses his belief
state probabilistically:

ω P (ω) ω P (ω) ω P (ω) ω P (ω)

ady 0.050 ady 0.333 ady 0.053 ady 0.053
ady 0.093 ady 0.102 ady 0.225 ady 0.091

The following probabilistic conditionals may be entailed from P :

(d|a)[0.242] (i.e. P (d|a) = 0.242)
(d|a)[0.666] (i.e. P (d|a) = 0.666)
(a|y)[0.246] (a|y)[0.660]
(d|y)[0.662] (d|y)[0.251]
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Now the psychologist is going to change his job: He will be working in a clinic
for people addicted only to alcohol and/or drugs. He is told that the percentage
of persons addicted to alcohol, but also addicted to drugs, is higher than usual
and may be estimated by 40 %.

So the information the psychologist has about the “new world” is represented
by

R = {a ∨ d[1], (d|a)[0.4]}.

The distribution P from above is now supposed to represent background or prior
knowledge, respectively. So the psychologist updates P by R using ME-change
and obtains P ∗ = P ∗ME R as new belief state:

ω P ∗(ω) ω P ∗(ω) ω P ∗(ω) ω P ∗(ω)

ady 0.099 ady 0.425 ady 0.105 ady 0.066
ady 0.089 ady 0.0 ady 0.216 ady 0.0

After having spent a couple of days in the new clinic, the psychologist realized
that this clinic was for young people only. So he had to revise his knowledge about
his new sphere of activity and arrived at the revised belief state ∗ME ((P,R) ◦
y[1]) = P ∗ME (R∪ y[1]) =: P ∗

1 shown in the following table:

ω P ∗
1 (ω) ω P ∗

1 (ω) ω P ∗
1 (ω) ω P ∗

1 (ω)

ady 0.120 ady 0.700 ady 0.0 ady 0.0
ady 0.180 ady 0.0 ady 0.0 ady 0.0

This distribution obtained by revision is different from that one the psychologist
would have obtained by focusing his knowledge represented by P ∗ = P ∗ME R
on a young patient, which can be computed via ME update as P ∗ ∗ME {y[1]} =
P ∗(·|y) =: P ∗

y (please note that the context has changed!):

ω P ∗
y (ω) ω P ∗

y (ω) ω P ∗
y (ω) ω P ∗

y (ω)

ady 0.162 ady 0.693 ady 0.0 ady 0.0
ady 0.145 a dy 0.0 ady 0.0 ady 0.0

8 Conclusion

In this paper, we presented a formal, unifying framework for iterated belief
change and nonmonotonic inference operations with explicit epistemic back-
ground knowledge. We made a clear conceptual distinction between belief re-
vision and belief update and showed how this distinction can be realized tech-
nically. Both revision and update operations could be iterated, with different
outcomes. General postulates served as cornerstones to classify change opera-
tions, in the tradition of the AGM-theory. Most of these postulates were related
to similar statements in revision and update theories. The postulate (CSR5) of
Logical Coherence, however, is new and refers explicitly to iterated belief change.
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It proved to be very strong, and is shown to correspond to strong cumulativity
of universal inference operations.

We illustrated our ideas by the probabilistic change operation that is induced
by the principle of minimum cross entropy. Up to date, it is the only change
operation which is known to satisfy all requirements listed in this paper. It is
part of our ongoing work to explore which other frameworks are rich enough to
comply with the postulates and properties presented in this paper.
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