
A Case for Deconstructing Hardware Transactional Memory Systems

Mark D. Hill, Derek Hower, Kevin E. Moore,
Michael M. Swift, Haris Volos, and David A. Wood

Department of Computer Sciences, University of Wisconsin–Madison
{markhill, drh5, kmoore, swift, hvolos, david}@cs.wisc.edu

http://www.cs.wisc.edu/multifacet
Abstract
Major hardware and software vendors are curious about

transactional memory (TM), but are understandably cautious
about committing to hardware changes.

Our thesis is that deconstructing transactional memory into
separate, interchangeable components facilitates TM adoption in
two ways. First, it aids hardware TM refinement, allowing ven-
dors to adopt TM earlier, knowing that they can more easily
refine aspects later. Second, it enables the components to be
applied to other uses, including reliability, security, performance,
and correctness, providing value even if TM is not widely used.
We develop some evidence for our thesis via experience with
LogTM variants and preliminary case studies of scalable watch-
points and race recording for deterministic replay.

1 Introduction
Transactional memory (TM) [17,22] has been proposed to

ease concurrent programming. TM systems may be imple-
mented completely in software (Software TMs or STMs)
[15,16,48], as software-hardware HybridTMs [10,20,44,45], or
largely in hardware (Hardware TMs or HTMs). Example HTMs
include HMTM [17], TCC [14,26,27], UTM/LTM [2], VTM
[44], LogTM [29,30,58], and Bulk [8]. HTMs mitigate most
STM overheads, because they (i) augment hardware with state
to track read/write sets, (ii) leverage cache coherence to detect
conflicts, and (iii) use caches or write buffers to hold tentative
writes. For these reasons, HTMs can execute existing lock-
based programs and micro-benchmarks as fast or faster than
multi-threaded programs using fine-grain locking [29,42,43].

Major hardware and software vendors have exhibited con-
siderable curiosity regarding both hardware and software TMs
as a way to ease their customers’ transition to multicore sys-
tems. Nevertheless, vendors are understandably cautious about
committing to hardware changes, in part, because (a) TM
implementations are still in flux, and (b) ultimate success of
TM is not yet assured.
Our Thesis. We should facilitate TM adoption by deconstruct-
ing HTMs into separate, interchangeable components. Section 2
provides an example TM deconstruction into five components
that can be developed independently. We find two arguments
supporting this thesis.
Deconstruction Aids HTM Refinement. Deconstruction
into interchangeable components eases HTM refinement rela-

tive to monolithic HTMs. It also encourages clean interfaces
between components to support independent evolution. In
addition, deconstruction supports hybrid TM systems, in
which not all components are provided by hardware. It also
allows vendors to adopt TM earlier, knowing that they can
more easily refine aspects later (mitigating concern (a)). Sec-
tion 3 provides evidence for this benefit from LogTM variants
and other systems.
Deconstruction Enables Use Beyond TM. Deconstruction
also allows TM components to be applied toward solving prob-
lems beyond TM. This encourages vendors to adopt TM com-
ponents earlier, knowing that they have value even it TM fails
(mitigating concern (b)). In addition, deconstruction encour-
ages early interface refinement to support these other uses, as
opposed to discovering them after interfaces have been set.
Section 4 outlines potential uses in reliability, security, perfor-
mance, and correctness.

We support using HTM components with several prelimi-
nary case studies. Section 5.1 presents scalable watchpoints
constructed from transactional memory components. Section
5.2 presents a transactional race recorder that enables deter-
ministic replay.
Summary. We find evidence that deconstructing HTMs may
speed TM adoption by reducing the risks of adopting non-
optimal HTM components (because they can be improved
later) and HTM components at all (because they have uses
beyond TM). Moreover, we find that these benefits are more
easily obtained if components are designed for multiple uses a
priori rather than applied ex post facto. We believe that similar
benefits are likely from deconstructing hybrid TMs as well.

2 Deconstructing HTMs
The first HTM proposal, HMTM, from Herlihy and Moss

[17], proposed a single mechanism that provides the entire
transaction capability. The system places data accessed by a
transaction into a transactional cache and detects conflicts
when another transaction attempts to access that data. How-
ever, the use of a single cache for all TM functionality prevents
this system from supporting transactions that do not fit in the
cache or from surviving interrupts or other context switches.

Our group’s work on HTMs began with an attempt to rem-
edy the size limitation with a coarse deconstruction of HTM
into version management and conflict detection. Version man-
Dagstuhl Seminar Proceedings 07361
Programming Models for Ubiquitous Parallelism
http://drops.dagstuhl.de/opus/volltexte/2008/1375

1

agement handles the simultaneous storage of both new data
(for commit) and old data (for abort). Conflict detection signals
an overlap between the write set (data written) of one transac-
tion and the write set or read set (data read) of other concur-
rent transactions.

Our first proposal, LogTM [29] combines innovative ver-
sion management with extant conflict detection methods—
extending cache tags with transaction state. On transactional
writes, LogTM saves old values in per-thread logs and writes
new values “in place,” in contrast to HMTM, SLE [42], TCC,
Bulk and others that buffer speculative new values and replace
old values only at commit.

What’s important here is not whether LogTM is better, but
that deconstruction enables a separation of concerns: with
LogTM, version management and conflict detection use differ-
ent mechanisms that may be evolved separately. We will argue
that separation accelerates both refining HTMs (Section 3) and
allowing HTM mechanisms to be applied to other purposes
(Section 4).

To these ends, our current best hypothesis for an HTM
deconstruction is the GRAAS components (pronounced
“grass”). For each component, we describe its function and
prove a few sample mechanisms:
1) Grouping: How the TM system is informed of what
instructions should form a transaction. This may be via explicit
instructions that begin and end a transaction [14] or inferred
from other instructions [7,17].

2) Rollback: How the TM system “undoes” a transaction’s
tentative execution to support abort. This may entail flushing
new values from a cache [14] or walking a log to restore old
values to memory [29].

3) Access Summary: How the TM system records a transac-
tion’s read/write sets. This information is needed to detect
when transactions conflict and are not serializable. HTMs have
provided this function with a separate cache [17], with bits on
existing cache lines [2,14,29], with bloom-filter like signatures
[8,28,58], and with memory tags [2,6].

4) Access Check: When and how the TM system checks for
conflicts (i.e., access summary overlaps). Some HTMs check
access lazily, by broadcasting the write set at commit to other
processors [8]. Others perform access checks eagerly, as part
of the coherence protocol [17,29].

5) Scheduling: How the TM system seeks concurrency, live-
ness, and fairness in the presence of conflicts. This generally
takes the form of a conflict handler that may stall, abort, or
queue a transaction. Scheduling has been implemented as a
simple hardware conflict resolution policy [14,29] or as a soft-
ware handler that can support more flexible policies [60].

In the next section, we provide evidence for the value of the
GRAAS components. Nevertheless, GRAAS is a work-in-
progress that should be interpreted as an example deconstruc-
tion, not the final word.

3 Deconstruction Aids HTM Refinement
Here, we examine how deconstructing HTMs into separate

components facilitates improving HTMs. We first present our
experience with LogTM as a case study and then touch upon
how others have productively used deconstruction.

As discussed above, our group first developed LogTM. This
system separated out and replaced version management (now
renamed the GRAAS component rollback), but left other com-
ponents unchanged from prior HTMs (see first two columns of
Table 1).

Table 1. Evolution of Wisconsin HTM Systems from HMTM

HMTM[17] LogTM [29] Nested LogTM [30] LogTM-SE [58]

G
R

A
A

S
C

om
po

ne
nt

s Grouping Xact load, store, validate,
commit instructions

Begin, end, & abort
instructions

Closed/open begin, commit,
& abort instructions

Same as Nested LogTM

Rollback Flush transactional cache Flat log, hardware fill,
software abort handling

Segmented log, hardware
fill, software abort handling

Segmented log, holds pushed sig-
natures, hardware fill, SWaborts

Access
Summary

Transactional cache states Cache R/W bits
& sticky coherence

Replicated cache R/W bits
& sticky coherence

R/W signatures
& sticky coherence

Access
Check

On read/write, coherence
protocol checks cache state

On read/write, coherence
protocol finds R/W bits

Same as LogTM On read/write, coherence protocol
finds signatures

Scheduling Fixed in hardware Fixed in hardware Same as LogTM HW + SW conflict handler hooks

Our second HTM, Nested LogTM [30], adds support for
closed [32] and open nested transactions [33,51]. Deconstruc-
tion separated implementation changes into three separate
concerns. Grouping was refined so that commit instructions
indicated closed or open nesting. Rollback used a segmented,
rather than flat, log to enable partial abort. Access summary was
enhanced by replicating read/write bit (R/W) bits on each
cache block (e.g., 4 times). This last change, which increased
hardware costs and limited the number of nesting levels to the
replication of R/W bits, inspired our third HTM.

Our third HTM, LogTM Signature Edition (LogTM-SE)
[58], reduces support needed in L1 caches, supports
unbounded nesting, and (independently) enables better con-
flict management. Once again, decomposition made imple-
mentation more straightforward. The most important change
is that the access summary of each transaction is maintained
via a compact signature (e.g., 128 bytes) [5,31,39,47]. This
change necessitated small changes to support rollback (to save/
restore signatures on the log) and access check (check signa-
tures rather than in-cache R/W bits). In addition, LogTM-SE
supports trapping on transaction conflicts to enable flexible
scheduling [46].
 2

The GRAAS deconstruction enabled these LogTM
improvements (see Table 1). Understanding that access sum-
maries are different than access checks, for example, allowed
LogTM-SE to change access summaries to signatures without
changing access checking via coherence.

Without deconstruction, the components of an HTM are
tightly integrated, making it difficult to address a problem with
one component without impacting the others. For example,
when a single hardware structure, such as the cache, provides
both access checks and access summaries, it is difficult for the
OS to deschedule the transaction, because the access check
mechanism is not available once the thread has been sus-
pended. LogTM-SE solves this problem with an additional
variety of access check, summary signatures. These are local
access summaries representing descheduled threads that are
checked on every memory reference.

3.1 Deconstructing LogTM-SE
To demonstrate the utility of deconstructing HTM, we pro-

vide several examples based on a deconstruction of LogTM-SE
[58]

User
Registers

Signature

Summary Signature

R W

R W

CORE n

Log Pointer

Register
Checkpoint

Log Base
Handler PC

TMnest

Access
Check

Access
Summary

Rollback

Grouping

Scheduling

Figure 1: Additional state for a single core of a LogTM-SE
CMP with the GRAAS components labeled.

. LogTM-SE supports the GRAAS components using a
combination of hardware mechanisms and low-level software.
Figure 1 shows the additional hardware state associated with
each component.

Grouping. LogTM-SE hardware implements grouping with
the TMnest register, which is the transaction nesting depth (0
means non-transactional). The xbegin and xend instructions
increment and decrement this register.

Rollback. Rollback is implemented by a user-level software
handler that restores old values from the transaction log, the
bounds of which are defined by the Log Pointer and Log Base
registers. Hardware writes old values to the log prior to store
instructions.

Access Summary. Access summary is provided by hardware
signatures (read and write). In LogTM-SE, the access summary
for an active transaction is collected in the read and write sig-
nature and may be saved/restored by software.

Access Check. Access check is implemented by hardware
checks of processors’ primary and summary signatures. An

extension to the coherence mechanism checks each memory
request for conflicts with the primary signatures on all other
processors. An additional hardware check tests for a conflict
with the executing processor’s local summary signature.

Scheduling. Scheduling in LogTM-SE is provided by (1) a
fixed transaction conflict resolution policy implemented in the
coherence mechanism and (2) a software handler for conflicts
with descheduled transactions. The conflict handler may stall
(and later resume) an active transaction, abort the current
transaction and (later) restart it, or switch to an alternate exe-
cution path.

3.2 Deconstruction in Other HTMs
Several other HTMs implicitly use deconstruction to aid

HTM refinement. For example, Bulk [8] enhances a design
similar to TCC [14] by changing the access check mechanism
and access summary mechanism. Similar to LogTM-SE, Bulk
uses signatures to over-approximate the read- and write-sets of
a transaction. But, Bulk detects conflicts by broadcasting the
signatures during commit. Another example of limited decon-
struction is to use OS scheduling primitives to resolve conflicts
[60].

Deconstruction is also useful for constructing hybrid TM
systems, where software and hardware cooperatively provide
transactions. For example, SigTM relies on software for group-
ing, rollback, and scheduling, but uses hardware signatures for
access checks and summarization [28].

4 Deconstruction Enables Use Beyond TM
Transactional memory was originally proposed to ease

high-performance concurrent programming. However, decon-
structing TM led us to realize that the GRAAS components
may be independently useful to solve other problems. Compo-
nents that support other uses may encourage hardware vendors
to implement transactional memory, as the mechanisms are
useful even if TM is not widely adopted.

Applying HTM components to other problem areas has the
additional benefit of refining the interfaces. In many cases,
small semantic changes or additional features may greatly
improve the utility of a component. As we show in Section 5.1,
the ability to continue a transaction after a conflict is simple to
implement and useful for debugging purposes, but may not
have been considered solely for transactional memory.

We identify four problem areas in which transactional com-
ponents may be of use:
• Reliability: handling hardware and software failures
• Security: providing fine-grained access control
• Performance: speculating on fast-path code
• Correctness: finding bugs, including concurrency

problems
In each of these areas, the GRAAS components provide new

capabilities that are not possible with monolithic TMs or are
prohibitively slow. Table 2 lists eight potential applications of
the GRAAS components for addressing critical issues outside
of TM.
 3

4.1 Improving Reliability
Three key problems in improving reliability are detecting

failures, isolating faulty modules from correct modules, and
recovering from failure. Fine-grained access control mecha-
nisms developed for reliability [49,50,53], which detect when a
faulty modules writes to data it does not control, are similar to
the access check and access summary components of TM. With
small modifications, a processor that implements the GRAAS
components can also provide fine-grained memory isolation.
The access summary for a module can be compared against
either a white list of known-good locations or a black list of
known-bad locations. A conflict signals a (possibly) illegal
operation by the module. In addition, transactional access
checks can prevent other code from observing corruption and
subsequently failing. The access check component can option-
ally detect such violations automatically. Once a failure has
been detected, either through hardware or software checks,
rollback provides a mechanism to recover the system to a safe
state.

For example, the Nooks driver isolation system [49] could
be implemented more easily and execute faster with the
GRAAS components. Nooks isolates drivers using page-level
protection on virtual memory and recovers by reloading and
re-initializing the driver. Rather than change page tables on
every invocation of a device driver, a transactional isolation
system would instead install a memory summary against
which to check accesses by the driver. Similarly, rather than roll
the driver back completely, transactional rollback allows only
the last invocation of the driver to be rolled back, a much faster
recovery process. For bugs that are detected quickly, this would
greatly improve the availability of the system.

4.2 Improving Security
Fine-grained memory access control is also helpful for

improving security, to prevent untrusted code from reading or
writing sensitive data structures. A major challenge is ensuring
that untrusted code cannot disable the access summarization
and checks, which can be ensured through code inspection

[50]. When the access check detects a conflict, this indicates a
potential security problem that must be verified. The recovery
strategy previously described can keep an application running
in the presence of a security breach by rolling back corrupted
data.

Table 2. Mechanisms Supported by Transaction Components

Mechanism Use Grouping Rollback Access Summary Access Check Scheduling

Fine-grained Isolation
Reliability,
Security

Around
component

Abort Writes Against white
/ black list

Failure Recovery
Reliability,
Security

Around
component

Abort

Information Flow
Security Around

component
Reads / writes

Resource Limits
Reliability,
Security

Around
component

Abort Limit resource
consumption

Speculation
Performance,
security

Around
code block

Retry
alternate

Reads / writes Against
preset list

Watch Points
Correctness Against watch

locations
Invoke
debugger

Race Detection
Correctness Races and

sequential
Reads / writes Against

conflicts
Raise error
when sequential

Replay Correctness Around races Replay commit order

Two further problems where the transaction components
can improve code security are denial of service and informa-
tion flow tracking. Denial-of-service attacks plague Internet-
facing servers. Frequently, an attacker will discover an algo-
rithm that is polynomial or exponential in the size of an input,
and then send a request exploiting this algorithm. Detecting an
attack is difficult, because there is no resource accounting for
small portions of a program: in most OSs the thread is the
smallest granularity of accounting [4]. Recovery is also diffi-
cult, because it is not safe to kill a thread that may be holding
locks. However, transactions must, by definition, be finite. We
can use transactions to enforce limits on the length of transac-
tions, in cycles or addresses referenced, and the scheduler can
detect an attack when a transaction exceeds this limit. Rollback
allows the program to recover to a point where data structures
are unlocked and consistent.

A third security problem that may benefit from GRAAS
components is information flow tracking [38, 40, 56, 57]. Sys-
tems that enforce information flow policies must record at a
fine grain the memory read and written by a program, to
ensure that secure data is not disclosed to low-security entities.
The access summary component of transactions provides a
convenient mechanism to track the memory read and written
by a piece of code. The system can speculate that code does not
violate the information flow policy. At commit, it can check
whether the code referenced high or low security areas. If so, it
may rollback the transaction and re-execute on a slower code
path that tracks detailed information flow (at a finer grain than
the access summary).

4.3 Improving Performance
TM hardware has often evolved from thread-level specula-

tion hardware [8,14]. However, the speculation capability pro-
 4

vided by rollback can be used separately for other purposes.
For example, compilers often support optimizations that can-
not be used because they are not safe in the presence of aliasing
[13]. At run time, the cost of detecting aliasing may be too high
to make the optimization useful [9]. The transactional compo-
nents provide the opportunity to speculatively execute aggres-
sively optimized code and cheaply detect aliasing at runtime.
Similar to the memory speculation hardware on the Itanium
processor [25], transactional access checks can detect when a
value cached in a register has been accessed through a pointer.
If aliasing occurs, the code rolls back and executes a less opti-
mized version. This depends on the same speculation capabil-
ity previously used for tracking fine-grained information flow,
although the access check is against potential aliases. Rollback
alone has also been proposed to simplify aggressive optimiza-
tion [36]. Due to the overhead of beginning and ending trans-
actions, performance gains are most likely to come from
removing aliasing and other checks from loop bodies.

Speculative optimization with rollback is also useful to
dynamic translation systems [1], such as the Transmeta code-
morphing software [11]. These systems can take advantage of
rollback to implement precise exception handling in the pres-
ence of aggressive optimizations during translation.

4.4 Improving Correctness
It is often difficult to determine what a program is doing at

runtime because of the expense of complete monitoring. Previ-
ous work has addressed the use of leveraging the TM system to
debug code within transactions [24], but when the mechanisms
are decomposed, they may be used for all code. We find three
interesting uses of the access check and summary components
as fast mechanisms for monitoring program memory behavior.

First, access summaries and checks can detect when a pro-
gram improperly uses transactions. For example, a program
may not include all race conditions within transactions. How-
ever, by maintaining access summaries and access checks for
code outside explicit transactions, races can be detected when
two different threads access a memory block. Compiler sup-
port may be required to detect safe sharing patterns, for exam-
ple when a memory block is reallocated between threads [19].

A second use of transactional components is to implement
scalable watchpoints [59]. Current architectures support only a
small number of watchpoints (e.g, four on the Pentium). The
GRAAS access check component can provide an arbitrary
number by checking against watchpoint addresses instead of
(or in addition to) the transaction’s access summary. When a
check fails, software can first determine if it is a false positive,
and if not, execute the watch point code. In Section 5.1, we
demonstrate a simple implementation of scalable watchpoints
relying on transactional components.

A third use of transactional components is efficient replay
of multithreaded code. Flight Data Recorder (FDR) is a mecha-
nism to provide deterministic replay by logging a subset of
coherence requests [54,55,56]. However, if all sharing takes
place through transactions, it is sufficient to record instead a
global order of transaction commits, e.g., with a shared

counter. The transactional scheduler can use this order during
replay to ensure the same execution. We discuss a sample
implementation of a transactional replay mechanism in Sec-
tion 5.2.

4.5 Summary
Once deconstructed, the GRAAS components of an HTM

may be useful in solving many software problems. Some of
these solutions require additional hardware support, such as
the ability to limit transaction size for denial of service preven-
tion. Thus, these alternate uses should be considered when
component interfaces are designed.

5 Case Studies
This section describes two preliminary case studies where

GRAAS components solve software problems beyond transac-
tions: a watchpoint mechanism that executes a handler when a
specified address is about to be accessed, and a recording
mechanism that supports deterministic replay of transactional
programs.

We implement both mechanisms on top of LogTM-SE [58].
However, the mechanisms depend on the GRAAS components
and not on the details of LogTM-SE. The watchpoint mecha-
nism relies on access checks and scheduling and the recorder
depends on the grouping and scheduling components.

5.1 Scalable Watchpoints
Most architectures provide a limited number of memory

watchpoints to assist programmers in monitoring memory
locations. The processor generates a trap when a program
accesses a watched address. However, each watchpoint requires
a separate hardware register, which limits the number of watch-
points, e.g. four in Intel x86. Recently, Zhou, et al. proposed
new special-purpose architectural support to implement large
numbers of watchpoints [59].

The access check component of GRAAS can provide an arbi-
trary number of watchpoints without special-purpose hard-
ware. Rather than checking access against another transaction,
a watchpoint mechanism can use this mechanism to check
accesses against a list of watchpoints. When a check fails, hard-
ware traps into scheduling software that executes the watch-
point code. On LogTM-SE, which supports strong isolation
and hence checks access for all memory operations, the watch-
point mechanism works for both transactional and non-trans-
actional code.

As a proof of concept, we have implemented a watchpoint
mechanism based on LogTM-SE. The watchpoint software
module is implemented as a library that extends LogTM-SE’s
runtime. The library provides add_watchpoint and
remove_watchpoint functions. The interface allows the pro-
grammer to specify the address and size of the watched address
region and to associate a monitoring function with each watch-
point.

Watchpoints leverage LogTM-SE’s summary signature,
which normally provides access checks for descheduled trans-
actions. Every processor checks its local summary signature on
 5

every memory request, trapping to software to resolve con-
flicts. We implement watchpoints by adding the watched
addresses to a thread’s summary signature.

While the summary signature detects when watched
addresses are accessed, it is not sufficient to provide watch-
points. First, the signatures in LogTM-SE may raise false con-
flicts due to the compact encoding. For TM, it suffices to treat
these as true conflicts and either abort the transaction or stall
until the transaction causing the conflict completes. However,
after reaching a watchpoint, we frequently want to continue
execution while continuing to watch the same address. Second,
LogTM-SE does not provide hardware to manipulate signa-
tures in software. The watchpoint mechanism requires this to
add individual addresses to a signature.

We extend the LogTM-SE interface with a get_index opera-
tion, which returns a compact representation of the indexes of
the summary signature bits to which a virtual address hashes.
The watchpoint mechanism uses this operation to add and
remove watched addresses.

Our second extension is a non-privileged watchpoint flag
that causes hardware to skip the summary signature access
check for the next memory request. This allows the watchpoint
mechanism to continue execution after a watchpoint executes
without triggering another access check conflict.

1

10

100

1,000

10,000

1 2 4 16 64 256 1024

Watchpoints

E
x
e
c
u

ti
o

n
 O

v
e
rh

e
a
d

 (
%

)

1 watchpoint/bit 2 watchpoints/bit

4 watchpoints/bit 8 watchpoints/bit

Figure 2: Execution overhead for 1 true watchpoint and 0-
1023 false watchpoints with and without signature aliasing.

The software watchpoint module manages the list of watch-
points and dispatches monitoring code. When the hardware
detects a conflict, it traps into the software conflict handler. As
there may be false positives, the handler compares the faulting
address against the list of watched regions. If one (or more) are
found, the library executes the monitor function. In all cases, it
sets the watchpoint flag before continuing execution. To sup-
port watchpoints and virtualized transactions simultaneously,
the library only executes watchpoint code when it detects that
there was no transactional conflict.

We evaluated the watchpoint mechanism with the LogTM-
SE simulator [58] on the bzip2 program from SPECint2006. We
measure the overhead of (1) executing a watchpoint and (2)
false positives due to LogTM-SE’s signatures. We insert one

true watchpoint that triggers 46,000 times per second and
between 0 and 1023 false watchpoints (addresses that are never
referenced). Executing a single true watchpoint takes 200
cycles, mostly due to the time to trap. Figure 2 shows the over-
head from false conflicts as the number of watchpoints grow
from 1 to 1024. The rate increases as the signature, which is
only 1024 bits, saturates and causes nearly every memory refer-
ence to trap. The figure also shows the overhead for different
levels of aliasing in the signature. When a bit in the signature
represents more than one watchpoint, fewer false positives
occur because the signature is less populated. Overall, LogTM-
SE’s access check component provides a simple and lightweight
mechanism for scalable watchpoints.

5.2 Transactional Flight Data Recorders
Effectively debugging of multithreaded software is critical

to the success of emerging multicore chips. Valuable to any
debugger, deterministic replay enables a developer to re-execute
the (buggy) program and zero in on bugs that faithfully re-
appear. Moreover, deterministic replay can be useful for fault
detection/recovery [41] and intrusion detection [12].

A key challenge for deterministic replay is recording mem-
ory races, where it is sufficient to record the outcomes of all
conflicting memory accesses. Two accesses (reads or writes)
conflict if they are from different threads, access the same
memory block, and at least one of them is a write. Since extant
software race recorders slow down program execution tremen-
dously [23,37], researchers have proposed hardware imple-
mentations [3,54,55,35,34,56].

The current Flight Data Recorder (FDR) [56], for example,
supports multicore designs using sequential consistency (SC)
or total store order (TSO), which is x86-like. As depicted in
Figure 3, FDR augments each core with a dynamic instruction
counter (IC) and local timestamp memory (TSM). FDR piggy-
backs timestamps on some coherence messages and exploits
transitivity to add modest runtime overhead while logging only
about one byte per thousand instructions executed. Selected
logging of values (Val) supports TSO executions that are not SC
executions.

While hardware vendors have adopted neither HTM nor
FDR, combining the two in a Transactional Flight Data
Recorder (XFDR) can reap synergistic benefits to promote
adoption of both in two scenarios. All XFDR variants leverage
the grouping component to reduce the logging requirement
and scheduling to support replay.
Scenario 1: Races occur only among transactions. This
scenario occurs if it is “all transactions, all the time” [14] or
non-transactional memory races are handled separately (or
cause deterministic replay to fail).

With this scenario, it is sufficient for XFDR to record the
order that transactions commit, and it is not necessary to
explicitly track any memory references. A naive implementa-
tion uses a global counter (protected by a lock). Each thread has
a private log. On commit, the thread atomically increments the
counter and logs the current value.
 6

A better implementation uses a scalar timestamp [21]. Each
thread remembers a single scalar timestamp. Coherence
responses carry other threads’s timestamps that the requesting
thread uses to update its timestamp. On commit, the thread
records its current timestamp in its per-thread log without any
coordination with others.

Figure 3. A base multicore (unshaded) supplemented with FDR memory race recording hardware (shaded).
Used with permission from Xu et al. [56].

This latter design improves on FDR by reducing the times-
tamp memory (TSM) from 24 Kbytes to 8 bytes and eliminat-
ing the instruction count (IC) and value recorder logic (Val).
Nevertheless, we expect similar logging performance.
Scenario 2: Races occur anywhere. Here we must enable
deterministic replay even when non-transactional memory
accesses race with transactions or each other.

With this scenario, we see three initial designs. First, we can
use FDR as is. Second, we can augment FDR with the scalar
timestamp logic above to potentially reduce logging. Third, we
can use augmented FDR, but greatly reduce TSM size, because
it may be unimportant to optimize logging of non-transac-
tional memory accesses.
Preliminary work. To date we have implemented two ver-
sions of the global-counter XFDR. The first is an all-software
version that runs on a Sun T1 (Niagara) multicore system
(where the TM system is implemented with a simple global
lock). The second is a hardware implementation based on
LogTM [29] simulated using GEMS [52]. We exercise both
XFDR implementations (and the corresponding replayers)
with a multithreaded program, racey, whose final output is sen-
sitive to the order of its frequent data races [54]. In particular,
racey computes a signature using a multiplicative congruential
pseudo-random number generator [18]. After addressing sev-
eral minor bugs, the signatures of racey replays match that
those of the corresponding recorded execution. This builds
confidence in both XFDR implementations, but does not prove
them correct.
Future work. We plan to implement all three Scenario-2 vari-
ants, so we can establish that XFDR can improve upon FDR
performance, reduce hardware cost, or both. In doing so,

XFDR could facilitate the adoption of both hardware transac-
tion memory and deterministic replay support.

6 Conclusion
The success of hardware transactional memory depends on

convincing chip vendors of its long-term value. Decomposing
transactional memory increases the likelihood of its eventual
adoption in two ways. First, the components may evolve inde-
pendently, allowing faster innovation. Second, the components
provide more value if exposed separately, because they may be
additionally targeted at other problem areas.

In this paper, we presented a decomposition of TM into five
GRAAS components: grouping, rollback, access check, access
summary, and scheduling. Although the GRAAS components
are merely one example of how to decompose transactional
memory, we have shown that they have already helped refine
one HTM (LogTM-SE) and that they may be applied construc-
tively to other important problems.

7 References
[1] Erik Altman, Kemal Ebcioglu, Michael Gschwind, and Sumedh
Sathaye. Advances and Future Challenges in Binary Translation and Opti-
mization. Proceedings of the IEEE, 89(11):1710–1722, November 2001.
[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.
Leiserson, and Sean Lie. Unbounded Transactional Memory. In HPCA 11,
February 2005.
[3] David F. Bacon and Seth Copen Goldstein. Hardware-Assisted Replay
of Multiprocessor Programs. Proceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging, published in ACM SIGPLAN Notices,
pages 194–206, 1991.
[4] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource con-
tainers: a new facility for resource management in server systems. In Pro-
ceedings of the Third USENIX Symposium on Operating Systems Design and
Implementation, pages 45–58, February 1999.
[5] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allow-
able Errors. Communications of the ACM, 13(7):422–426, July 1970.
[6] Colin Blundell, Joe Devietti, E Christopher Lewis, and Milo M.K. Mar-
tin. Making the fast case common and the uncommon case simple in un-
bounded transactional memory. In ISCA 34, June 2007.
[7] Luis Ceze, Pablo Montesinos, Christoph von Praun, and Josep Torrel-
las. Colorama: Architectura Support for Data-Centric Synchronization. In
HPCA 13, February 2007.
[8] Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas. Bulk Dis-
ambiguation of Speculative Threads in Multiprocessors. In ISCA 33, June
2006.
 7

[9] Xiaoru Dai, Antonia Zhai, Wei-Chung Hsu, and Pen-Chung Yew. A
General Compiler Framework for Speculative Optimizations Using Data
Speculative Code Motion. In CGO’05, pages 280–290, March 2005.
[10] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchango,
Mark Moir, and Daniel Nussbaum. Hybrid Transactional Memory. In ASP-
LOS 12, October 2006.
[11] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson,
Thomas Kistler, Alexander Klaiber, and Jim Mattson. The Transmeta Code
Morphing Software: using speculation, recovery, and adaptive retranslation
to address real-life challenges. In CGO’03, pages 15–24, March 2003.
[12] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Basrai, and
Peter M. Chen. ReVirt: Enabling Intrusion Analysis through Virtual-Ma-
chine Logging and Replay. In OSDI 5, pages 211–224, December 2002.
[13] Manel Fernández and Roger Espasa. Speculative Alias Analysis for Ex-
ecutable Code. In PACt 2002, pages 222–231, September 2002.
[14] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom,
John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Chris-
tos Kozyrakis, and Kunle Olukotun. Transactional Memory Coherence and
Consistency. In ISCA 31, June 2004.
[15] Tim Harris and Keir Fraser. Language support for lightweight transac-
tions. In OOPSLA 2003, October 2003.
[16] Maurice Herlihy, Victor Luchangco, Mark Moir, and William
Scherer III. Software Transactional Memory for Dynamic-Sized Data Struc-
tures. In Twenty-Second ACM Symposium on Principles of Distributed Com-
puting, Boston, Massachusetts, July 2003.
[17] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Archi-
tectural Support for Lock-Free Data Structures. In ISCA 20, pages 289–300,
May 1993.
[18] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of
Computer Programming. Addison-Wesley, Reading, Massachusetts, third
edition, 1997.
[19] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson
Engler. From Uncertainty to Belief: Inferring the Specification Within. In
OSDI 7, November 2006.
[20] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu,
and Anthony Nguyen. Hybrid Transactional Memory. In PPoPP’06, pages
209–220, March 2006.
[21] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distrib-
uted System. Communications of the ACM, 21(7):558–565, July 1978.
[22] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan &
Claypool Publishers, 2006.
[23] Thomas J. Leblanc and John M. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on Computers, C-
36(4):471–482, April 1987.
[24] Yossi Lev and Mark Moir. Debugging with Transactional Memory. In
TRANSACT 2006, June 2006.
[25] Jin Lin, Tong Chen, Wei-Chung Hsu, and Pen-Chung Yew. Specula-
tive register promotion using Advanced Load Address Table (ALAT). In
CGO’03, pages 125–134, March 2003.
[26] Austen McDonald, JaeWoong Chung, Brian Carlstrom, Chi Cao
Minh, Hassan Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectur-
al Semantics for Practical Transactional Memory. In ISCA 33, June 2006.
[27] Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cao Minh,
Brian D. Carlstrom, Lance Hammond, Christos Kozyrakis, and Kunle
Olukotun. Characterization of TCC on Chip-Multiprocessors. In PACT
2005, September 2005.
[28] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen Mc-
donald, NAthan Bronson, Jared Casper, Christos Kozyrakis, and Kunle
Olukotun. An Effective Hybrid Transactional Memory System with Strong
Isolation Guarantees. In ISCA 34, June 2007.
[29] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill,
and David A. Wood. LogTM: Log-Based Transactional Memory. In HPCA
12, pages 258–269, February 2006.
[30] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen,
Mark D. Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting
Nested Transactional Memory in LogTM. In ASPLOS 12, pages 359–370,
October 2006.
[31] Andreas Moshovos, Gokhan Memik, Babak Falsafi, and Alok
Choudhary. JETTY: Filtering Snoops for Reduced Power Consumption in
SMP Servers. In HPCA 7, January 2001.
[32] J. Eliot B. Moss. Nested transactions: an approach to reliable distribut-
ed computing. PhD thesis, Massachusetts Institute of Technology, 1981.
[33] J. Eliot B. Moss. Open Nested Transactions: Semantics and Support.
In Workshop on Memory Performance Issues, February 2006.
[34] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording
Shared Memory Dependencies Using Strata. In ASPLOS 12, pages 229–240,
October 2006.

[35] Satish Narayanasamy, Gilles Pokam, and Brad Calder. BugNet: Con-
tinuously Recording Program Execution for Deterministic Replay Debug-
ging. In ISCA 32, pages 284–295, June 2005.
[36] Naveen Neelakantam, Ravi Rajwar, Suresh Srinivas, Uma Srinivasan,
and Craig Zilles. Hardware Atomicity for Reliable Software Speculation. In
ISCA 34, June 2007.
[37] Robert H. B. Netzer. Optimal Tracing and Replay for Debugging
Shared-Memory Parallel Programs. In Proceedings of the ACM/ONR Work-
shop on Parallel and Distributed Debugging (PADD), pages 1–11, 1993.
[38] James Newsome and Dawn Song. Dynamic Taint Analysis: Automatic
Detection, Analysis, and Signature Generation of Exploit Attacks on Com-
modity Software. In Proceedings of the Network and Distributed Systems Se-
curity Symposium, February 2005.
[39] Jih-Kwon Peir, Shih-Chang Lai, Shih-Lien Lu, Jared Stark, and Konrad
Lai. Bloom Filtering Cache Misses for Accurate Data Speculation and
Prefetching. In Proceedings of the 2002 International Conference on Super-
computing, pages 189–198, June 2002.
[40] Feng Qin, Zhenmin Li, Yuanyuan Zhou, Cheng Wang, Ho seop Kim,
and Youfeng Wu. (LIFT): A Low-Overhead Practical Information Flow
Tracking System for Detecting General Security Attacks. In MICRO 39, De-
cember 2006.
[41] Feng Qin, Joe Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.
Rx: Treating bugs as allergies — a safe method to survive software failure. In
Proceedings of the 20th ACM Symposium on Operating System Principles,
October 2005.
[42] Ravi Rajwar and James R. Goodman. Speculative Lock Elision: En-
abling Highly Concurrent Multithreaded Execution. In MICRO 34, Decem-
ber 2001.
[43] Ravi Rajwar and James R. Goodman. Transactional Lock-Free Execu-
tion of Lock-Based Programs. In ASPLOS 10, October 2002.
[44] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transac-
tional Memory. In ISCA 32, June 2005.
[45] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architec-
tural Support for Software Transactional Memory. In MICRO 39, December
2006.
[46] W. N. Scherer III and M. L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. In PODC 24, July 2005.
[47] Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger,
Charles R. Moore, and Stephen W. Keckler. Scalable Hardware Memory
Disambiguation for High ILP Processors. In MICRO 36, December 2003.
[48] Nir Shavit and Dan Touitou. Software Transactional Memory. In
PODC 14, pages 204–213, August 1995.
[49] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving
the Reliability of Commodity Operating Systems. In SOSP 19, pages 207–
222, October 2003.
[50] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. Efficient software-based fault isolation. In SOSP 14, pages 203–216,
December 1993.
[51] Gerhard Weikum and Hans-Jorg Schek. Concepts and Applications of
Multilevel Transactions and Open Nested Transactions. Morgan Kaufmann,
1992.
[52] Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/
gems/.
[53] Emmett Witchel, Josh Cates, and Krste Asanovic. Mondrian memory
protection. In ASPLOS 10, pages 304–316, October 2002.
[54] Min Xu, Rastislav Bodik, and Mark D. Hill. A “Flight Data Recorder”
for Enabling Full-system Multiprocessor Deterministic Replay. In ISCA 30,
pages 122–133, June 2003.
[55] Min Xu, Rastislav Bodik, and Mark D. Hill. A Regulated Transitive Re-
duction (RTR) for Longer Memory Race Recording. In ASPLOS 12, pages
49–60, October 2006.
[56] Min Xu, Rastislav Bodik, and Mark D. Hill. A Hardware Memory Race
Recorder for Deterministic Replay. IEEE Micro, 27(1), Jan/Feb 2007.
[57] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-Enhanced Policy En-
forcement: A Practical Approach to Defeat a Wide Range of Attacks. In Pro-
ceedings of the 15th (USENIX) Security Symposium, August 2006.
[58] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris
Volos, Mark D. Hill, Michael M. Swift, and David A. Wood. LogTM-SE:
Decoupling Hardware Transactional Memory from Caches. In HPCA 13,
pages 261–272, February 2007.
[59] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas.
iWatcher: Efficient Architectural Support for Software Debugging. In ISCA
31, pages 224–237, June 2004.
[60] Craig Zilles and Lee Baugh. Extending Hardware Transactional Mem-
ory to Support Non-busy Waiting and Non-transactional Actions. In
TRANSACT 2006, June 2006.
 8

	A Case for Deconstructing Hardware Transactional Memory Systems
	1 Introduction
	Our Thesis
	Deconstruction Aids HTM Refinement
	Deconstruction Enables Use Beyond TM
	Summary

	2 Deconstructing HTMs
	1) Grouping: How the TM system is informed of what instructions should form a transaction. This may be via explicit instructions that begin and end a transaction [14] or inferred from other instructions [7,17].
	2) Rollback: How the TM system “undoes” a transaction’s tentative execution to support abort. This may entail flushing new values from a cache [14] or walking a log to restore old values to memory [29].
	3) Access Summary: How the TM system records a transaction’s read/write sets. This information is needed to detect when transact...
	4) Access Check: When and how the TM system checks for conflicts (i.e., access summary overlaps). Some HTMs check access lazily,...
	5) Scheduling: How the TM system seeks concurrency, liveness, and fairness in the presence of conflicts. This generally takes th...

	3 Deconstruction Aids HTM Refinement
	Table 1. Evolution of Wisconsin HTM Systems from HMTM
	3.1 Deconstructing LogTM-SE
	Figure 1: Additional state for a single core of a LogTM-SE CMP with the GRAAS components labeled.
	Grouping
	Rollback
	Access Summary
	Access Check
	Scheduling

	3.2 Deconstruction in Other HTMs

	4 Deconstruction Enables Use Beyond TM
	4.1 Improving Reliability
	4.2 Improving Security
	Table 2. Mechanisms Supported by Transaction Components

	4.3 Improving Performance
	4.4 Improving Correctness
	4.5 Summary

	5 Case Studies
	5.1 Scalable Watchpoints
	Figure 2: Execution overhead for 1 true watchpoint and 0- 1023 false watchpoints with and without signature aliasing.

	5.2 Transactional Flight Data Recorders
	Scenario 1: Races occur only among transactions
	Figure 3. A base multicore (unshaded) supplemented with FDR memory race recording hardware (shaded). Used with permission from Xu et al. [56].

	Scenario 2: Races occur anywhere
	Preliminary work.
	Future work.

	6 Conclusion
	7 References

