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Abstract. The model-based transformation of loop programs is a way
of detecting fine-grained parallelism in sequential programs. One of the
challenges is to agglomerate the parallelism to a coarser grain, in order to
map the operations of the program to the available cores in a multicore
architecture. We consider shared-memory multicores as target architec-
ture for space-time mapped loop programs and make some observations
concerning code generation, load balancing and cache effects.
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1 Introduction

The polyhedron model has been used to model loop programs and describe
transformations on them for a long time [1,2,3] in which the expressiveness of the
model has been increased successively (see, e.g. [4,5]). The usual parallelisation
process consists of three phases. First, in an analysis phase, the loop bounds and
data dependences are extracted from a given input program and represented as
polyhedra and affine functions. Second, the model representation is transformed
using mostly linear algebra to yield a (model of a) program with optimised
characteristics, for example by enhancing the cache behaviour of the program or
infusing parallelism. The third and last phase is to generate a program from the
transformed model which executes the program as desired on a real machine. As
it turns out, this code generation phase has remained a hard problem over the
years. It is now largely solved for the sequential case (i.e., the target architecture
is a sequential machine) [6,7], but remains a major challenge in the parallel case.

In this paper, we will consider two examples of loop programs which we will
transform into parallel codes. In this case, the transformation phase is the ap-
plication of a so-called space-time mapping to the model of the original program
to infuse parallelism. As is well-known, we find way to much parallelism in doing
so, i.e., the fine-grained parallelism has to be coarsened such that the number of
parallel units of work matches the number of available cores. We consider two
archetypical examples in Section 2, discuss code generation, load balancing and
the cache behaviour of the generated code in Section 3, and present the results
of some experiments in Section 4.
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2 Tiling

Tiling is a well-established technique to enhance data locality or coarsen the
grain of parallelism in loop programs [8,9,10]. The iteration space of the program
is covered with (usually congruent) tiles and the enumeration of the iteration
points is changed so as to enumerate the tiles in the outer dimensions (i.e. loops)
and the points within each such tile in the inner dimensions.

The shape and size of the tiles is usually chosen dependent on the depen-
dence vectors [11,12,13] to minimise communication startups and the volume of
the data communicated, especially in the context of distributed-memory archi-
tectures. For shared-memory systems, the number of startups and the volume
are less of a concern, as long as the transfer time of the data between cores stays
small compared to the computation time for each tile. It is, as we indicate here,
not less important to address load balancing and select tile shapes and sizes
which distribute an equal amount of work across the cores.

2.1 Parallel bounds

Tiling is simplest when opposite bounds of the index space are parallel. As an
example, let us consider one-dimensional successive over-relaxation (SOR):

for k=1 to m
for i=2 to n-1
A[i] = (A[i-1] + A[i+1]) * 0.5

Here, n is the size of the array being processed, and m is the number of sweeps
accross the array. A valid space-time mapping is to assign each loop iteration the
execution time t(k, i) = 2·k+i−4 and the virtual processor p(k, i) = k+i−3. We
do not want to go into the details here; we just note that, to be a correct mapping
and one that enables tiling, the dependences after space-time mapping must
point forward in time and forward (or to the same virtual processor) in space
[14]. Figure 1 shows the index space before and after space-time mapping. The
usual choice of tile shape in the space-time mapping community is rectangular,
since intuitively, time and space are orthogonal after space-time mapping. But,
since the bounds of the index space are parallel, an obvious choice of tile shape is
a parallelogram whose bounds are parallel to the index space bounds. To achieve
load balancing among the processors, the size of the tiles depends on the number
NC of available cores.

Figure 2 shows a part of the space-time mapped index space with rectangular
and parallelogram tiles. Tiling is described in the model by doubling the number
of dimensions. Each index point is described by a coordinate of the space of tiles,
and a “local” coordinate within the tile. Care has to be taken as to which tiles
can be executed in parallel. Before tiling, all the index points (k, i) with the
same t(k, i) value are parallel. After, tiles with the same time coordinate in tile
space cannot be executed in parallel, since the tiles span, in general, more than
one time coordinate of the index space and, hence, dependences between these
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(a) Before space-time
mapping

(b) After space-time mapping

Fig. 1. 1d SOR: Index space with dependences
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Fig. 2. 1d SOR: Space-time mapped index space with tiles

tiles can exist. A so-called skewing [10] has to be performed and the tiles with
time coordinate tT and processor coordinate pT with the same tT +pT value can
be executed in parallel (cf. Figure 3).

Fig. 3. Skewing: Tiles which can be executed in parallel (highlighted) in succes-
sive time steps (from left to right)

Due to this skewing, the number of tiles which can be executed in parallel
is not determined by the height of the tiles, but by their width (in case of the
parallelogram tiles) or their width and height together (in case of rectangular
tiles), respectively. The relations are given by

width =
m

f ·NC
, height ≥ 1 (parallelograms)

width =
m

f ·NC
− height, 1 ≤ height <

m

f ·NC
(rectangles)

where f ≥ 1 is an arbitrary integral factor denoting the number of tiles to be
assigned to one core. It may seem that a rectangular tiling cannot achieve load
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balancing because there are incomplete tiles along the borders of the index space.
But, by closer inspection (cf. Figure 3), it becomes clear that, with the given
choice of the tile width and height, there are either NC complete tiles in parallel,
or NC+1 tiles of which the first and the last (the tiles crossing the borders of the
index space) together form one complete tile. Therefore, if we distribute these
tiles cyclically across the cores, each core will execute one complete tile (in terms
of the number of operations performed).

2.2 Triangular index space

A slightly more complicated case than an index space with parallel bounds is an
index space of triangular shape. An example is the backward substitution phase
of Gaussian elimination:

for i=1 to n-1
for k=0 to i-1
B[i] = B[i] - A[i][k]*B[k]

The index space after space-time mapping with t(i, k) = k and p(i, k) = i− 1 is
shown in Figure 4. To achieve load balancing, one would have to choose “grow-
ing” tiles, but this is illegal because it would generate tiles with cyclic depen-
dences. Due to the dependences, which are of the form (t, p) 7→ (t + 1, p + a) for
a ≥ 0, only a rectangular tiling1 is legal and easy to describe.

Fig. 4. Backward substitution: Index space after space-time mapping with rect-
angular tiles

1 Or another parallelepiped tiling with an angle of at least π
2

between the spanning
vectors, but this does not improve the situation.



6 A. Größlinger

A rectangular tiling poses two problems. Only on one border, the covering
tiles are incomplete, such that they cannot find another tile with which to form
a complete tile, and the number of parallel tiles is not constant in time. The
space-time mapping suggests that the program can start with a high degree of
parallelism which then shrinks towards the end of the program. But, due to the
skewing required by tiling, the parallelism has a growing phase first, followed
by the shrinking phase. To address the problem of incomplete tiles, we would
have to use a tiling with two different tile shapes, namely two triangles, one with
the same orientation as the index space and the other such that both triangles
together form a rectangle. With suitably chosen tile sizes, the first triangles will
line up with the diagonal border of the index space and no point inside the tiles
will be wasted. This approach leads to complex target code, and we have not
pursued it so far.

To handle the varying number of parallel tiles, we suggest to use a cyclic
mapping of tiles to cores. Figures 5 shows the aspired distribution of tiles for a
part of the execution. Executing tiles on different diagonals in parallel, as shown
in the figure, is legal for diagonals with at least NC tiles, since there are no data
dependences between the tiles executed in parallel. In the beginning and the
end of the execution, the number of parallel tiles is less than NC and we cannot
utilise all cores, but the biggest part of the index space (provided that NC is
small compared to the number of tiles) can be executed using all cores.

Fig. 5. Cyclic parallel execution: Highlighted tiles are executed in parallel, bor-
dered tiles are completed in preceding time steps.

A simple model for estimating the performance of this cyclic tiling and com-
paring it with the standard execution, is to count the number of index points
within each tile (as an estimate for its execution time) and computing the exe-
cution time of the whole program from this, taking delays imposed by synchro-
nisation into account. This simple model predicts the following speed-ups:

NC 2 4 8
speed-up standard 1.83 3.08 4.62

speed-up cyclic 1.83 3.41 5.22

Due to the incomplete tiles along one of the borders and the smaller degree of
parallelism in the beginning and the end, the expected speed-ups are sub-linear
and, for two cores, almost identical.
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3 Code generation

The program transformation and code generation is fully automatic. We use the
tools of LooPo [15] for dependence analysis, computing and applying space-time
mappings, and applying tiling to the model. CLooG [7] generates sequential
loops from the polyhedral description, and a postprocessing phase (developed
by LooPo team members) annotes the generated loops with OpenMP pragmas
and inserts the transformed loop bodies into the code. The only manual part
in the whole process is to select spanning vectors of the tiles, by which the tile
shape and size are determined.

For the one-dimensional SOR example, the generated code looks like this:

#define S1(i, k) { A[i]=(A[1+i]+A[i-1])/2; }

int upperBound1 = floord(5*M+3*N-14,1500);

for (glT1=-1; glT1 <= upperBound1; glT1++) {

int lowerBound2 = max(ceild(375*glT1-1499,1875),

max(ceild(750*glT1-M-1498,2250), max(ceild(750*glT1-2*M-N+5,750),0)));

int upperBound2 = min(floord(1500*glT1+2*N+1493,7500),

min(floord(M+N4,1500),min(floord(1500*glT1+1499,4500),

floord(1500*glT1+1499,1500))));

#pragma omp parallel for schedule(static,1) private(vT1,vP1)

for (rp1=lowerBound2; rp1 <= upperBound2; rp1++) {

int upperBound3 = min(floord(1500*glT11500*rp1+1499,2),

min(3000*rp1+2998, min(1500*rp1+M+1498,2*M+N-5)));

for (vT1=max(750*glT1-750*rp1,max(3000*rp1-N+3,max(1500*rp1,0)));

vT1 <= upperBound3; vT1++) {

int upperBound4 = min(1500*rp1+1499,min(floord(vT1+N-3,2),vT1));

for (vP1=max(1500*rp1,max(ceild(vT1,2),vT1-M+1));

vP1 <= upperBound4; vP1++) {

S1(vT1-vP1+1, -vT1+2*vP1+2);

}

}

}

}

Note that there are four for loops, the outer two enumerating the tiles, the
inner two enumerating the points within the respective tile. The second loop is
marked omp parallel for, since it enumerates the parallel tiles. The body of
the loop has become more complex compared to the original program, because
the original loop indices i and k, in which the statement is expressed, have to
be reconstructed from the new indices.

A fast execution of the program may seem unlikely due to the complex bounds
in the loops and the necessary reconstruction of the original indices in the body.
But it turns out that i (and hence the addresses of A[i-1], A[i], A[i+1]) is an
induction variable even after the transformation and compilers can detect this.
GCC 4.2.1 generates the following x86 assembly code for the innermost loop:
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.L87:
fldl (%eax)
addl $1, %edx
faddl -16(%eax)
fmul %st(1), %st
fstpl -8(%eax)
addl $16, %eax
cmpl %edx, %ecx
jge .L87

The four floating-point instructions (fldl,faddl,fmul,fstpl) perform the com-
putation A[i]=(A[i+1]+A[i-1])*0.5 and the other four instructions deal with
the loop counter and updating %eax which holds the address of A[i+1]. This
implies that the loop bounds are only computed rarely compared to the execu-
tion of the body, provided that the innermost loop has a sufficient number of
iterations.

The cyclic tile distribution among the cores described in Section 2.2 is not
generated automatically at present. To get the code for this mode of operation,
we first generate the code as described above, but then replace the omp parallel
for pragma by an omp parallel pragma such that every core enumerates every
tile. We let every core execute the inner loops only for every NCth iteration with
different offsets for each core, with suitable synchronisation statements (omp
barrier) inserted.

4 Experiments

We ran our experiments on a machine with four cores, consisting of two Dualcore
AMD Opteron processors with 2.2 GHz and 2 GB of RAM. Since this is a NUMA
(non-uniform memory access) architecture, we have to take care not to spoil the
benchmarks with local vs. remote memory effects. As we will see, memory locality
does not play a significant role in the one-dimensional SOR, because of its cache
behaviour (cf. Section 4.2).

4.1 Tiling overhead

As has been outlined in Section 3, the complex loop bounds and the reconstruc-
tion of the original loop indices still permit the innermost loop to be small. We
now look at the question of how many iterations the innermost loop must have
to make the effort of computing the complex loop bounds negligible. Figure 6
shows the execution times for n = 106, m = 9, 000 and varying tile heights
(the innermost loop enumerates the height dimension of the tile). The tile width
has been chosen according to the formulas presented in Section 2.1 with f = 1.
The execution time converges towards about 12.38 seconds. We observe that the
parallelogram tiling has a slightly higher overhead (the loop bounds are more
complex). With the rectangular tiling, the tile height can only be increased up to
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Fig. 6. Tiling overhead in 1-dim SOR for n = 106,m = 9, 000 (x-axis non-linear)

about 2000, since the tile width has to be set to m
NC −height, i.e. 2250−height in

our case. Therefore, the tiles become very narrow for heights greater than 2000
and, accordingly, the second innermost loop has only a few iterations which
causes noticable overhead for height greater than 2000. The parallelogram tiling
does not suffer from such a restriction; the height can be arbitrarily increased as
the width is fixed to, in this example, 2250. On the other hand, we have to note
that the run-time evaluation of the loop bounds can suffer integer overflows, e.g.,
the program does not execute correctly for tile heights 2400 and 2600 (which are
missing in the diagram for this reason).

4.2 Cache behaviour

The one-dimensional SOR example also demonstrates that space-time mapping
and tiling can enhance the cache behaviour and, hence, reduce the execution
time. Compared to the original execution, the tiled program is a vast improve-
ment. The original program takes 75.4 seconds to execute. Even with space-time
mapping applied (and no tiling), the execution time is still 23.6 seconds, but
only with tiling the time reduces to about 12.4 seconds. Using the Cachegrind
tool from the Valgrind suite [16], almost no cache misses occur (Table 1). For the
backward substitution example, Cachegrind reports a cache miss rate of about
6.1% for both the standard parallel and the cyclic parallel execution.
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Reads Writes
Instructions Total Misses Total Misses

18k 16k 2 for glT1=

102k 88k for rp1=

42,235k 21,099k 18k for vT1=

36,056,066k 14,035k for vP1=

35,999,928k 17,999,964k 3,973k 8,999,982k 0 A[i]=...

Table 1. 1d SOR: cache misses (L1 and L2 combined)

4.3 Speed-up

As mentioned, the one-dimensional SOR example has an original execution time
of 75.4 seconds, which is reduced to 23.6 seconds through space-time mapping.
Table 2 shows the rectangular tiling with the best execution time on one and on
four cores, respectively, and the best (on one and four cores) parallelogram tiling.
The parallelogram tiling shows slightly better scaling behaviour, so it overtakes
the rectangular tiling which has a slightly better execution time on one core.

Rectangular Tiling Parallelogram Tiling

Cores 1 2 4 1 2 4

Width=850, Height=1400
Time in secs 12.38 6.33 3.23
Speed-up 1.00 1.95 3.82
Efficiency* 99.76% 97.55% 95.59%

Width=650, Height=1600 Width=2250, Height=3000

Time in secs 12.35 6.32 3.26 12.38 6.28 3.17

Speed-up 1.00 1.95 3.79 1.00 1.97 3.90

Efficiency* 100.00% 97.71% 94.71% 99.76% 98.33% 97.40%

Table 2. Speed-ups for 1d SOR (efficiency relative to best execution)

For the backward substitution example, the proposed cyclic distribution of
the tiles among the available cores does not lead to the expected speed-up, at
least with the implementation strategy we have chosen. Table 3 shows a clear
difference in speed-up on two cores, although the prediction for both parallel
executions are the same (on two cores). Why this difference exists, although the
cache behaviour (studied with Cachegrind) is almost identical for both programs
and both programs have the same execution time on one core, is unclear at this
point. We made sure that the two cores used to execute the program are on
the same physical processor, i.e. all the memory accesses are to local memory.
It remains to be investigated why the standard parallel and the cyclic parallel
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execution behave differently and how it is possible to exploit the load balancing
promised by the cyclic parallel execution.

Cores Real Theoretical Speed-up in
1 2 Speed-up a very simple model

Sequential 203ms -

Standard parallel execution 177ms 124ms 1.43 1.832

Cyclic parallel execution 177ms 140ms 1.26 1.829

Table 3. Backward subsitution: Speed-ups for n = 10, 000

5 Conclusions

After many years of research, the polyhedron model has finally reached a stage
at which the last remaining big challenge, parallel code generation, is being tack-
led and solved step-by-step. From our preliminary experiments, which we have
presented here, we can gain confidence that code generated from the polyhedral
description of transformed sequential programs can exhibit good cache behaviour
and small enough execution overhead in the complex loop bounds such that good
speed-ups are possible. Further experiments have to be carried out to explore
the situation with other, more complex examples.

Two problems which often spoil performance are load imbalances due to a
varying number of tiles in the parallel dimension and the presence of incomplete
tiles at the borders of the index space. Both problems need to be researched
further; we have only offered basic ideas of solutions. After these problems have
been solved, the polyhedron model may be ready for use in mainstream compilers
for multicore architectures.
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