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Abstract
Major hardware and software vendors are curious about 

transactional memory (TM), but are understandably cautious 
about committing to hardware changes.

Our thesis is that deconstructing transactional memory into 
separate, interchangeable components facilitates TM adoption in 
two ways. First, it aids hardware TM refinement, allowing ven-
dors to adopt TM earlier, knowing that they can more easily 
refine aspects later. Second, it enables the components to be 
applied to other uses, including reliability, security, performance, 
and correctness, providing value even if TM is not widely used. 
We develop some evidence for our thesis via experience with 
LogTM variants and preliminary case studies of scalable watch-
points and race recording for deterministic replay.

1  Introduction
Transactional memory (TM) [17,22] has been proposed to 

ease concurrent programming. TM systems may be imple-
mented completely in software (Software TMs or STMs) 
[15,16,48], as software-hardware HybridTMs [10,20,44,45], or 
largely in hardware (Hardware TMs or HTMs). Example HTMs 
include HMTM [17], TCC [14,26,27], UTM/LTM [2], VTM
[44], LogTM [29,30,58], and Bulk [8]. HTMs mitigate most 
STM overheads, because they (i) augment hardware with state 
to track read/write sets, (ii) leverage cache coherence to detect 
conflicts, and (iii) use caches or write buffers to hold tentative 
writes. For these reasons, HTMs can execute existing lock-
based programs and micro-benchmarks as fast or faster than 
multi-threaded programs using fine-grain locking [29,42,43].

Major hardware and software vendors have exhibited con-
siderable curiosity regarding both hardware and software TMs 
as a way to ease their customers’ transition to multicore sys-
tems. Nevertheless, vendors are understandably cautious about 
committing to hardware changes, in part, because (a) TM 
implementations are still in flux, and (b) ultimate success of 
TM is not yet assured.
Our Thesis. We should facilitate TM adoption by deconstruct-
ing HTMs into separate, interchangeable components. Section 2
provides an example TM deconstruction into five components 
that can be developed independently. We find two arguments 
supporting this thesis.
Deconstruction Aids HTM Refinement. Deconstruction 
into interchangeable components eases HTM refinement rela-

tive to monolithic HTMs. It also encourages clean interfaces 
between components to support independent evolution. In 
addition, deconstruction supports hybrid TM systems, in 
which not all components are provided by hardware. It also 
allows vendors to adopt TM earlier, knowing that they can 
more easily refine aspects later (mitigating concern (a)). Sec-
tion 3 provides evidence for this benefit from LogTM variants 
and other systems. 
Deconstruction Enables Use Beyond TM. Deconstruction 
also allows TM components to be applied toward solving prob-
lems beyond TM. This encourages vendors to adopt TM com-
ponents earlier, knowing that they have value even it TM fails 
(mitigating concern (b)). In addition, deconstruction encour-
ages early interface refinement to support these other uses, as 
opposed to discovering them after interfaces have been set. 
Section 4 outlines potential uses in reliability, security, perfor-
mance, and correctness.

We support using HTM components with several prelimi-
nary case studies. Section 5.1 presents scalable watchpoints 
constructed from transactional memory components. Section 
5.2 presents a transactional race recorder that enables deter-
ministic replay.
Summary. We find evidence that deconstructing HTMs may 
speed TM adoption by reducing the risks of adopting non-
optimal HTM components (because they can be improved 
later) and HTM components at all (because they have uses
beyond TM). Moreover, we find that these benefits are more 
easily obtained if components are designed for multiple uses a 
priori rather than applied ex post facto. We believe that similar 
benefits are likely from deconstructing hybrid TMs as well.

2  Deconstructing HTMs
The first HTM proposal, HMTM, from Herlihy and Moss 

[17], proposed a single mechanism that provides the entire 
transaction capability. The system places data accessed by a 
transaction into a transactional cache and detects conflicts 
when another transaction attempts to access that data. How-
ever, the use of a single cache for all TM functionality prevents 
this system from supporting transactions that do not fit in the 
cache or from surviving interrupts or other context switches.

Our group’s work on HTMs began with an attempt to rem-
edy the size limitation with a coarse deconstruction of HTM 
into version management and conflict detection. Version man-
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agement handles the simultaneous storage of both new data 
(for commit) and old data (for abort). Conflict detection signals 
an overlap between the write set (data written) of one transac-
tion and the write set or read set (data read) of other concur-
rent transactions.

Our first proposal, LogTM [29] combines innovative ver-
sion management with extant conflict detection methods—
extending cache tags with transaction state. On transactional 
writes, LogTM saves old values in per-thread logs and writes 
new values “in place,” in contrast to HMTM, SLE [42], TCC, 
Bulk and others that buffer speculative new values and replace 
old values only at commit.

What’s important here is not whether LogTM is better, but 
that deconstruction enables a separation of concerns: with 
LogTM, version management and conflict detection use differ-
ent mechanisms that may be evolved separately. We will argue 
that separation accelerates both refining HTMs (Section 3) and 
allowing HTM mechanisms to be applied to other purposes 
(Section 4).

To these ends, our current best hypothesis for an HTM 
deconstruction is the GRAAS components (pronounced 
“grass”). For each component, we describe its function and 
prove a few sample mechanisms: 
1)  Grouping: How the TM system is informed of what 
instructions should form a transaction. This may be via explicit 
instructions that begin and end a transaction [14] or inferred 
from other instructions [7,17].

2)  Rollback: How the TM system “undoes” a transaction’s 
tentative execution to support abort. This may entail flushing 
new values from a cache [14] or walking a log to restore old 
values to memory [29].

3)  Access Summary: How the TM system records a transac-
tion’s read/write sets. This information is needed to detect 
when transactions conflict and are not serializable. HTMs have 
provided this function with a separate cache [17], with bits on 
existing cache lines [2,14,29], with bloom-filter like signatures 
[8,28,58], and with memory tags [2,6].

4)  Access Check: When and how the TM system checks for 
conflicts (i.e., access summary overlaps). Some HTMs check 
access lazily, by broadcasting the write set at commit to other 
processors [8]. Others perform access checks eagerly, as part 
of the coherence protocol [17,29].

5)  Scheduling: How the TM system seeks concurrency, live-
ness, and fairness in the presence of conflicts. This generally 
takes the form of a conflict handler that may stall, abort, or 
queue a transaction. Scheduling has been implemented as a 
simple hardware conflict resolution policy [14,29] or as a soft-
ware handler that can support more flexible policies [60].

In the next section, we provide evidence for the value of the 
GRAAS components. Nevertheless, GRAAS is a work-in-
progress that should be interpreted as an example deconstruc-
tion, not the final word.

3  Deconstruction Aids HTM Refinement
Here, we examine how deconstructing HTMs into separate 

components facilitates improving HTMs. We first present our 
experience with LogTM as a case study and then touch upon 
how others have productively used deconstruction.

As discussed above, our group first developed LogTM. This 
system separated out and replaced version management (now 
renamed the GRAAS component rollback), but left other com-
ponents unchanged from prior HTMs (see first two columns of 
Table 1).

Table 1. Evolution of Wisconsin HTM Systems from HMTM

HMTM[17] LogTM [29] Nested LogTM [30] LogTM-SE [58]

G
R

A
A

S 
C

om
po

ne
nt

s Grouping Xact load, store, validate, 
commit instructions

Begin, end, & abort 
instructions

Closed/open begin, commit, 
& abort instructions

Same as Nested LogTM

Rollback Flush transactional cache Flat log, hardware fill, 
software abort handling

Segmented log, hardware 
fill, software abort handling

Segmented log, holds pushed sig-
natures, hardware fill, SWaborts 

Access 
Summary

Transactional cache states Cache R/W bits 
& sticky coherence

Replicated cache R/W bits 
& sticky coherence

R/W signatures 
& sticky coherence

Access 
Check

On read/write, coherence 
protocol checks cache state

On read/write, coherence 
protocol finds R/W bits

Same as LogTM On read/write, coherence protocol 
finds signatures

Scheduling Fixed in hardware Fixed in hardware Same as LogTM HW + SW conflict handler hooks

Our second HTM, Nested LogTM [30], adds support for 
closed [32] and open nested transactions [33,51]. Deconstruc-
tion separated implementation changes into three separate 
concerns. Grouping was refined so that commit instructions 
indicated closed or open nesting. Rollback used a segmented, 
rather than flat, log to enable partial abort. Access summary was 
enhanced by replicating read/write bit (R/W) bits on each 
cache block (e.g., 4 times). This last change, which increased 
hardware costs and limited the number of nesting levels to the 
replication of R/W bits, inspired our third HTM.

Our third HTM, LogTM Signature Edition (LogTM-SE)
[58], reduces support needed in L1 caches, supports 
unbounded nesting, and (independently) enables better con-
flict management. Once again, decomposition made imple-
mentation more straightforward. The most important change 
is that the access summary of each transaction is maintained 
via a compact signature (e.g., 128 bytes) [5,31,39,47]. This 
change necessitated small changes to support rollback (to save/
restore signatures on the log) and access check (check signa-
tures rather than in-cache R/W bits). In addition, LogTM-SE 
supports trapping on transaction conflicts to enable flexible 
scheduling [46].
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The GRAAS deconstruction enabled these LogTM 
improvements (see Table 1). Understanding that access sum-
maries are different than access checks, for example, allowed 
LogTM-SE to change access summaries to signatures without 
changing access checking via coherence.

Without deconstruction, the components of an HTM are 
tightly integrated, making it difficult to address a problem with 
one component without impacting the others. For example, 
when a single hardware structure, such as the cache, provides 
both access checks and access summaries, it is difficult for the 
OS to deschedule the transaction, because the access check 
mechanism is not available once the thread has been sus-
pended. LogTM-SE solves this problem with an additional 
variety of access check, summary signatures. These are local 
access summaries representing descheduled threads that are 
checked on every memory reference. 

3.1  Deconstructing LogTM-SE
To demonstrate the utility of deconstructing HTM, we pro-

vide several examples based on a deconstruction of LogTM-SE 
[58]
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Figure 1: Additional state for a single core of a LogTM-SE 
CMP with the GRAAS components labeled.

. LogTM-SE supports the GRAAS components using a 
combination of hardware mechanisms and low-level software. 
Figure 1 shows the additional hardware state associated with 
each component.

Grouping. LogTM-SE hardware implements grouping with 
the TMnest register, which is the transaction nesting depth (0 
means non-transactional). The xbegin and xend instructions 
increment and decrement this register.

Rollback. Rollback is implemented by a user-level software 
handler that restores old values from the transaction log, the 
bounds of which are defined by the Log Pointer and Log Base 
registers. Hardware writes old values to the log prior to store 
instructions.

Access Summary. Access summary is provided by hardware 
signatures (read and write). In LogTM-SE, the access summary 
for an active transaction is collected in the read and write sig-
nature and may be saved/restored by software.

Access Check. Access check is implemented by hardware 
checks of processors’ primary and summary signatures. An 

extension to the coherence mechanism checks each memory 
request for conflicts with the primary signatures on all other 
processors. An additional hardware check tests for a conflict 
with the executing processor’s local summary signature.

Scheduling. Scheduling in LogTM-SE is provided by (1) a
fixed transaction conflict resolution policy implemented in the 
coherence mechanism and (2) a software handler for conflicts 
with descheduled transactions. The conflict handler may stall 
(and later resume) an active transaction, abort the current 
transaction and (later) restart it, or switch to an alternate exe-
cution path.

3.2  Deconstruction in Other HTMs
Several other HTMs implicitly use deconstruction to aid 

HTM refinement. For example, Bulk [8] enhances a design 
similar to TCC [14] by changing the access check mechanism 
and access summary mechanism. Similar to LogTM-SE, Bulk 
uses signatures to over-approximate the read- and write-sets of 
a transaction. But, Bulk detects conflicts by broadcasting the 
signatures during commit. Another example of limited decon-
struction is to use OS scheduling primitives to resolve conflicts 
[60].

Deconstruction is also useful for constructing hybrid TM 
systems, where software and hardware cooperatively provide 
transactions. For example, SigTM relies on software for group-
ing, rollback, and scheduling, but uses hardware signatures for 
access checks and summarization [28].

4  Deconstruction Enables Use Beyond TM
Transactional memory was originally proposed to ease 

high-performance concurrent programming. However, decon-
structing TM led us to realize that the GRAAS components 
may be independently useful to solve other problems. Compo-
nents that support other uses may encourage hardware vendors 
to implement transactional memory, as the mechanisms are 
useful even if TM is not widely adopted.

Applying HTM components to other problem areas has the 
additional benefit of refining the interfaces. In many cases, 
small semantic changes or additional features may greatly 
improve the utility of a component. As we show in Section 5.1, 
the ability to continue a transaction after a conflict is simple to 
implement and useful for debugging purposes, but may not 
have been considered solely for transactional memory.

We identify four problem areas in which transactional com-
ponents may be of use:
• Reliability: handling hardware and software failures
• Security: providing fine-grained access control
• Performance: speculating on fast-path code
• Correctness: finding bugs, including concurrency 

problems
In each of these areas, the GRAAS components provide new 

capabilities that are not possible with monolithic TMs or are 
prohibitively slow. Table 2 lists eight potential applications of 
the GRAAS components for addressing critical issues outside 
of TM.
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4.1  Improving Reliability
Three key problems in improving reliability are detecting 

failures, isolating faulty modules from correct modules, and 
recovering from failure. Fine-grained access control mecha-
nisms developed for reliability [49,50,53], which detect when a 
faulty modules writes to data it does not control, are similar to 
the access check and access summary components of TM. With 
small modifications, a processor that implements the GRAAS 
components can also provide fine-grained memory isolation. 
The access summary for a module can be compared against 
either a white list of known-good locations or a black list of 
known-bad locations. A conflict signals a (possibly) illegal 
operation by the module. In addition, transactional access 
checks can prevent other code from observing corruption and 
subsequently failing. The access check component can option-
ally detect such violations automatically. Once a failure has 
been detected, either through hardware or software checks, 
rollback provides a mechanism to recover the system to a safe 
state. 

For example, the Nooks driver isolation system [49] could 
be implemented more easily and execute faster with the 
GRAAS components. Nooks isolates drivers using page-level 
protection on virtual memory and recovers by reloading and 
re-initializing the driver. Rather than change page tables on 
every invocation of a device driver, a transactional isolation 
system would instead install a memory summary against 
which to check accesses by the driver. Similarly, rather than roll 
the driver back completely, transactional rollback allows only 
the last invocation of the driver to be rolled back, a much faster 
recovery process. For bugs that are detected quickly, this would 
greatly improve the availability of the system.

4.2  Improving Security 
Fine-grained memory access control is also helpful for 

improving security, to prevent untrusted code from reading or 
writing sensitive data structures. A major challenge is ensuring 
that untrusted code cannot disable the access summarization 
and checks, which can be ensured through code inspection 

[50]. When the access check detects a conflict, this indicates a 
potential security problem that must be verified. The recovery 
strategy previously described can keep an application running 
in the presence of a security breach by rolling back corrupted 
data. 

Table 2. Mechanisms Supported by Transaction Components

Mechanism Use Grouping Rollback Access Summary Access Check Scheduling

Fine-grained Isolation
Reliability, 
Security

Around 
component

Abort Writes Against white 
/ black list

Failure Recovery
Reliability, 
Security

Around 
component

Abort

Information Flow
Security Around 

component
Reads / writes 

Resource Limits
Reliability, 
Security

Around 
component

Abort Limit resource 
consumption

Speculation
Performance, 
security

Around 
code block

Retry  
alternate

Reads / writes Against 
preset list

Watch Points
Correctness Against watch 

locations
Invoke 
debugger

Race Detection
Correctness Races and 

sequential
Reads / writes Against 

conflicts
Raise error 
when sequential

Replay Correctness Around races Replay commit order

Two further problems where the transaction components 
can improve code security are denial of service and informa-
tion flow tracking. Denial-of-service attacks plague Internet-
facing servers. Frequently, an attacker will discover an algo-
rithm that is polynomial or exponential in the size of an input, 
and then send a request exploiting this algorithm. Detecting an 
attack is difficult, because there is no resource accounting for 
small portions of a program: in most OSs the thread is the 
smallest granularity of accounting [4]. Recovery is also diffi-
cult, because it is not safe to kill a thread that may be holding 
locks. However, transactions must, by definition, be finite. We
can use transactions to enforce limits on the length of transac-
tions, in cycles or addresses referenced, and the scheduler can 
detect an attack when a transaction exceeds this limit. Rollback 
allows the program to recover to a point where data structures 
are unlocked and consistent.

A third security problem that may benefit from GRAAS 
components is information flow tracking [38, 40, 56, 57]. Sys-
tems that enforce information flow policies must record at a 
fine grain the memory read and written by a program, to 
ensure that secure data is not disclosed to low-security entities. 
The access summary component of transactions provides a 
convenient mechanism to track the memory read and written 
by a piece of code. The system can speculate that code does not 
violate the information flow policy. At commit, it can check 
whether the code referenced high or low security areas. If so, it 
may rollback the transaction and re-execute on a slower code 
path that tracks detailed information flow (at a finer grain than 
the access summary).

4.3  Improving Performance 
TM hardware has often evolved from thread-level specula-

tion hardware [8,14]. However, the speculation capability pro-
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vided by rollback can be used separately for other purposes. 
For example, compilers often support optimizations that can-
not be used because they are not safe in the presence of aliasing 
[13]. At run time, the cost of detecting aliasing may be too high 
to make the optimization useful [9]. The transactional compo-
nents provide the opportunity to speculatively execute aggres-
sively optimized code and cheaply detect aliasing at runtime. 
Similar to the memory speculation hardware on the Itanium 
processor [25], transactional access checks can detect when a 
value cached in a register has been accessed through a pointer. 
If aliasing occurs, the code rolls back and executes a less opti-
mized version. This depends on the same speculation capabil-
ity previously used for tracking fine-grained information flow, 
although the access check is against potential aliases. Rollback 
alone has also been proposed to simplify aggressive optimiza-
tion [36]. Due to the overhead of beginning and ending trans-
actions, performance gains are most likely to come from 
removing aliasing and other checks from loop bodies.

Speculative optimization with rollback is also useful to 
dynamic translation systems [1], such as the Transmeta code-
morphing software [11]. These systems can take advantage of 
rollback to implement precise exception handling in the pres-
ence of aggressive optimizations during translation. 

4.4  Improving Correctness
It is often difficult to determine what a program is doing at 

runtime because of the expense of complete monitoring. Previ-
ous work has addressed the use of leveraging the TM system to 
debug code within transactions [24], but when the mechanisms 
are decomposed, they may be used for all code. We find three 
interesting uses of the access check and summary components 
as fast mechanisms for monitoring program memory behavior. 

First, access summaries and checks can detect when a pro-
gram improperly uses transactions. For example, a program 
may not include all race conditions within transactions. How-
ever, by maintaining access summaries and access checks for 
code outside explicit transactions, races can be detected when 
two different threads access a memory block. Compiler sup-
port may be required to detect safe sharing patterns, for exam-
ple when a memory block is reallocated between threads [19].

A second use of transactional components is to implement 
scalable watchpoints [59]. Current architectures support only a 
small number of watchpoints (e.g, four on the Pentium). The 
GRAAS access check component can provide an arbitrary 
number by checking against watchpoint addresses instead of 
(or in addition to) the transaction’s access summary. When a 
check fails, software can first determine if it is a false positive, 
and if not, execute the watch point code. In Section 5.1, we 
demonstrate a simple implementation of scalable watchpoints 
relying on transactional components.

A third use of transactional components is efficient replay 
of multithreaded code. Flight Data Recorder (FDR) is a mecha-
nism to provide deterministic replay by logging a subset of 
coherence requests [54,55,56]. However, if all sharing takes 
place through transactions, it is sufficient to record instead a 
global order of transaction commits, e.g., with a shared 

counter. The transactional scheduler can use this order during 
replay to ensure the same execution. We discuss a sample 
implementation of a transactional replay mechanism in Sec-
tion 5.2.

4.5  Summary
Once deconstructed, the GRAAS components of an HTM 

may be useful in solving many software problems. Some of 
these solutions require additional hardware support, such as 
the ability to limit transaction size for denial of service preven-
tion. Thus, these alternate uses should be considered when 
component interfaces are designed.

5  Case Studies
This section describes two preliminary case studies where 

GRAAS components solve software problems beyond transac-
tions: a watchpoint mechanism that executes a handler when a 
specified address is about to be accessed, and a recording 
mechanism that supports deterministic replay of transactional 
programs.

We implement both mechanisms on top of LogTM-SE [58]. 
However, the mechanisms depend on the GRAAS components 
and not on the details of LogTM-SE. The watchpoint mecha-
nism relies on access checks and scheduling and the recorder 
depends on the grouping and scheduling components.

5.1  Scalable Watchpoints
Most architectures provide a limited number of memory 

watchpoints to assist programmers in monitoring memory 
locations. The processor generates a trap when a program 
accesses a watched address. However, each watchpoint requires 
a separate hardware register, which limits the number of watch-
points, e.g. four in Intel x86. Recently, Zhou, et al. proposed 
new special-purpose architectural support to implement large 
numbers of watchpoints [59]. 

The access check component of GRAAS can provide an arbi-
trary number of watchpoints without special-purpose hard-
ware. Rather than checking access against another transaction, 
a watchpoint mechanism can use this mechanism to check 
accesses against a list of watchpoints. When a check fails, hard-
ware traps into scheduling software that executes the watch-
point code. On LogTM-SE, which supports strong isolation 
and hence checks access for all memory operations, the watch-
point mechanism works for both transactional and non-trans-
actional code.

As a proof of concept, we have implemented a watchpoint 
mechanism based on LogTM-SE. The watchpoint software 
module is implemented as a library that extends LogTM-SE’s 
runtime. The library provides add_watchpoint and 
remove_watchpoint functions. The interface allows the pro-
grammer to specify the address and size of the watched address 
region and to associate a monitoring function with each watch-
point.

Watchpoints leverage LogTM-SE’s summary signature, 
which normally provides access checks for descheduled trans-
actions. Every processor checks its local summary signature on 
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every memory request, trapping to software to resolve con-
flicts. We implement watchpoints by adding the watched 
addresses to a thread’s summary signature. 

While the summary signature detects when watched 
addresses are accessed, it is not sufficient to provide watch-
points. First, the signatures in LogTM-SE may raise false con-
flicts due to the compact encoding. For TM, it suffices to treat 
these as true conflicts and either abort the transaction or stall 
until the transaction causing the conflict completes. However, 
after reaching a watchpoint, we frequently want to continue 
execution while continuing to watch the same address. Second, 
LogTM-SE does not provide hardware to manipulate signa-
tures in software. The watchpoint mechanism requires this to 
add individual addresses to a signature.

We extend the LogTM-SE interface with a get_index opera-
tion, which returns a compact representation of the indexes of 
the summary signature bits to which a virtual address hashes. 
The watchpoint mechanism uses this operation to add and 
remove watched addresses. 

Our second extension is a non-privileged watchpoint flag
that causes hardware to skip the summary signature access 
check for the next memory request. This allows the watchpoint 
mechanism to continue execution after a watchpoint executes 
without triggering another access check conflict. 
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Figure 2: Execution overhead for 1 true watchpoint and 0-
1023 false watchpoints with and without signature aliasing.

The software watchpoint module manages the list of watch-
points and dispatches monitoring code. When the hardware 
detects a conflict, it traps into the software conflict handler. As 
there may be false positives, the handler compares the faulting 
address against the list of watched regions. If one (or more) are 
found, the library executes the monitor function. In all cases, it 
sets the watchpoint flag before continuing execution. To sup-
port watchpoints and virtualized transactions simultaneously, 
the library only executes watchpoint code when it detects that 
there was no transactional conflict.

We evaluated the watchpoint mechanism with the LogTM-
SE simulator [58] on the bzip2 program from SPECint2006. We 
measure the overhead of (1) executing a watchpoint and (2) 
false positives due to LogTM-SE’s signatures. We insert one 

true watchpoint that triggers 46,000 times per second and 
between 0 and 1023 false watchpoints (addresses that are never 
referenced). Executing a single true watchpoint takes 200 
cycles, mostly due to the time to trap. Figure 2 shows the over-
head from false conflicts as the number of watchpoints grow 
from 1 to 1024. The rate increases as the signature, which is 
only 1024 bits, saturates and causes nearly every memory refer-
ence to trap. The figure also shows the overhead for different 
levels of aliasing in the signature. When a bit in the signature 
represents more than one watchpoint, fewer false positives 
occur because the signature is less populated. Overall, LogTM-
SE’s access check component provides a simple and lightweight 
mechanism for scalable watchpoints.

5.2  Transactional Flight Data Recorders
Effectively debugging of multithreaded software is critical 

to the success of emerging multicore chips. Valuable to any 
debugger, deterministic replay enables a developer to re-execute 
the (buggy) program and zero in on bugs that faithfully re-
appear. Moreover, deterministic replay can be useful for fault 
detection/recovery [41] and intrusion detection [12].

A key challenge for deterministic replay is recording mem-
ory races, where it is sufficient to record the outcomes of all 
conflicting memory accesses. Two accesses (reads or writes) 
conflict if they are from different threads, access the same 
memory block, and at least one of them is a write. Since extant 
software race recorders slow down program execution tremen-
dously [23,37], researchers have proposed hardware imple-
mentations [3,54,55,35,34,56].

The current Flight Data Recorder (FDR) [56], for example, 
supports multicore designs using sequential consistency (SC) 
or total store order (TSO), which is x86-like. As depicted in 
Figure 3, FDR augments each core with a dynamic instruction 
counter (IC) and local timestamp memory (TSM). FDR piggy-
backs timestamps on some coherence messages and exploits 
transitivity to add modest runtime overhead while logging only 
about one byte per thousand instructions executed. Selected 
logging of values (Val) supports TSO executions that are not SC 
executions. 

While hardware vendors have adopted neither HTM nor 
FDR, combining the two in a Transactional Flight Data 
Recorder (XFDR) can reap synergistic benefits to promote 
adoption of both in two scenarios. All XFDR variants leverage
the grouping component to reduce the logging requirement 
and scheduling to support replay.
Scenario 1: Races occur only among transactions. This 
scenario occurs if it is “all transactions, all the time” [14] or 
non-transactional memory races are handled separately (or 
cause deterministic replay to fail).

With this scenario, it is sufficient for XFDR to record the 
order that transactions commit, and it is not necessary to 
explicitly track any memory references. A naive implementa-
tion uses a global counter (protected by a lock). Each thread has 
a private log. On commit, the thread atomically increments the 
counter and logs the current value.
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A better implementation uses a scalar timestamp [21]. Each 
thread remembers a single scalar timestamp. Coherence 
responses carry other threads’s timestamps that the requesting 
thread uses to update its timestamp. On commit, the thread 
records its current timestamp in its per-thread log without any 
coordination with others.

Figure 3. A base multicore (unshaded) supplemented with FDR memory race recording hardware (shaded). 
Used with permission from Xu et al. [56].

This latter design improves on FDR by reducing the times-
tamp memory (TSM) from 24 Kbytes to 8 bytes and eliminat-
ing the instruction count (IC) and value recorder logic (Val). 
Nevertheless, we expect similar logging performance.
Scenario 2: Races occur anywhere. Here we must enable 
deterministic replay even when non-transactional memory 
accesses race with transactions or each other.

With this scenario, we see three initial designs. First, we can 
use FDR as is. Second, we can augment FDR with the scalar 
timestamp logic above to potentially reduce logging. Third, we 
can use augmented FDR, but greatly reduce TSM size, because 
it may be unimportant to optimize logging of non-transac-
tional memory accesses. 
Preliminary work. To date we have implemented two ver-
sions of the global-counter XFDR. The first is an all-software 
version that runs on a Sun T1 (Niagara) multicore system 
(where the TM system is implemented with a simple global 
lock). The second is a hardware implementation based on 
LogTM [29] simulated using GEMS [52]. We exercise both 
XFDR implementations (and the corresponding replayers) 
with a multithreaded program, racey, whose final output is sen-
sitive to the order of its frequent data races [54]. In particular, 
racey computes a signature using a multiplicative congruential 
pseudo-random number generator [18]. After addressing sev-
eral minor bugs, the signatures of racey replays match that 
those of the corresponding recorded execution. This builds 
confidence in both XFDR implementations, but does not prove 
them correct.
Future work. We plan to implement all three Scenario-2 vari-
ants, so we can establish that XFDR can improve upon FDR 
performance, reduce hardware cost, or both. In doing so, 

XFDR could facilitate the adoption of both hardware transac-
tion memory and deterministic replay support.

6  Conclusion
The success of hardware transactional memory depends on 

convincing chip vendors of its long-term value. Decomposing 
transactional memory increases the likelihood of its eventual 
adoption in two ways. First, the components may evolve inde-
pendently, allowing faster innovation. Second, the components 
provide more value if exposed separately, because they may be 
additionally targeted at other problem areas.

In this paper, we presented a decomposition of TM into five 
GRAAS components: grouping, rollback, access check, access 
summary, and scheduling. Although the GRAAS components 
are merely one example of how to decompose transactional 
memory, we have shown that they have already helped refine 
one HTM (LogTM-SE) and that they may be applied construc-
tively to other important problems.
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