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Abstract

Stochastic optimization problems provide a means to model uncertainty in the input data where the
uncertainty is modeled by a probability distribution over the possible realizations of the actual data. We
consider a broad class of these problems in which the realized input is revealed through a series of stages,
and hence are calledulti-stage stochastic programming problerulti-stage stochastic programming
and in particular, multi-stage stochastic linear programs with full recourse, is a domain that has received
a great deal of attention within the Operations Research community, but mostly from the perspective of
computational results in application settings.

Our main result is to give the first fully polynomial approximation scheme for a broad class of multi-
stage stochastic linear programming problems with any constant number of stages. The algorithm ana-
lyzed, known as the Sample Average Approximation (SAA) method, is quite simple, and is the one most
commonly used in practice. The algorithm accesses the input by means of a “black box” that can gener-
ate, given a series of outcomes for the initial stages, a sample of the input according to the conditional
probability distribution (given those outcomes). We use this to obtain the first approximation algorithms
for a variety ofk-stage generalizations of basic combinatorial optimization problems including the set
cover, vertex cover, multicut on trees, facility location, and multicommodity flow problems.

1 Introduction

Stochastic optimization problems provide a means to model uncertainty in the input data where the uncer-
tainty is modeled by a probability distribution over the possible realizations of the actual data. We shall
consider a broad class of these problems in which the realized input is revealed through a series of stages,
and hence are calledulti-stage stochastic programming problenMulti-stage stochastic linear program-

ming is an area that has received a great deal of attention within the Operations Research community, both in
terms of the asymptotic convergence results, as well as computational work in a wide variety of application
domains. For example, a classic example of such a model seeks to minimize the expected cost of operating
a water reservoir where one can decide, in each time period, the amount of irrigation water to be sold while
maintaining the level of the reservoir within a specified range (where penalties are incurred for violating this
constraint). The source of uncertainty is, of course, the variability in rainfall, and there is a simulation model
that provides a means to sample from the distribution of inputs (of rainfall amounts per time period within
the planning horizon) [3]. Observe that it is important to model this as a multi-stage process, rather than as a
2-stage one, since it allows us to capture essential conditional information, such as given a drought over the
previous period, the next period is more likely to continue these conditions. Furthermore, within multi-stage
stochastic linear programming, most work has focused on applications in which there are a small number

*A preliminary version [15] will appear in the Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, 2005.
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of stages, including forest planning models electricity investment planning, bond investment planning, and
currency options selection, as discussed in the recent survey of Ariyawansa and Felt [1].

Our main result is to give the first fully polynomial randomized approximation scheme (FPRAS) for
a broad class of multi-stage stochastic linear programming problems with any constant number of stages.
Although our results are much more general, we shall focus on a canonical example of the class of problems,
a 3-stage stochastic variant of the fractional set covering problem. We are given a family of sets over a
ground set and a probability distribution over the subsets that specifies a target set of ground elements that
must be covered. We can view the three stages as specified by a scenario tree with 3 levels of nodes: the
root, internal nodes, and leaves; the root corresponds to the initial state, each leaf is labeled with a target
subset of elements that must be covered, and for each node in the tree there is a conditional distribution of
the target sets at leaves within this subtree (where we condition on the fact that we have reached that node).
One can buy (fractionally) sets at any node paying a cost that depends both on the set and the node at which
it is bought. We want to be able to compute, given a node in the tree, the desired action, so as to minimize
the expected total cost of fractionally covering the realized target set. This problem can be modeled as an
exponentially large linear program (LP) in which there is, for eactbsatd each node in the tree, a variable
that indicates the fraction & that is bought at that node. It is easy to imagine the constraints: for each leaf,
for each ground elementin its corresponding target set, the total fraction bought of Setsat containe
along this root-leaf path must be at least 1. If we view the probability of reaching a node as specified, it
is straightforward to express the expected total cost as a linear function of these decision variables. As a
corollary of this result, we also give the first approximation algorithms for the analogous class of multi-stage
stochastic integer programming problems, such as the integer version of this set covering problem.

For a rich class ok-stage stochastic linear programming problems, whkessassumed to be constant
and not part of the input, we show that, for any- 0, we can compute, with high probability, a solution
with expected cost guaranteed, for any probability distribution over inputs, to be withir-a) factor of
the optimal expected cost, in time bounded by a polynomial in the inpute%imd a parametexthat is an
upper bound on the ratio between the cost of the same action (e.g., buying fesget successive stages.

The algorithm accesses the input by means of a “black-box” (simulation) procedure that can generate, for
any node in the scenario tree, a sample of the input according to the conditional distribution for this node.
This is an extremely general model of the distribution, since it allows all types of correlated effects within
different parts of the input. We improve upon our earlier work [14], which handles the very special case in
which k = 2, not only by being able to handény fixed number of stagesut whereas the earlier algorithm

is based on the ellipsoid method, we can now show that the algorithm most commonly used in practice, the
sample average approximationethod (SAA), also yields the claimed approximation scheme.

The algorithm of Shmoys & Swamy[14] for 2-stage problems is based on computing an approximate
subgradient with respect to a compact convex programming formulation, and this is done by estimating
each component of the subgradient sufficiently accurately, and then applying the ellipsoid method using
these approximate subgradients. In the sample average approximation method, we merely sample scenarios
a given (polynomial) number of timg¥, and by computing the frequencies of occurrence in these samples,
we derive a new LP that is a polynomial-sized approximation to the original exponential-sized LP, and the
solve this compact LP explicitly. We first argue that using (approximate) subgradients one can establish a
notion of closeness between two functions (e.g., the objective functions of the “true” LP and the SAA LP), so
that if two functions are “close” in terms of their subgradients, then minimizing one function is equivalent
to approximately minimizing the other. Next, we show that with a polynomially bounded sample size,
the objective functions of the “true” problem and the sample-average problem satisfy this “closeness-in-
subgradients” property with high probability, and therefore minimizing the sample-average problem yields
a near-optimal solution to the true problem; thus we prove the polynomial-time convergence of the SAA
method. Our proof does not rely on anything specific to discrete probability distributions, and therefore
extends to the case of continuous distributions.



Compare now the 3-stage and 2-stage problems. In the 2-stage fractional set-covering problem, the
compact convex program has variables corresponding only to the decisions made at the root to (fractionally)
buy sets. Each component of the subgradient at the current point can be estimated by sampling a leaf from
the scenario tree and using the optimal dual solution for the linear program that minimizes the cost to cover
each element in this leaf’s target set to the extent it is not already covered by the root variables. In the
3-stage version, a-stage stochastic Lilays the analogous role of the linear program and we need to
obtain a near-optimal dual solution for this exponentially large mathematical program to show the closeness
property. Moreover, one difficulty that is not encountered in the 2-stage case, is that n@®vstage
recourse LP is different in the sample average and the “true” problesitece the conditional distribution
of scenarios given a second-stage outcome is approximatedn the sample average problem. Thus to
show the closeness property one has to argue that solving the dual of the sample average 2-stage recourse
LP yields a near-optimal solution to the “true” 2-stage recourse LP. We introduce acwwelct non-
linear formulation of this dualfor which we can prove such a statement for the duals, and thereby obtain
the “closeness-in-subgradients” property for the 3-stage problem. In fact, this formulation yields a new
means to provide lower bounds on 2-stage stochastic LPs, which might be of interest in its own right. The
analogous idea can be applied inductively to obtain the FPRAS for any fixed number of stages. We believe
that our proof is of independent interest and that our approach of using subgradients will find applications
in proving convergence results in other stochastic models as well.

Due to its simplicity and its use in practice, the SAA method has been studied extensively in the stochas-
tic programming literature. Although it has been shown that the SAA method produces solutions that con-
verge to the optimal solution as the number of sampegets sufficiently large (see, e.g., [12] and its
references), no results were known that bound the number of samples needed to ¢btaim)zoptimal
solution by a polynomial in the input sizé,and)\. Prior to our work, for 2-stage stochastic optimization,
convergence rate results that bound the sample size required by the SAA method were proved in [10]. But
the bound proved in [10] depends on the variance of a certain quantity that need not depend polynomially on
the input size on\. Recently, Nemirovskii and Shapiro (personal communication) showed that for 2-stage
set-cover with non-scenario-dependent second-stage costs, the bound of [10] is a polynomial bound, pro-
vided that one applies the SAA method after some preprocessing to eliminate certain first-stage decisions.

For multi-stage problems with arbitrary distributions, to the best of our knowledge, there are no results
known about the rate of convergence of the sample average approximation to the true optimal solution (with
high probability). In fact, we are not aware of any work (even outside of the sample average approach) that
provesanyworst-case bounds on the sample size required for solving multi-stage stochastic linear programs
with arbitrary distributions in the black-box model. Very recently, Shapiro [13] proved bounds on the sample
size required in the SAA method for multi-stage problems, under the strong assumptite tthigtributions
in the different stages are independédmtparticular, this implies that the distribution of the outcomes in any
stagei, and hence of the scenarios in stageoes not depend on the outcomes in the previous stages, which
fails to capture the notion of learning new information about the uncertainty as one proceeds through the
stages. Moreover, as in the 2-stage case, the bounds in [13] are not polynomial in the inpui\sieecor
when the number of stages is fixed. It is important to note that we prove that an optimal solution to the SAA
LP is a near-optimal solution to true LP, not that the optimal value of the SAA LP is a good approximation
to the true optimal value. Indeed, one interesting question is to show, for any class of stochastic integer and
linear programming problems, if one could obtain an approximation algorithm to the case in which there are
only a polynomial number of scenarios, then one can also obtain an approximation algorithm for the general
case. Subsequent to the dissemination of an early version of our work [16], Charikar, Chekual §1d P
have obtained such a result for 2-stage problems.

There has been a series of recent papers on approximation algorithms for 2-stage stochastic integer
programming problems. Most of this work has focused on more restricted mechanisms for specifying the
distribution of inputs [5, 11, 9]; Gupta,a, Ravi, and Sinha [6] were the first to consider the “black-box”



model, and gave approximation algorithms for various 2-stage problems, but with the restriction that the
second-stage costs be proportional to the first-stage costs. Shmoys and Swamy [14] showed that one could
derive approximation algorithms for most of the stochastic integer programming problems considered in
[5, 11, 9, 6] by adopting a natural LP rounding approach that, in effect, converted an LP-based approxi-
mation guarantee for the deterministic analogue to a guarantee for the stochastic generalization (where the
performance guarantee degraded by a factor of 2 in the process).

An immediate consequence of our approximation scheme for multi-stage stochastic linear programs
is that we obtain approximation algorithms for several natural multi-stage stochastic integer programming
problems, by extending the rounding approach of [14]. The only other work on multi-stage problems in the
black-box model is due to Hayrapetyan, Swamy, and Tardos [8], and Gupta et al. [7] (done concurrently
with this work). Both presen©(k)-approximation algorithms for &-stage version of the Steiner tree
problem under some restrictions on the costs; the latter also gives algorithms festidge versions of the
vertex cover and facility location problems under the same cost restrictions, but their approximation ratio is
exponentiain k. In contrast, in the black-box model without any cost restrictions, we obtain performance
guarantees of logn for k-stage set coveRk for k-stage vertex cover andstage multicut on trees, and
1.71(k — 1) + 1.52 for the k-stage version of the facility location problem. (It is interesting to note that the
textbook [3] gives an example of an application that is formulated as a 3-stage facility location problem.)
Finally, we obtain a FPRAS for &-stage multicommaodity flow problem as a direct consequence of our
stochastic linear programming result.

2 Preliminaries

We first state some basic definitions and facts that we will frequently uséluljedenote the/s norm of u.
We say that a functiop : R™ — R, hasLipschitz constantat most)K if |g(v) — g(u)| < K||v — ul| for
all u,v € R™,

Definition 2.1 Letg : R™ — R be a function. We say thatis a subgradient of; at the pointu if the
inequalityg(v) — g(u) > d - (v — u) holds for everw € R™. We say thatl is an(w, A, D)-subgradient of
g at the pointu € D if for everyv € D, we havey(v) — g(u) > d - (v — u) — wg(u) — wg(v) — A.

The above definition of arw, A, D)-subgradient is slightly weaker than the notion of @n D)-
subgradient as defined in [14] where one requires — g(u) > d - (v — u) — wg(u). This distinction
is however superficial; one could also implement the algorithm in [14] using the notion of an approximate
subgradient given by Definition 2.1.

We will consider convex minimization problemsin,cp g(z) whereP C RZ, is a polytope and(.)
is convex. It is well known (see [2]) that a convex function has a subgradient at every point. The following
claim will be useful in bounding the Lipschitz constant of the functions encountered.

Claim 2.2 Letd(z) denote a subgradient of a functign: R™ — R at pointz. Supposé|d(z)| < K for
everyz. Theng(.) has Lipschitz constant (at most).

Proof : Consider any two points, v € R™ and letd, d’ denote the subgradientswatv respectively, with
ldll, [|d'|| < K, then we havgy(v) — g(u) > d- (v —u) > —||d|| ||[v — u|]| > —K||v — ul|, and similarly
g9(u) —g(v) = —[|d'|[ [lu — v]| = =K[u — . u

We will also encounter concave maximization problemss,.p» g(x), whereg(.) is concave. Anal-
ogous to the definition of a subgradient, we definmax-subgradient and an approximate version of a
max-subgradient.



Definition 2.3 We say that/ is amax-subgradient of a functiop : R™ — R atu € R™ if for every point
v € R™, we haveg(v) — g(u) < d- (v —u). We say thatl is an (w, A, D)- max-subgradient ofy(.) at
u € Dif for everyv € D we haveyg(v) — g(u) < d- (v —u) +wg(u) + A.

WhenD is clear from the context, we abbrevidte A, D)-subgradient anflv, A, D)- max-subgradient
to (w, A)-subgradient anflv, A)- max-subgradient respectively. &£ = 0, we will use(w, D)-subgradient
and (w, D)- max-subgradient, instead dfv, A, D)-subgradient andw, A, D)- max-subgradient respec-
tively. We will frequently uséw, A, P)-subgradients which we abbreviate and denote/ad )-subgradients
from now on. We will need the following sampling lemma which is proved using simple Chernoff bounds.

Lemma24LletX;,i = 1,....N = 4(1:7201)2111(%) be iid random variables where eack;, € [—a,
a,b> 0, = max(1,a/b), andc is an arbitrary positive number. Let = (3°, X;) /N andp = E[X
E[X;]. ThenPr[X € [ — cb, pu+ cb]] >1-6.

o,

Proof: LetY; = X;+a € [0,a+b]andY = ,Y;. Lety/ = E[Y;] = p+a. We havePr[X > p+cb] =
Pr[lY > E[Y](1+ ¢b/i)], andPr[X < pu — cb] = Pr[Y < E[Y](1 — ¢b/u/)]. Letv = ¢b/y/. Note that
1 < a+ b. Since the variableg; are independent we can use Chernoff bounds here. The latter probability,

v2sp (cb)?s

PrlY < E[Y](1 — v)], is at moste” 2@+ = ¢ 2@+ < &, To boundPr[Y > E[Y](1 + v)] we

H . . . Q+v)sy’ . . _vs )/
consider two cases. if > 2e — 1, then this quantity is at mo&t oo~ which is bounded by ats < %
VQS;L/ (cb)25

If v < 2e — 1, then the probability is at mogt ) = ¢ #/(atd) < g So using the union bound,
Pr[X ¢ [u— cb, u+ cb]] <6. ]

3 The Sample Average Approximation method

Suppose that we have a black box that can generate, for any sequence of outcomes for the initial stages,
independent samples from the conditional distribution of scenarios given those initial outcomes. A natural
approach to computing near-optimal solutions for these problems given such sampling access is the sample
average approximation (SAA) approach: sample sdf@émes from the distribution on scenarios, estimate
the actual distribution by the distribution induced by the samples, and solve the multi-stage problem specified
by the approximate distribution. For 2-stage programs, we just estimate the probability of scéfgrio
its frequency in the sampled set; forstage programs we construct an approxiniatevel distribution tree
by sampling repeatedly for each level. we sanipléimes to obtain some stage 2 outcomes, for each such
outcome we samplé; times from the conditional distribution given that outcome to generate some stage
3 outcomes and so on, and for each sampled outcome we estimate its conditional probability of occurrence
given the previous-stage outcome by its frequency in the sampled set. The multi-stage problem specified by
the approximate distribution is called tsample average problerand its objective function is called the
sample average function

If the total number of sample§ is polynomially bounded, then since the approximate distribution has
support of size at mosY/, the sample average problem can be solved efficiently by solving a polynomial
size linear program. The issue here is the sample/sizequired to guarantee thavery optimal solution
to the sample-average problem is a near-optimal solution to the original proklgmhigh probability.
We show that for any givek (which is not part of the input), for a large classiobtage stochastic linear
programs we can bountl” by a polynomial in the input size, the inverse of the desired accuracy, and the
maximumratio A between the cost of an action in successive stages.

Intuitively, to prove such a theorem, we need to show that the sample-average function is a close ap-
proximation to the true function in some sense. One obvious approach would be to argue that, with high



probability, the values of the sample average function and the true function are close to each other, at a suffi-
ciently dense set of points. This however immediately runs into problems since the variance in the scenario
costs could be quite (exponentially) large, so that one cannot hope to estimate the true function value, which
gives the expected scenario cost, to within a reasonable accuracy with a small (polynomial) number of sam-
ples. Essentially, the problem is that there could be extremely low-probability outcomes which contribute
significantly towards the cost in the true problem, but will almost never be sampled with only a polynomial
number of samples, and so they contribute nothing in the sample average function. Hence one cannot hope
to estimate the true expected cost within a reasonable accuracy using polynomially many samples. The key
insight is that suchare outcomes do not much influence the optimal first-stage decjisiomte one would
defer decisions for such outcomes till later. The minimizer of a convex function is determined by its “slope”
(i.e., its gradient or subgradient), which suggests that perhaps we should compare the slopes of the sample-
average and the true objective functions and show that they are close to each other, and argue that this is
sufficient to prove the near-equivalence of the corresponding minimization problems.

Our proof builds upon this intuition. For a non-differentiable functiosuagradienfprovides the ana-
logue of a gradient, and is a measure of the “slope” of the function. We identify a notion of closeness
between any two functions based on their subgradients so that if two functions are close under this criterion,
then minimizing one is approximately equivalent to minimizing the other. Next, we show that the objective
functions of the original multi-stage problem, and the sample average problem with polynomially bounded
sample size, satisfy this “closeness-in-subgradients” property, and thus we obtain the desired result.

Proof details The proof is organized as follows. First, in Section 4 we show that closeness of subgradients
is sufficient to prove the near-equivalence of the corresponding minimization (or maximization) problems.
In Lemma 4.1 we show that given two functions; : R™ — R that agree in terms of their (approximate)
subgradients at points in a polytope(we make this precise lategyeryoptimal solution tomin,cp g(z)

is a near-optimal solutiomin,cp g(x). Some intuition about why this closeness-in-subgradient property

is sufficient can be obtained by considering the ellipsoid-based algorithm for convex minimization given
in [14]. This algorithm makes use of only (approximate) subgradient information about the convex function
to be minimized, using at each feasible point, a subgradient arsubgradient of the function to derive

a cut passing through the center of the current ellipsoid and make progress. Suppose at every=point
P, there is a vectorl,, that is both a subgradient @f(.) and anw-subgradient ofy(.). One can then
used, to generate the cut at, and thus cause the ellipsoid-based algorithm toidemtically on both
mingcp g(x) andmin,cp g(z) and return a point that isimultaneouslynear-optimal for both objective
functions. Lemma 4.1 makes this intuition precise while weakening the assumption and strengthening the
conclusion: we only require that at every poinin a sufficiently dense finite sét C P there be a vector

d, that is both both a subgradient §f.) and anw-subgradient of;(.), and we prove thagveryoptimal
solution tomin,¢p g(x) is a near-optimal solution tmin,cp g(z). Lemma 4.3 proves an analogous result

for concave maximization problems using the concephef-subgradients.

The second part of the proof, where we show that the objective functions of the true multi-stage problem
and the sample average problem (with polynomially many samples) satisfy this closeness-in-subgradient
property, is divided into three parts. For the class of 2-stage linear programs considered in [14], this is easy
to show because in both the sample average problem and the true problem, a subgradient at any point is
computed by taking the expectation, according to the respective scenario distribution, of a quantity derived
from the optimal solutions to the dual of the recourse LP (i.e., the LP that determines the recourse cost for a
scenario), and this recourse LP is the same in both the sample average and the true problems. Thus, since the
components of the subgradient vector have bounded variance [14], and the samples in the sample average
problem are drawn from the original distribution, it is easy to show the closeness-in-subgradients property.

For thek-stage problem however, one needs to develop several substantial new ideas to show this close-
ness property, even whén= 3. We introduce these ideas in Section 6 by focusing on 3-stage problems, and



in particular, on the LP relaxation of 3-stage set cover as an illustrative example. We then generalize these
ideas to prove an SAA theorem for a large class of 3-stage linear programs, and in Section 7 inductively
apply the arguments to a broad classceftage problems. The main difficulty, and the essential difference
from the 2-stage case, is that now the recourse problem for each second-stage outcome is a 2-stage stochas-
tic LP whose underlying distribution is only approximated in the sample average problethe Sample
average problem and the true problem solve different recourse problems for each stage 2 outdame

in the 2-stage case, a (approximate) subgradient is obtained form the (approximately) optimal solutions to
the dual of the 2-stage recourse LP for each scenario, therefore to show closeness in subgradients we need
to argue that maximizing the sample average dual yields a near-optimal solution to the true dual, that is,
prove an SAA theorem for théual of a 2-stage stochastic primal program! Mimicking the approach for

the primal problem, we could try to prove this by showing that the two dual objective functions are close

in terms of theirmax-subgradients However, simply considering the (standard) LP dual of the 2-stage
primal recourse LP does not worknaax-subgradient of the linear dual objective function is just the con-
stant vector specifying the conditional probabilities of the stage 3 scenarios given the outcome in stage 2,
and as we argued earlier one cannot hope to estimate the true conditional distribution using only a polyno-
mial number of samples (because of rare scenarios that will almost never be sampled). To circumvent this
problem, we introduce a novebmpact, non-lineaformulation of the dual, which turns the dual problem

into a concave maximization problem with a 2-stage primal LP embedded insideritxAsubgradient of

this new dual objective function can be computed by solving this 2-stage primal stochastic LP. We now use
the earlier SAA theorem for 2-stage programs to show that, any optimal solution to the 2-stage LP in the
sample-average dual, is a near-optimal solution to the 2-stage LP in the true dual. This shows that the two
dual objective functions (in this new representation) are close in terms ofitheisubgradients, thereby
proving that an optimal solution to the sample average dual optimal solution is a near-optimal solution to
the true dual. This in turn establishes the closeness in subgradients of the objective functions of the 3-stage
sample average problem and the true 3-stage problem and yields the SAA theorem.

It is useful to view the entire argument from a broader perspective. The ellipsoid-based algorithm
of Shmoys and Swamy shows that one can minimize convex functions by only using only approximate
subgradient information about the function. For a given class of convex functions, if one can compute these
approximate subgradients by some uniform procedure, then one might be able to interpret these vectors as
exactsubgradients of another “nice” function, that is, in some sense, “fit” a nice function to these vectors, and
thereby argue that minimizing this nice function is sufficient to yield a near-optimal solution to the original
problem. For our class of multi-stage problems, we essentially arguetbabgradients can be computed
efficiently by sampling and averaging, and therefore it turns out that this “nice” function is precisely the
sample average objective function.

4 Sufficiency of closeness in subgradients

Letg : R™ — R andg : R™ — R be two functions with Lipschitz constant (at mosf) Let P C RY, be
the bounded feasible region aRthe a radius such th@& is contained in the balBB(0, R) = {z : ||z|| < R}.
Lete,v > 0 be two parameters with < 1. SetN = log(22£) andw = . LetG' = {z € P : z; =

n; - (KNE\/TTL)’ n; € Zforalli =1,...,m} SetG = G' U {Zc—i—t(y—x),y%—t(x—y) cr,y e Gt =
27" i=1,...,N}. We callG’ andG respectively, theﬁm-grid, and theextendedK]\fiﬁ-grid of the
polytopeP. Note that for every: € P, there exists’ € G’ such that|z — 2'|| < 5. Fix A > 0. We first
consider minimization problems. We say that functigrandg satisfy property (A) if

Vo € G, Jd, e R™: dyis a subgradient gj(.), and, anw, A)-subgradient of(.) atz. (A)



Lemma 4.1 Suppose andg are functions satisfying propertd). Letz*, T € P be points that respectively
minimizeg(.) andg(.) overP, and supposg(z*) > 0. Then,g(z) < (1 + v)g(x*) + 6e + 2N A.

Proof : For ease of understanding, consider first the case wherw’. We will argue that there is a point
x nearz such thay(a:) is close tOg(a:*), and from this it will follow thatg(z) is close tog(z*). LetZ be the
pointin G’ < & and thereforg (i) < g(z*)+e. Lety = Z(1— o)+ (5r)E €
G and consider the vectd[, given by property (A). It must be thdg (z—y) = d (z—y) <0, otherwise
we would havegj(z) > g(y) contradicting the optimality of. So, by the definition of afw, A)-subgradient,
we haveg(y) < % < (1+4w)(g(2) + A) < (1+7)g(z*) + 2e + 2A sincew = gk < §. Also

17—yl =3 < £ smceH:z—xH < 2R. S0,¢(%) < g(y) + ¢ < (1 +7)g(x*) + 3¢ + 2A.

Now suppose: ¢ G’ Let Z be the point inG’ closest taz, so||z — 7| < N andg(z) < g(z) + .
For anyy € G, if we con5|derdy given by property (A), it need not be thdg (z —y) <0, sowe
have to argue a little differently. Note that howevér- (z —y) < %, otherwise we would havg(z) >
9(z) — 5 > gly). Letyy = &, andy; = (@ +yz 1)/2 fori = 1,...,N. Since eachy; € G, we
havecfyi (Yic1 — yi) = —cfyi (z —vy;) > —%, and becausdy is an (w A) subgradient ofy(.) a
Yir» 9(yi) < (1 +4w)(g(yi-1) + % +A). This |mpl|es thaty(yn) < (1 +4w)V(g(Z) + € + NA) <
(1+7)g(z*) +4e + 2NA. Sog(Z) < g(yn) + 2¢ < (1 4 7v)g(z*) + 6¢ + 2NA. |

Corollary 4.2 Let functionsg, g and pointsz*,Z € P be as in Lemma 4.1. Let € P be such that
9(2") < (@) + p. Theng(Z) < (14 v)g(z*) + 6 + 2NA + 2N p.

Proof: Letz andz be the points irG’ that are closest td andz* respectively. Sz — z|| < 5 which
implies thatg(z) < g(Z) + & and similarlyg(z) < g(z*) + €. For anyy € G, if we consider the vectoiy
given by property (A) therdAy -(z —y) < & + p, otherwise we get a contradiction. The rest of the proof is
asinLemma4.l. m

We prove an analogous statement for maximization problems. Recall the definition of an exact and
approximatenax-subgradient (Definition 2.3). We say thaandg satisfy property (B) if

Vz € G, 3d, € R™ : d, is amax-subgradient ofj(.), and, anw, A)- max-subgradient of(.) atz. (B)

Lemma 4.3 Suppose functiong and g satisfy property(B). Letz* andz be points inP that respectively
maximize functiong(.) andg(.), and supposg(z*) > 0. Then,g(z) > (1 — v)g(z*) — 4e — NA.

Proof : The proof closely follows the proof of Lemma 4.1. Again first supposeihatG’. Let z be the
pointin G’ closest tar*, sog(#) > g(z*) —e. Lety = (1 — 5iv) + (3 )@ € G and consider the vecta,
given by property (B). It must be thd},-(f—y) = —Jy-(i—y) > 0, otherwise we would havgz) < g(y).
SincecTy is an(w, A)- max-subgradient ofy(.) aty, we havey(y) > 9@% > (1—7)g(z*) —e—Aand
since||z — y|| < &, we getthay(z) > (1 — v)g(z*) — 2¢ — A.

Supposer ¢ G'. Letz be the point inG’ closest tar, so§(*) > g(Z) — . Atanyy € G, the vector
c/l\ given by property (B), must satisfa]/Ay -(x —y) > —<, otherwise we contradlct the optimality of
Letyy = 7, andyl = (T + y;— 1)/2 fori =1,...,N. Slnce eachy; € G, we havedz. (Yie1 —yi) =

dyl (z —y;) < <, and becauséyl is an(w, A) max-subgradlent ofi(.) aty;, g(vi) > g(yi—1)/(1 +

w)— (£+A)/(1 —l—w) This implies thay(yx) > g(2)/(1+w)N — (e+ NA) > (1 —7)g(z*) —2c— NA
Sog(z) = g(yn) — 2e = (1 —7)g(z") — 4de — NA. n

As in Corollary 4.2, we can show that an approximate maximiz@risfalso an approximate maximizer
of g, but we will not need this in the sequel.



Lemma 4.4 Let G’ be thee-grid of P and G be the corresponding extended grid. THe#| < (%)m and
|G| < N|G'|%.

Proof : Itis clear that|G| < |G'| + 2N(|(§/|) < N|G'|?. Each grid cell ofG’ contains a ball of radius
r = § and therefore has volume at leastV;,, whereV,, is the volume of the unit ball im» dimensions.
The grid cells are pairwise disjoint (volume-wise), and have total volume at\mt(ﬁ(o, R)) < R™Vn,
sinceP C B(0, R). So|G'| < (3£)™. ]

5 The SAA bound for 2-stage stochastic programs

We now prove a polynomial bound on the number of samples required by the SAA method to solve to
near-optimality the class of 2-stage stochastic programs considered in [14]

min  h(z) = w' -z + Z pafa(z) subjectto x € P C RY, (2Gen-P)
AeA

where f4(x) = min {wA~rA+qA-sA:rAE]RT§0, sa € RE, DA3A+TATA2]'A—TA33}.

Here we assume that (dy* > 0 for every scenariad, and (b) for everyr € P, Yoacabafalz) >0

and the primal and dual problems corresponding t¢r) are feasible for every scenari It is assumed
that? C B(0, R) whereln R is polynomially bounded. To prevent an exponential blowup in the input,
we consider an oracle model where an oracle supplied with sceAadueals the scenario-dependent data

A
(wh, ¢4, j4, DA, T4). Defined = max(1, maxaca,s Z—{S’) we assume thak is known. LetOPT be the

optimum valueZ denote the input size.

The sample average functionfigz) = w' -z + Y- 4. 4 Pafa(z) wherepy = Na/N, with N being
the total number of samples and, being the number of times scenarias sampled. The sample average
problem ismingcp h( ). We show that with a polynomially bounded, A (.) andh( ) satisfy property (A)
(closeness in subgradients) with high probability.

Lemma 5.1 ([14]) Letd be a subgradient ok(.) at the pointz € P, and suppose that is a vector such
thatds € [dg — wwk, ds +wwk] for all S. Thend is anw-subgradient (i.e., afiw, 0)-subgradient) of.(.)
atz.

It is shown in [14] that at any point € P, if (%) is an optimal solution to the dual ¢fs(z), then
() dp = w' — ZApA(TA)Tz; is a subgradient of(.); (ii) for any componentS and any scenarid!,
componentS of the vectorw! — (T4)T27 lies in [-Awk, wk]; and therefore (jii)|d. | < Ajw'||. The
sample average functldr( ) is of the same form ak(.), only with a different distribution, sd, = wl —
YA pA(TA) 2% is a subgradient o’i( ) atzx, ande | < Aljw!]|. So (by Claim 2.2) the Lipschitz constant
of h, h is at mostK = A|lw'||. Observe thatl,, is justw! — (T4)Tz * averaged over the random scenarios
sampled to construcﬁ(.), andE [dx] = d, where the expectation is over these random samples.

Theorem 5.2 For anye,y > 0 (y < 1), with probability atleast — ¢, any optimal solutiorx to the sample
average problem constructed witly (Z, A, 7,ln( ),In(3)) samples satisfigs(z) < (1+7) - OPT + 6e.
Proof :  We only need show that property (A) holds with probability- 6 with the stated sample size;

the rest follows from Lemma 4.1. Defin¥ = log(2££), w = & and the extendegf—-grid G of

1This was stated in [14] with extra constraitis's 4 > h*, but this is equivalent thz)SA + (a)ra> ("
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P. Note thatlog(KR) is polynomially bounded in the input size. Let= |G|. Using Lemma 2.4, if we
sampleN = 1“) ln(z’”jLT") times to construct the sample average funcﬁ;()r) then at any given point

x, subgradlent:lx of h(.) is component-wise close to its expectation with probability at léastdt/n,
so by Lemma 5.14, is anw-subgradient ofi(.) atz with high probability. So with probability at least
1 -4, d, is anw-subgradient of:(.) at everypointz € G. Using Lemma 4.4 to bound, we get that
N =0 (m? logQ(@)ln(ﬂi?m)). ]

One can convert the above guarantee into a purely multiplicétive )-approximation guarantee by
settingy ande appropriately, provided that we have a lower bound@RT (that is at least inverse ex-
ponential in the input size). It was shown in [14] that under some mild assumptions, one can perform an
initial sampling step to obtain such a lower bound (with high probability). We detail this lower-bounding
step, which is common to 2-stage, 3-stage, Aysiage problems (differing only in the number of samples
required), in Section 7.1. Using this we obtain that (under some mild assumptions) the SAA method returns
a(1 + r)-optimal solution to (2Gen-P) with high probability.

6 3-stage stochastic programs

Our techniques yield a polynomial-sample bound for a broad class of 3-stage programs, but before consider-
ing a generic 3-stage program, we introduce and explain the main ideas involved by focusing on a stochastic
version of the set cover problem, namely the 3-stage stochastic set cover problem.

6.1 Anillustrative example: 3-stage stochastic set cover

In the stochastic set cover problem, we are given a univéreén elements and a familg of m subsets
of U, and the set of elements to cover is determined by a probability distribution. In the 3-stage problem
this distribution is specified by a 3-level tree. We u$é¢o denote an outcome in stage 2, gnt B) to
denote a stage 3 scenario whergvas the stage 2 outcome. Ldtbe the set of all stage 2 outcomes, and for
eachA € AletBy = {B : (A4, B) isascenarip. Letpy andp, g be the probabilities of outcomé and
scenario( A, B) respectively, and leja,p = pa,s/pa. Note thaty” ,_ ypa =1= EBegA qa,p for every
A € A. We have to cover the (random) set of eleméfitd, B) in scenario A, B) and we can buy a sét
in stage 1, or in stage 2 outcore or in scenariq A, B) incurring a cost ofvl, w4 andws respectively.

We usez, y4 andz, g respectively to denote the decisions in stage 1, outcdraad scenarigA, B)
respectively and consider the following fractional relaxation:

Zwsxs + ) pafa(z) subjectto 0 <xzg<1 foralls, (3SSC-P)
AeA
where fa(z) = min {ZwsyAs + Y qanfan(@ya): yas=0 foralls}, (3SSCR-P)
BeB4y
and fap(z,ya) = mé%m {Z wiPzaps: Y zaps>1— Y (vs+yas) Vee 5(A>B)}-
4,8 S:ecS S:eeS

LetP ={z € R™:0 < zg < 1forall S} and OPT = min,cp h(x). The sample average problem
is parametrized by (i) the sample siZg used to estimate probabilitys by the frequencys = T2.4/7>,
and (ii) the number of samplé&g generated from the conditional distribution of scenario8 jnfor eachA
with p4 > 0 to estimateya by ga s = 73,4 5/73. So the total sample size? - 73. The sample average
problem is similar to (3SSC-P) with4 replacingpa, andga g replacingga g in the recourse problem
fa(z). We usefA( ) = mmyA>0(w yA+EBeBA qa, BfA(:c y4)) to denote the sample average recourse

problem for outcomed, andh( y=w'-z+ ZAeApAfA( x) to denote the sample average function.
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As mentioned earlier, the main difficulty in showing that the sample average and the true functions satisfy
the closeness-in-subgradients property, is that these two problems now solve different recourse problems,
fA(x) and f4(z) respectively, for an outcomé. Since the subgradient is obtained from a dual solution,
this entails first proving an SAA theorem for the dual which suggests that solving the dﬁﬁ(h;jfyields a
near-optimal solution to the dual ¢f;(z). To achieve this, we first formulate the dual as a compact concave
maximization problem, then show that by slightly modifying the two dual programs, the dual objective
functions become close in terms of theiax-subgradients, and then use Lemma 4.3 to obtain the required
SAA theorem (for the duals). Acax-subgradient of the dual objective function is obtained from the optimal
solution of a 2-stage primal problem and we use Theorem 5.2 to prove the closenesssubgradients
of the sample average dual and the true dual. In Section 7 we show that this argument can be applied
inductively to prove an SAA bound for a large classiedtage stochastic LPs. R

Let f4(0; W) (respectivelyf4(0; W)) denote the recourse problef (z) (respectivelyf4(x)) with
x = 0 and costsw® = W, that is, f4(0; W) = miny,>0(W - ya + Y. peg, 94.8f4,8(0,y4)). We
formulate the following dual of the true and sample average recourse problems:

LDy(x) = max la(z;ays) and EBA(@") = max TA(az;aA)
0<ay<wA 0<ay<wA
wherelg(z;04) = —aq -+ fa(0;04) andlAA(x;aA) =—qg -+ fA(O;aA). 2

Lemma 6.1 At any pointz € P and outcomed € A, fa(z) = LD 4(z) and fa(z) = fBA(x).

Proof : We prove thatf4(xz) = LD 4(x); an identical argument shows thﬁzt(x) = fl\)A(x). fa(x) can
be written as the following linear program:

. A
min ZwéyA,S + Z QA,BwS’BZA,B,s (SR-P)
S BeB 4y
S.t. Z ya,s + Z zAaBs = 1— Z Ts forall B € By,e € £(A, B). QD
S:eeS S:eeS S:eeS
Ya,5,24,B,5 > 0 VB € By, S.

Let (%, {2} z}) be an optimal solution to (SR-P) ar{d3} 5}) be an optimal solution to the (stan-
dard) LP dual of (SR-P) wherg, ;. is the dual multiplier corresponding to the inequality (1) for ele-
mente € £(A, B) whereB € Ba. Let oy, be an optimal solution td.D 4(z). Settingys = = + v
yields afeasible solutiorto the minimization problenf4(0; o). SOLD 4(z) is at most(ya — x) - oy +
ZBGBA qa,BfaB(0,y4) = oy -y + ZBGBA qa,Bfa.B(x,y%) which is at mostf4(z) sincea’; < wa.
For the other direction, consider the vector with cca,s = > pep, D ocesne(a,p) B4, pe- @4 is a feasible
solutiontoLD 4(z) since the dual of (SR-P) haS g5, D -cesne(a,B) BABe < w4 as a constraint for each
setS. If we consider the LP dual of4(0; a4 ), then observe tha(t{ﬂj"B}) yields a feasible solution to the
dual and has valu®_ g5, > cce(a p) P4 B Which is therefore a lower bound ofx (0; a4). Therefore
we can lower bound.D 4(z) by la(z;ca) = =3 g aa,s8 + X opep, 2ecs(a,p) Ba,p, Which is equal
to EBeBA Zeeg(A,B)(l — Y Secs xS)BZ,B,e = fa(x) by LP duality. [ |
Lemma 6.1 proves strong duality (in this new dual representation). Using this strong duality, we show

that a (approximate) subgradient/t@) atx can be computed from the (near-) optimal solutions to the dual
problemsLD 4(x) for each outcomel.

2This dual representation can be obtained by adding the (redundant) constgaints: s > s to fa(z), writing the objective
function of f4(x) as)_ s wa,sya,s + ZBEBA qa,Bfa,B(0,7), and then taking the Lagrangian dual of the resulting program by
dualizing only thers + ya,s > 7ra,s constraint usingva,s as the Lagrangian multiplier.
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Lemma 6.2 Fix x € P. Leta 4 be a solution talD 4(x) of valuela(z;a4) > (1 —e)LD4(z) —ew' -z —¢
for everyA € A. Then, (i){d = w' — 3" , pac4 is an(e, €)-subgradient of(.) atx with ||d|| < A[jw!||; (ii)
if d is a vector such thal — ww' < d < d + ww', thend is an (¢ + w, €)-subgradient of(.) at z.

Proof : Consider anyt’ € P. Sincela(z;a4) > (1 — )LD a(x) — ew' -z — e for every A € A, we have

h(z) =w' -z + ZPALDA(JJ) <(14e)w' x4+ ZpA (—aA -z + fa(0;a4) + aLDA(x)> +e.
A A

At 2/, a4 is a feasible solution td.D 4(z') for every outcomed. Soh(z') > w2 + Y, pa(—aa -2’ +
fa(0;4)). Subtracting we get thaizt(x’) —h(x)isatleast- (2' —z) —e(w' -z + Y 4 paLlDa(z)) — €=
d-(z' —x) —eh(x) — e. Sinceay < w < Al ||d| < )\||wIH.A

We know thath(z') — h(x) > d- (2’ —:J:)—eh( )—€e= (d—d)-(x’—:r)—i—c?- (2' —x)—eh(x)—e. Since
zg,x > 0forall S, we have(d — d)- 7' > —ww' -2 > —wh(2’) and(d — d) - z > —ww' -z > wh(x).
This proves (ii). ]

Sinceﬁ(.) is of the same form as(.), Lemma 6.2 also shows that = w' — Y. aPad 4 is asubgradient
of h(.) atz whered 4 is an optimal solution t(fl\)A(:c). Thus, to prove the closeness in subgradients of
and# it suffices to argue that any optimal solution@A(:r) is a near-optimal solution tdD 4(z). (Note
that both/ and’ have Lipschitz constant at mo&f = A||w'|.) We could try to argue this by showing
thatl,(z;.) andla(z;.) are close in terms of theinax-subgradients (that is, satisfy property (B)), however
some technlcal dIffICU|tIeS arise here. max-subgradient of 4(z;.) at a4 is obtained from a solution to
the 2-stage problem given bfs(0; «4) (see Lemma 6.7), and to show closenesmix-subgradients at
a4 We need to argue that an optimal solutignto fA(O; a4) is a near-optimal solution tfi4(0; a4). We
would like to use Theorem 5.2 here, but this statement need not be true (with a polynomial sample size)

A B
since the ratl(man( ) of the second- and first-stage costs in the 2-stage profilgth «.4), could be
unbounded. To tackle thls we consider instead the modified dual problems

~

LD 4,(x) = max la(x;ay) and ﬁA;p(z) =  max lg(z;4)
pwl<a g <wA pwl<a g <wA

for a suitablep > 0. Observe that the cost ratio in the 2-stage probfar®; a4 ) is bounded by%2 for any
A € A. In Section 6.1.1, we prove the following SAA bound for the duals of the true and sample average
recourse problems.

Lemma 6.3 For any parameters,p,e > 0, anyx € P, and any outcomel € A, if we use7 (¢, p, €, 6) =
pon(Z A In(1),In(})) samples to construct the recourse probléntz), then any optimal solutiodi 4 to

’pé"

LDA;p( z) satisfied a(z;d4) > (1 — €)LD 4.5(z) — ew' - & — € with probability at leastl — §.

Defineh,(z) = w'-z+3" , paLD a.,(z) andh,(z) = w'-z+3" , aLD 4.,(z). Asin Lemma 6.2, one
can show that near-optimal solutioag to LD 4.,(x) for everyA € A yield an approximate subgradient
of h,(.) atz. So using Lemma 6.3 we can show the closeness in subgradiem,;s.))hndﬁp(.), and this
will suffice to show that if minimizesﬁ(.) then it is a near-optimal solution fa.). Thus we get an SAA
bound for our class of 3-stage programs.

First, in Lemma 6.4, we bound the number of samples required to ensure that at a single ot
a subgradient oﬁp(.) is an (w, €)-subgradient of,(.). The proof is somewhat involved because if we
consider the random variable taking the vatu? — 04,5 When outcomeA is sampled, wheréi4 is an
optimal solution to@A;p(a:), then the random variables corresponding to the different samples from stage
2 are not independent since we always use the same sofutiowe defer the proof till after Theorem 6.6.
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Lemma 6.4 Consider the sample average function generated usig= T (w,d) = 16%*2”2 In(4m)

samples from stage 2, ariﬂ(e, = ﬁ) samples from stage 3 for each outcorhevith p4, > 0. At any
pointz € P, subgradientl,, ofﬁp(.) is an (w, €)-subgradient of.,(.) with probability at leastl — ¢.

Claim 6.5 For anyz € P, h,(z) < h(x) < h,(x) + pw' - 2. Similarlyﬁp(a;) <h(z) < Ep(a:) + pw' - .

Proof :  We prove this fori(.) andh,(.); the second statement is proved identically. The first inequality
holds since we are maximizing over a larger feasible regiohliny(x). The second inequality follows
because ifv*, is such that.D 4(z) = L4 (x; ), then takingy/, = min(a% + pw!, w?) givesLD 4.,(x) >
La(z;0ly) > la(z; ) — pw' - 2 sincefa(0; ay) is increasing inva. Soh,(z) > h(z) — pw' - z. n

Theorem 6.6 For anye,y > 0 (v < 1), one can construdt with poly (Z, X, =,In(7),In(5)) samples, and

€

with probability at least —§, any optimal solutio to min,cp h(z) satisfiesi(z) < (1+7+)- OPT +18e.

Proof : Let N = log(@) andw = gk . Note thatlog(K R) is polynomially bounded in the input size.
Sete’ = § andp = ;5. We show that (i) a near-optimal solutionii@in,cp ﬁp(:n) yields a near-optimal
solution tomin,ep h,(x), and (i) minimizingh(.) andﬁ(.) overP is roughly the same as approximately
minimizing h,(.) andﬁp(.) respectively oveP.

Let z be an optimal solution tmin,cp ﬁp(x). By Claim 6.5,3[,(55) <h(z) < h(F) < ?Lp(a?) + pw' - 7,
and0 < OPT, = mingep hy(z) < mingep h(x) = OPT.

Let G be the extended——-grid of P andn = |G|. Let " = 160N 1y (4mn) which is a

polynomial inZ, 2,In(%) andIn(}), where we use Lemma 4.4 to bound We constructh(.) using

N =N -T(,p %, ﬁ) samples. Sincé\V” is polynomially bounded, Lemma 6.3 shows that so
is V. Using Lemma 6.4 and the union bound over all pointgzinprobability at leastt — §, at every
pointz € G, subgradientl,, of ﬁp(.) is an (w, €’)-subgradient of,(.). So by Lemma 4.1, we have that
hy(Z) < (14 7)OPT, + 6¢ + 2N € with high probability. Sincép(’x\) < ﬁp(f) + pw' - Z, we also obtain
by Corollary 4.2 that

hy(Z) < (1+7)OPT, + 6e + 2N (pw' - 7 + €). 2)

The boundh(%) < h, (%) + pw! -z (Claim 6.5) implies thatl — p)w!- & < h,(z). Similarly (1 —p)h(z) <
h,(Z). Combining these with the boun@PT, < OPT, and plugging in¢’ andp in (2), we get that
h(Z) < (14 77)OPT + 18e. m

Under the very mild assumption that for every scengrdoB) with £(A, B) # () (a “non-null” sce-
nario), for everyr € P andy,4 > 0 the total costv’ - = + w? - y4 + fa,B(z,ya) is at least 1, the sampling
procedure in Section 7.1 gives a lower bound@RT (Lemma 7.6). Thus we obtain(@ + «)-optimal
solution to (3SSC-P) with the SAA method (with high probability) using polynomially many samples.

Proof of Lemma 6.4 : Letd = ﬁ andw’ = ¢. Observe that the sampling of outcomes frgtronly
determines whether or not we sample frBmbut does not influence the probability of any event determined
by the samples fron4. So, we may view the sampling process as follows: (1) for each outcbmee
independently sample from the conditional distribution®nto construct f4(x) and) LD 4.,(x); (2) we
sample stage 2 outcomes fromto determine the probabilitigss, which are the weights used to combine
the functionsLD 4.,(x) and construck,(z). Let{); be the probability space of all random choices involved
in sampling the\; stage 2 outcomes fromd, and letQ24 be the space of all random choices involved in
sampling fromB,4. So the entire probability spacefs= Q2 x [] . 4 Q4.
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Let Z4,; be 1 if thei®" sample results in outcomé and 0 otherwise. LeD? be the set of all solutions

aa to LD ».,(x) satisfyingla(z; aa) > (1 —w )LDA( ) — w'w' -z — . Define the random vectdfr 4 to

be an optimal solution (breaking ties arbltrarlly)ltd)A;p(x). LetG4 C Q4 be the event thal 4 € OF.

By Lemma 6.3, we know thdtrq, [G4] > 1 — ¢’, where for clarity we use the subscript to indicate that
the probability is wrt. the spac@,. We may assume without loss of generality that this probability is
exactlyl — ¢ since we can simply choosg, C Q4 so that this holds. Let; € Q = Jc s ({Z4, =

1} x G4 X HA,EA,A,# Q4/). SOG;, is the event representing “A is the stage 2 outcome generated by the
i'" sample then everd 4 occurs”. We havé’r[G;] = 1 — §'. We will condition on the ever§ = ), G;.

Note thatPr[G] > 1 — ¢/2. For each componerﬂ of z, defineX; s = > 4o 4 Zai(wy — ¥a5) and

Xg = (Zf\fl XLS)/NQ. The subgradlerttx is the random vectak. We argue that conditioned @h with
probability at least — §/2, there exist solutiona 4 € O for every A, such that for every componest
| Xs—> 4pa(wh—aas)| < w'wl. Therefore conditioned of, by Lemma 6.2X is an(2w’, €) = (w, €)-
subgradient of.,(.) ata with probabilityl — 6/2; sincePr[G] > 1 — 6/2, with probability at least — 4,
d, = X is an(w, ¢)-subgradient of,(.) atx.

Select some solutiofi4 € O for each outcomel. We have to show thdtr[E | G] < §/2 whereE is
the bad evenf—[Ja = (a) aca € [T4c4 OF suchthatrS, | Xs—> 4 pa(wh—aas)| < wwg]}. Note
that although the variable8, ;,i = 1,..., N> are independent, th&; g variables fori = 1,..., N, are
not independentbecause they are coupled by thg s variables. But if we condition on thé 4 variables,
the X; ¢ variables do become independent. B8t = ¥ 4 if U4 € O anda4 otherwise. Conditioning on
W = (U 4)aea, We have

P[E |67

IN

Pr[38 st Xs = S pa(u xIJAS)\>wwS]g 7|

ZPrUXS — > apalwy — \Il’A,S)‘ > wwi ‘ g,\Il} (3)
S

IN

where the first inequality follows since everitmplies that given the squtior{sI/’A}AeA, there exists some
component such thatXs—3" 4 pa¥'y ¢ > w'wk. Since we have conditioned ghif ¥4 ¢ O itfollows
thaty"; Za; = 0. Therefore we can writ&s = (222 V; 5) /Na whereY; s = 3" 4 4 Zai(wh — 'y 5)-
The variables; s are iid, so by Lemma 2.£r[| Xs — zApA(wS V)l > wwy | G, 0] < 6/2m,

and using (3), we havBr [E ] g, \If] < §/2. Since this holds for every, this also holds if we remove the
conditioning on¥. ThereforePr[E | G] < §/2 which completes the proof. ]

6.1.1 An SAA bound forfl\)A;p(m)

We now prove Lemma 6.3. Throughout this sectipn andp are fixed parameters given by the statement
of Lemma 6.3. LeD4 = {aq € R™ : pw! < ay < w?}. Recall that the (true) dual problefiD 4., (z)

is to maximizels(z; a4) over the regiorDy wherels(x;as) = —aq - x + fa(0;a4). In the sample
average dual problerfEA;,,(:n), we hanAA(x; ap)=—a4- T+ fA(O; a4) instead of 4 (z; a4). Clearly
we may assume thaty s < 1 in the problemsf4(0; a4) and f4(0;a4). LetR = |jw SO
Da C B(O,R).

We want to show that ifi 4 soIveszA;p(:c), thenla(z;@4) > (1—e)LD a.p(x) —ew' -z — e with high
probability. By a now familiar approach, we will show tHAgt(x; .) andl4(z;.) are close in terms of their
max-subgradients and then use Lemma 4.3.d(ets; y4) = s -ya + ZBeBA qa,Bfa.8(0,y4). We only
consider(w, A, D 4)- max-subgradients, so we drop tf#,. A max-subgradient td4(z;.) (respectlvely
lAA(x; .)) atay is obtained from the solution to the 2-stage problEn0; a.4) (respectlvelyfA(O ag)).
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Lemma6.7 Fixx € Panday € Da. Letw’ = £, If yA is a solution tof 4 (0; a4) of valueg(aa; ya) <
(14+w)fa(0;4) + €, thend = y4 — zis an (w ww' - z + €')- max-subgradient of 4 (z;.) at a4.

Proof: LetC = ZBeBA qaBfaB0,ya). Soas -ya+C < (1 + ') fa(0;4) + € andiy(z;aq) =
—ag-z+ fa(0;04) > (ya —x)-asa+C —uw'- fa(0;a4) — €. Atany other pointy,, y4 gives a feasible
solution to the 2-stage probleyiy (0; o/4). Sola(z;o/y) < (ya — x) - /4 + C. Subtracting we get that

La(z; oly) —la(a;aa) < d- (g —aa)+w'- fa(0;a4) +€ < d-(aly—aa)+w' - la(z;00) +e +w'as- .

The last term is at mostw' - 2 sinceay < w? < Mw' andz > 0. Thusd is an(w,ww' - z + ¢)- max-
subgradient. [

We can bound the Lipschitz constantiaf(z;.) andi4(z;.) by K’ = /m, sincexg,yas < 1. The
feasible region of the 2-stage problefa(0; a4) is contalned in the balB(0, /m), and sincaxy € Dy,
the ratio of costs in the two stages is at mé;si Thus, we can use Theorem 5.2 to argue that any optimal
solutiony4 to 114(0; a4) is a near-optimal solution tf4 (0; c4 ), and this will prove the closenessiimax-
subgradients of4 (z;.) andia(z;.).

Proof of Lemma 6.3 : Sety = ¢ ande’ = &. SetV = log (251 ) andw = k. Observe thalbg(K'R') is
polynomially bounded. Recall that, is an optimal solution tdD 4. .o(z). LetG be the extende%&'—m-
grid of D4 andn = |G|. By Theorem 5.2, if we US& (¢, p,,0) = pon(I, R 2 In(2Y),In(%)) samples
from B4 to constructLDA;p(x), then with probability at least— 2 -, atagiven pointvs € D4, any optimal
solutiony 4 to f(O; ay) satisfieyy(aa;ya) < (1 + %)fA(O; a,) + 5% - So by applying Lemma 6.7 and the
union bound over all points i&, with probability at least — 4, at each pointv4 € G, themax-subgradient
7a —x of [o(x;.) atay is an(w, ww' - x + 5% )- max-subgradient of 4 (z;.) ata4. By Lemma 4.3, we
havel s (z;04) > (1 — )LD a;p(x) — 4¢ — Nww' - z — § which is at leasf1 — 5)LDA p( r) —ew! - x —e.
Sincelnn and N arepoly(Z,In(1)), we get thatl (e, p, e, §) = poly(Z, 2, In(2),In(})). n

’pé"

6.2 Aclass of solvable 3-stage programs

The above arguments can be adapted to prove an SAA bound for a broad class of 3-stage stochastic pro-
grams, which includes the 3-stage stochastic set cover problem considered above. As befored we use
denote an outcome in stage 2, 40 B) to denote a stage 3 scenario whdrevas the stage 2 outcome, and

x,ya andzy p respectively to denote the decisions in stage 1, outcdrard scenaridA, B) respectively.

A denotes the set of all stage 2 outcomes, and for daeh4 let B4 = {B : (A, B) is a scenarip. Letpa

andp 4 g be the probabilities of outcomé and scenaridA, B) respectively, and lefa p = pa,p/pa. We

consider the following class of 3-stage problems.

min  h(z) = w'-z+ Y pafa(z) subjectto z e P CRY, (3Gen-P)
AcA
where fa(z) = min {UJA YA+ Z qasfap(@.ya): Thya > j4 - TAiU}, and (3Rec-P)
vacizo BeBa
fap(x,ya) = méan{wA’B czap+cPsap i DYPs g+ T4P2p > jAP - TP (2 + yA)}7
A,B >0

SA,B c Rgo

where for every outcomd € A and scenari¢A, B), (a)T4, 745 > 0; (b) for everyz € P, andy4 > 0,

A
ws

0 < fa(z), fap(z,ya) < +00. Let A = maxg ac4 BeB, max(l,;”}—s o ) we assume that is known.
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As before, we assume th& C B(0, R) whereln R is polynomially bounded. Further we assume that for
anyz € P and anyA € A, the feasible region of 4(x) can be restricted t&(0, R) without affecting the
solution quality, that is, there is an optimal solutionftq(x) lying in B(0, R). These assumptions are fairly
mild and unrestrictive; in particular, they hold trivially for the fractional relaxations of 0-1 integer programs
and many combinatorial optimization problems. (&P T be the optimum value arifl be the input size.

The sample average problem is of the same form as (3Gen-P), wheredq 4 5 are replaced by their
estimate® 4 andga g respectively, the frequencies of occurrence of outceland scenari¢A, B) in the

appropriate sampled sets. L?e(tr) =w'-x+ ZAeAﬁAfA(x) denote the sample average function where
falw) = Ininy {wA ya+ > Gasfap(a,ya): Tya >4 - TAx} (3SARec-P)
A= BeB4y

is the sample average recourse problem.

Let f4(0; W) (respectivelyfA (0; W)) denote the recourse problem (3Rec-P) (respectively (3SARec-P))
with z = 0 and costav? = . The dual of the recourse problem is formulated as befbf2, (z) =
MaXg<q , <wA la(z;aq) wherely(x;aq) = —aa -+ fa(0;04). We usefl\)A(x) andlAA(x;ozA) to
denote the corresponding quantities for the sample average problem.

The only portion of the argument in Section 6.1 that needs to be modified is the proof of Lemma 6.1
which proves strong duality in the new dual representation. The proof is along the same lines.

Lemma 6.8 At any pointz € P and outcomed € A, fa(z) = LD 4(z) and Fa(z) = fBA(x). Moreover,
we can restricly4 so that||y 4| < 2R in the problemg4(0; «4) and f4(0; «4), without affecting the values
of LD 4(z) and LD 4(z).

Proof : We prove thatf4(z) = LD 4(x); an identical argument shows thﬁzt(a:) = ZEA(:::). fa(z) can
be written as the following linear program:

min  w? - ya + Z qA7B(U)A’B “zAB + B SA.B) (R-P)
BeB,
S.t. TAyA > jA — T
DABsyp + TPy + TABoup > jA8 —TABy VB € Bua, (4)
saB €R", sap,ya,zap >0 VB € By.

Let (v, {s% p> 2 3}) be an optimal solution to (R-P) an@’, {3 5}) be an optimal solution to the
(standard, LP) dual of (R-P) wher&, g is the dual multiplier corresponding to inequalities (4) for each
B € Ba. Leta’, be an optimal solution td.D 4(x). Settingya = z + y% yields afeasible solutiorto

the minimization probleny 4(0; a% ). SOLD 4(x) is at most(ya — x) - o + ZBGBA qa,BfaB(0,y4) =

&% Ya+ D pen, 94,BfaB(z,y4) whichis at mosto? -y + > Bes, dABfaB(x,y4) = fa(z). Forthe
other direction, consider the solutiany = (T4)76% +>" 55, (T*#)T 33 5. Thisis a feasible solution to
LD 4(z) since the dual of (R-P) hd§4) 04+ 55, (T4F)T 84,5 < w? as a constraint. If we consider
the LP dual off4(0; «4), then observe tha(lﬁj‘, 52,3) yields a feasible solution to the dual that has value
J4 0%+ peg, 3P - B4 p- Therefore we can lower bourfdD 4 (z) by —aa - z+j4- 04+ pep, 747
3% p Whichis equal tdj* — T4z) - 0% + - g, (745 — TAPx) - B3 g = fa(z) by LP duality.

Notice that the upper-bound argument also holds if we resjricto lie in the ball B(0,2R) in the
problemf4(0; «4) embedded in the dual problefD 4 (z), that iS,maxo<q ,<w, (—aA -x+ (05 aA)) <
fa(z) where f,(0; a4) is the same ag4(0; a4) except that we restricg, to lie in B(0,2R). Since
this restriction can only increase the value of the minimization problEn@; «4) > f(0;a4), and so
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maxo<a,<ws (—a - @ + f4(0;a4)) > LD 4(z) = fa(z). This shows that we may assurigs|| < 2R
in the problemf4(0; a4) (respectivelyfA(O; a4)) without changing the value afD 4(x) (respectively
LDA(Z‘)). |

It need not be true that for an arbitrary cost veetar 0 < a4 < w4, there exists an optimal solution to
fa(0; a4) which liesinB(0,2R). However, sincef4(0; a4) (respectivelyfA(O; a4)) is only “used” while
embedded in the maximization problei® 4 (z) (respectivelnyA(a:)), and by Lemma 6.8 its value is not
affected by imposing the constraifj4 || < 2R, we will assume that this constraint is implicitly included in
fa(0; a4), and this will not affect the validity of our arguments. That is, when wef589; «4) we actual
mean the minimization problemin, , >o.,,j<2r{®4 - Y4 + Y pep, 44,8f4,8(0,y4) : Tya > j4};
this saves us from having to introduce extra cumbersome notation.

Lemma 6.3 and its proof in Section 6.1.1 remain almost unchanged. The only place where we used
problem-specific information was in boundipg s < 1 in the 2-stage problems;(0; a4) ande(O; aq)
which allowed us to, a) bound the Lipschitz constant,fc; .) andlAA(x; .), and b) to show that the feasible
region of f4(0;«4) is bounded (so that Theorem 5.2 could be applied). As argued abavean be
restricted to the balB(0,2R) in the problemsf(0;a4) and fA(O;aA).A So using Lemma 6.7 (which
remains unchanged), we can bound the Lipschitz constang(ef.) andl4(x;.) by K’ = 3R (note that
In R = poly(Z), soln K’ is polynomially bounded), and sing& (0; a4 ) is a 2-stage program of the form
(2Gen-P) with a bounded feasible region, we can still apply Theorem 5.2 a.4) (Whenay > pw?).
So the proof in Section 6.1.1 is essentially unchanged, and thus using essentially the same arguments that
we used for the 3-stage set cover problem, we obtain the following theorem.

Theorem 6.9 For any parameters,y > 0 (v < 1), one can construct the sample average problensing
poly(Z, A, %, In(1),1In(})) samples so that, with probability at lealst- 4, any optimal solutior® to i has
valueh(z) < (14 7v) - OPT + 18e.

The sampling step described in Section 7.1 yields a lower bound®f for a subclass of (3Gen-P)
where the recourse problefiy (x) does not have any constraints (for instance, as in the relaxation of the
3-stage set cover problem (3SSCR-P)). This allows us to obtain a purely multipliCative:)-guarantee
for this subclass of 3-stage programs.

7 The SAA bound for k-stage programs

We now extend our technigques to sok#stage stochastic linear programs. Heiis a fixed constant that is
not part of the input; the running time of our algorithm will be exponentidl.in

In the k-stage problem, the scenario distribution is specified laylevel tree, called théistribution
tree. We start at the root of this tree at level 1, which represents the first-stage. ldwet(:) denote the
set of nodes at level, solevel(1) = {r}. Each such node represents an outcome in stagand its
ancestors correspond to the outcomes in the previous stages; sa rejgtesents a particular evolution of
the uncertainty through stagés . ., i. At a leaf node, the uncertainty has completely resolved itself and we
know the input precisely. As before, for clarityseenariowill always refer to a stagé outcome, that is, a
leaf of the tree. The goal is to choose the first stage elements so as to minimize the total expected cost, i.e.,
SF | E[stagei cos{ where the expectation is taken over all scenarios.

Let path(u) be the set of all nodes (including on u’s path to the root. Lethild(u) be the set of all
children ofu; this is the set of possible outcomes in the next stage givenutlsathe current outcome. Let
py be the probability that outcome occurs, andy, be theconditional probabilitythat« occurs given the
outcome in the previous stag®Ve do not assume anything about the distributiand it can incorporate
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various correlation effects from previous stages. Noteghat [ [, aen(u) q0- Clearly we havey, = ¢, =
1, foranyi }_,cieveisy Pv = 1, and for any noder, 3, ¢ cpigru) v = 1-

We usey,, to refer to the decisions taken in outcomandw® to denote the costs in outcomethus the
costs may depend on the history of outcomes in the previous stages. Najg thay only depend on the
decisions in the previous outcomes, that is, ontfi® wherev € path(u). For convenience we use= y,
to denote the first-stage decisions, arido denote the first-stage costs. We consider the following generic

k-stage linear program.

fep = min h(@)=w'-z+ Y qufi-1u(z) subjectto z € P CRY, (kGen-P)
uechild(r)

where f,_; () gives the expected cost of stages. ., k given the first-stage decisionand whenu is
the stage 2 outcome. Thifs_; ,(x) is the cost of th¢k — 1)-stage problenthat is obtained when is the
second-stage outcome, andk the first-stage decision. In general, consider an outaorméevel(i) and let
v € level(i — 1) be it's parent. Ley, = (yr, ..., ys), Where{y,, ..., y,} = path(v), denote the collective
tuple of decisions taken in the previous stages; for therpgt = vy, = x. The functionf;, ;11 ,(y.) is a
(k — i+ 1)-stage stochastic program that determines the expected cost of stages given the decisions
in the previous stages,, and whenu is the outcome in stage It is defined recursively as

fr—it1u(yy) = min {w“~yu+ > i (Yoo vu) tyu €RZy, Tlyu > 5% = ) T“yt}7
u/ €child(u) tEpath(v)

for a non-leaf node: € level(i), 2 < i < k. For a leafu at levelk,

fiu(yy) = min {w“ “Yu syt yy € RYY, sy ERS, DYsy + Ty > §° — Z T“yt}.
tepath(v)

The variables,, appearing infi ,,(.), capture the fact that at a scenasiovhen we know the input precisely,
one might need to make some additional decisions. We require thdt“(a} 0 for every nodeu; (b)

0 < fr—i+1,u(¥v) < oo for every node. € level(i) with parentv, and feasible decisions, — this ensures
that the primal problenf;_;.+1.(y,») and its dual are feasible for every feasiglg and (c) there is some
R with In R polynomially bounded such that for every internal nagéhe feasible region ofy,_; ;1 . (yv)
can be restricted t@3(0, R) without affecting the solution quality (s® C B(0, R)), that is, for each
fr—i+1,.(yv) there is some optimal solutiay, such that|y; | < R. LetZ denote the input size\ be the
ratio max (1, max, ,echild(v) 2 ), andK be the Lipschitz constant @f(.). DefineOPT = fy,.

The sample average problem is of the same fornk&e(-P), where the probability, is replaced by
its estimatey,, which is the frequency of occurrence of outcomén the appropriate sampled set. It is
constructed as follows: we samgle times from the entire distribution and estimate the probahilityf
a nodeu € level(2) by its frequency of occurrenag, = 75.,/72; for eachu such thag, > 0, we sample
75 times from the conditional distribution of scenarios in the tree rootedatd estimate the probability
qu for eachu’ € child(u) by the frequency;,, = 7.,/ /75. We continue this way, sampling for each node
u such thafg, > 0, the leaves of the tree rooted-ato estimate the probabilities of the children-aftill
we reach the leaves of the distribution tree. pgt= ][, c,n () ¢v denote the probability of occurrence
of outcomeu in the sample average problem. We lﬁ;g to denote thé:-stage sample average problem;
correspondingly for node € level(i) (wherep, > 0) with parentw, ﬁf—i—o—l,u(}’v) is the(k — ¢ + 1)-stage
program in the sample average problem that determines the expected cost of stagésvhen outcome
u occurs and given the decisiogs in the previous stages. Note that for a leaff; ,(y.) is simply a

(1-stage) deterministic linear program, fpu(yv) = fru(yv)- Letﬁ(x) be the objective function of the
k-stage sample average programfgp = mingcp h(x).
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In Sections 5 and 6 we proved a polynomial SAA bound for the generic 2-stage prgbleand 3-stage
problemfs .. respectively. We now extend this argument inductively to prove an SAA bound férskege
problemf; .. We will show that assuming inductively a polynomial SAA boukigl; for the (k — 1)-stage
problem f;_; ,, one can construct the sample average probf@,mwith a sufficiently large polynomial
sample size, so that, with high probability, any optimal squtiorﬁ;p is a near-optimal solution tg, ...
Combined with the results in Sections 5 and 6 which provide the base case in this argument, this establishes
a polynomial SAA bound fok-stage programs of the fornkGen-P).

We dovetail the approach used for 3-stage programs in Section 6. For aunedevel(2), we use
fr—1,.(0; W) to denote thék — 1)-stage problenf;_; ,,(z) with 2 = 0 and costsv" = W; fr_1,,(0; W)
denotes the corresponding quantity in the sample average problem. Like in Section 6, we formulate a con-
cave maximization problemhD,_ () thatis dual tof;,_; (), which has g% — 1)-stage primal problem
of the typefi_;, embedded inside it. This dual is defined@B,_; () = maxo<a,<w® lk—1,u(T; )
wherel,_1 ,(z;00) = —ay - & + fr—14(0; ). We uselAk_Lu(:c;au) and fﬁk_l,u(:c) to denote the
analogues in the sample average problem.

We want to show that the true functidi{.), and the sample average functi?)ﬁ) are close in terms
of their subgradients. As in Section 6, to avoid some technical difficulties, we consider slightly modified
versions of these functions,, andﬁp respectively, and show that they are close in terms of their subgradients
and this will suffice to prove an SAA bound. Defihg(z) = w! -z + > uechild(r) QulDr—1,u;p(x) and
ﬁp(x) =w -z + 2 uechild(r) cjufﬁk_lju;p(x). where LDy 1 y.p(x) andfﬁk_lvu;p(x) are respectively
the maximum ofl;,_; ., (z; ) andlAk,Lu(m;au) over the regioD, = {a, € R™ : puw' < o, < w"}.

A subgradient tah,(.) and,(.) at pointz is obtained from the solutions to the dual recourse problems
LDy _1,u;p(x) andfﬁk,l;w(x) respectively; so we first argue that an optimal solutioil\@k,l;p,u(x)

is a near-optimal solution td Dy, ,.,(x). To do this we show that the dual objective functions are close
in terms of theirmax-subgradients. A (approximate)ax-subgradient of;_ ,(z;.) at the pointo, is
obtained from an (near-) optimal solutionfp_., .,(0; ,,), Which is a(k — 1)-stage program belonging to

our class with bounded cost ratio (this is the reason why we consider funh;j(amjﬁp instead ofh andﬁ).

We use the inductive hypothesis to argue that an optimal solution {&thé)-stage programﬂ_lvu(o; Q)

in the sample average dual yields a near-optimal solution tithe1)-stage progranfy_i ,,(0; cv,) in the

true dual, and therefore theax-subgradients of the objective functions of the sample-average dual and the
true dual are close to each other. Unfolding the chain of arguments, this shows that an optimal solution to
fﬁk_l,u(x) is a near-optimal solution tdDj,_, ,(x), which shows the closeness in subgradients of the
objective functions: and. This in turn leads to an SAA bound for titestage progranty, ;..

To reduce clutter we adopt the following terminology: for a minimization problem, we call a solution a
(v, €)-optimal solution if it has cost at moét + ) - (minimum) + ¢; for a maximization problem, &y, €)-
optimal solution is a solution that has value at le@dst- «y) - (maximum) — e. We first state the induction
hypothesis precisely.

Induction Hypothesis For a (k — 1)-stage problem of the typ#,_;, with input sizeZ, cost ratio A,

and satisfying requirements (a), (b), and (c), one can construct the sample average pﬁgbh@,nusing
/l/k_l(I, A 7,€,6) = poly(Z, %,111(%)) samples, with probability at least— &, any optimal solution to
fr—1, is @ (v, €)-optimal solution tofy,_; .

Like in Section 6, we show that strong duality holds (with the new dual representation), and state a
structural lemma about the subgradients of the objective function which paves the way for showing the
closeness in subgradients. The proofs of these two lemmas are very similar to those of Lemmas 6.8 and 6.2.
We usel’,, to denote the subtree of the distribution tree rooted at node
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Lemma 7.1 Atanyz € P and nodeu € level(2), fr—1u(2) = LDp—1 () andﬁ_l,u(x) = Zﬁk_m(a:).
Moreover in thgk —1)-stage problemg;,_; ,,(0; o) and fx_1 ,,(0; o, ), We can restriciy, to B(0, 2R) and
v to B(0, R) for any internal node < T',,, without affecting the values @D, ,,(x) and LDj_; ,,(x).

Proof : The proof proceeds as in Lemma 6.8 and we only briefly sketch the details. One can expand
Jx—1,(z) into @ minimization LP with objective functiom" -y, + 3, 2 uw “Ye+ D terunlevel(k) o€ -
st. The constraints ar€” (3, ¢ aenn y Y1) = J° — T'a for every non-leaf node € T',, andD's; +
T (X epath(p (ry Yr) = §° — T'a for every leaft € I, Let ({y;}, {s}) be an optimal solution to this
LP, and({6;}) be a solution to the dual maximization LP. L} be an optimal solution td.D,_1 ,(z).
Settingy, = = + y;, in fr—1,4(0;a},) shows thatLDy,_1 ,(x) < fr—1,.(x). Note that this upper bound
also holds when we require that, € B(0,2R) andy, € B(0, R) for all other internal nodes € T, in
the problemf;_ ., (0; ) embedded in the dual maximization probldm;_, ,(x). We can lower bound
LDg-1u() by fr—1.(x), by computing the value of the feasible solution whete= >, (TH"0r
and the solution to the LP dual ¢f_1 ,,(0; c,) is given by({6;}). Hence,fy_1 .(z) = LDy_1 (), and
constraining|y. || < 2R and||y;|| < R for every internal node € I',, \ {u} in the problemf;_; ,,(0; cvy,)
does not affect the value d&fDj_, ,(x). The arguments foﬁ_m(a:) andfﬁk_l,u(a:) are identical. m

Lemma7.2 Letz € P and«, be an(e,ew' - = + €)-optimal solution toLDy_; ,(x) for every node
u € level(2). () d = w' = 32, cievel(2) Puvu IS @N (¢, €)-subgradient ofa(.)
is a vector such that — ww! < d < d + ww!, thend is an (e + w, ¢)-subgradient of.(.) at z.

As in Section 6.2, given Lemma 7.1, we abuse notation andfusg, (0; ) to actually refer to the
problem where we have imposed the constraints ghdte in B(0,2R) andy, lie in B(0, R) for every
internal nodet € T',. Observe that for any < level(2), whena,, > pw!, in the (k — 1)-stage problem
fk 1,u(0; o) the ratio of costéi for anyt lying in the tree rooted at and anyt’ € child(t), is bounded by

. Let P(Z, \,7,6,6) = pon(I A, 7,ln( ),In(})) be a sufficiently large polynomial. To avoid clutter
we suppress the dependence@n. . ., d).

Lemma 7.3 For anye, p,e > 0, anyx € P, and any node: € level(2), if we construct the recourse
problem f,_1 ., (x) with T (¢, p,e,6) = /\/’k_l(I, APQ, s e o) samples, for a suitabléV’, Inn’ =
poly(Z,In(1)), then any optimal solution thk,_Lu;p( z)is an(e, ew'-z+e¢)-optimal solution tal. Dy, _1 ., ()
with probability at leastl — 4.

Proof : We show thaty,_; ,(z;.) andlj,_; «(z;.) are close in terms of theinax-subgradients and then
use Lemma 4.3. Recall thé]?u ={ay € R™ : pw' < o, < w"}. Let R = |Jw*| < Mw!|, so
D, C B(0, R'). In the sequel we will only considéw, A, D, )- max-subgradients, so we will omit th2,,.
AsinLemma 6.7, for any > 0, one can show that f,, is an(«’, ¢)-optimal solution tofy,_1,,,(0; a,,),
wherew’ = ¢, theny, — z is an (w,ww' - z + ¢')- max- subgradlent ofj—1.4(z;.) at oy,. This follows
becauséy 1..(z; ) > (Yu — ) -y +C — W/fkfl,u(o o) — € WhereC > wechitd(u) Qo fe—2,u (Yu),
and at any other poini we havel,_; ,(z; ) < (yu — ) - o), + C. This also shows that if, is an
optimal solution tof;€ 1,4(0; o) theny, — x is amax- subgradlent otk 1 u( .) ata,,. We may assume
that||y,|| < 2R by Lemma 7.1, so the Lipschitz constantpf; ,,(z;.) andl;,_; «(z;.) can be bounded by
K' =3R. fr-1.(0; ) is a(k — 1)-stage problem of the forrﬁc_” such that for every internal nodén
the treel’,, we have||y;|| < 2R, so we can apply the induction hypothesis to it.
Sete’ = £. Let N/ = log(25R) andw = g57. Observe thatog(K'R’)

the extendedﬁﬁ-gnd of D, andn’ = |G|. Suppose that we us¥j_ 1( %

= poly(Z). LetG be
2,4, -5, ) samples to

[ed]
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construct the recourse proble;?p_l,u(x), and hence the dufﬂﬁk_l,u;p(x). Atany givena,, € G, applying
the induction hypothesis tf,_; ,,(0; ), an optimal solutiorﬁu to fk,m(o; ay,) IS an (%, 26—]\/,,)—optimal
solution to fj,—1,,(0; a, ) With probability at leastt — 4. Thus, with probabilityl — §, at everya,, € G,

3 — x is both amax-subgradient of;,_ 1u(z;.) and ar‘(w ww! -z + 2N,) max-subgradlent Of—1,u(;.)
ata,,. So by Lemma 4.3 we get thatdf, € D, maX|m|zeslk_1 u(z; o) thenitis an(e, ew' -z +¢€)-optimal

solution toLDj,_1 ,,,,(x). Thus we obtair? (e, p, &, 0) = Nj_1(Z, A;, SNTX TONT) ,‘f) (]

Now we can prove our main theorem. First we state the analogue of Lemma 6.4.

4m

Lemma 7.4 Consider the sample average functibiconstructed using\z = To(w,d) = 16(3‘}7“)2 In(4%%)
samples from stage 2, and usm’g(e Py 5, W) samples from the tree rooted af(to generatef,C 1,u())

for eachu € level(2) with ¢, > 0. At any pointz € P, subgradientl,, of hp(.) is an (w, €)-subgradient of
h,(.) with probability at leastl — 6.

Theorem 7.5 For anye, vy > 0 (v < 1), with probability at least — §, any optimal solutiorr to thek-stage
sample average problem constructed uspoty (Z, A, v, €, §) samples satisfigs(z) < (1 + ) - frr + €.

Proof' Sety' = 1 ande’ = £. LetN = log(258) andw = 2. Note thatlog(K R) = poly(Z). Set
¢ =< andp = L. LetG be the extendegx——-grid of P andn — |G| Let A" = 10042y (dmn),

Using Lemma 7.4 and the union bound over all point&zinby constructlng‘l( ) (and hence: »(.)) using
N =N-T(,p, 27W) samples, with probability at least— J, at every point: € G, subgradient

d,, of ﬁp(.) is an(w, €”)-subgradient of.,(.). Mimicking the proof of Theorem 6.9 we obtain thatz) <
(14+7)OPT + 18€'.

Let N’,n’ be as given by Lemma 7.3. We can chocﬁsef A, ’y, €,0) to be a Iarge enough polynomlal
so that the following hold:N" < Py, & < Py, gy = O(I)NN’A < B Tonw = on )NN, < B
s < 5Py SO using Lemma 7.3 we can boufide”, p, 5, 50pr) by N1 (Z, Pid®, 3, 5 55)-
Unfolding the recurrence (note thatis a constant), and using Theorem 5.2 for the base case, we get that

Ni(Z, N, v,€,6) is a polynomial inz, % In(4). u

7.1 Obtaining a lower bound onOPT

The bounds obtained thus far on the quality of an optimal solution to the sample average problem in The-
orem 5.2, Theorem 6.9, and Theorem 7.5 are all of the fof@) < (1 + O(v)) - OPT + O(¢) (where

~v,€ > (0 are parameters) containing both multiplicative and additive approximation factors. This can be
converted into a purely multiplicativel + «)-guarantee by setting ande appropriately provided that we

have a lower bound o®PT (that is at least inverse exponential in the input size). We now show that, under
some mild assumptions, one can obtain such a lower bound gabelassof (kGen-P), where for every
nodew in level(i), 2 < i < k, the recourse problerf,_;+1 ,(x,y,) does not have any constraints. That is,

we consider the following subclass @fGen-P):

gky = min A(z)=w'-z + Y qugr-1.(x) subjectto x € P CRY, where

u€&child(r)
Gk—ir1.4(yy) = min {wu Y+ Z Qu Ik—in Yo, Yu) © Yu € R’;O}, foru € level(i), 2 <i < k,
u/ €child(u)

g1.u(yy) = min {w“ “Yu syt yu € RYY, sy €RYy,  DYsy + Ty > j* — Z T“yt}.
tEpath(v)
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Note that for 2-stage programs, the above claisesame a@2Gen-P).

We make the mild assumption that ¢a)= 0 lies inP, and (b) for every scenariowith parentv, either
f1,u(yv) is minimized by setting; = 0 for all ¢ € path(v), or the total CoS}_,  uun () w'y! +cts" > 1 for
any feasible decisiong,,, s,,). For example, for the 3-stage set cover problem considered in Section 6.1,
(a) just requires that we are allowed to not pick any set in the first-stage, (b) is satisfied if the total cost
incurred in every scenari@d, B) with £(A, B) # () is at least 1 (i€ (A, B) = () then the cost incurred is 0
for everyz, y4). Under these assumptions, we show that we can sample initially to deteetiifis large.

Let Null = {u € level(k) : fi1,.(y») is minimized aty, = 0}; we call a scenaria. € Null a “null-
scenario”. The basic idea is that if the non-null scenarios account for a probability mass of g&l&heh
OPT > %k since the cost incurred in each such scenario is at least 1. Otherwise we shaw=thais
an optimal solution, by arguing that for any solutierZz 0 we can substitute the-decisions with recourse
actionsy,, in each scenaria, and the overall cost decreases since the low probability of occurrence of a
non-null scenario outweighs the increase in the cost of such a scenario (at most a fa&jor of

Lemma 7.6 By samplingll = \* ln(%) times, one can detect with probability at ledst § (6 < %), that
eitherxz = 0 is an optimal solution t§3SSC-P)or that OPT > %

Proof . Let X be the number of times we sample a non-null scenario, i.e., a scenario Moltl.inNote
that given a scenaria, one can decide in polynomial timefwith parentv is a null-scenario by solving
the polynomial-size LRniny, >0 f1,.(y»). If X = 0, we returnz = 0 as an optimal solution, otherwise we
assert thaOPT > % In every non-null scenario we incur a cost of at least 1034I" > ¢ whereq =

2 uclevel(k)\Null Pu 1S the probability of occurrence of a non-null scenario. ket Pr[.X = 0] = (1 — QM.

Sor < e ™ andr > 1—gM. If ¢ > A—lk thenPr[X = 0] < 4. So with probability at least — § we

will say that OPT > % which is true sinc@)PT > ¢q. We show that ify < A—l,c thenz = 0 is an optimal
solution. So ifg < §/M, thenPr[X = 0] > 1 — ¢, and we return the correct answer with probability at
leastl — 4. If /M < g < ln(%)/M, then we always return a correct answer since it is both truestha0
is an optimal solution, and th&@PT > g > %

We now show that ify < -%, thenz = 0 is an optimal solution. Consider any solutigrl, {y/,}). The

)\7]61
cost of this solution is

ha) w2+ > paw -y, + > Pufralyy) + > pulw” -y, + " - su).

u€level(z),1<i<k u€Null with parentv ugNull

For any scenaria with parent, sinceT™ > 0, f; ,,(y.) is a decreasing function gf for everyt € path(v).
So for a null-scenaria, sincef1,(y,) is minimized aty, = 0, we have thatf, ,(y,) = f1,.(0) for any
feasible decisiong,. The solution withz = 0 andy, = v, + 2’ for every scenaria;, andy,, = ., for
every other node is also feasible, and has cost

Z puw” - yqll + Z pufl,u(o) + Z Pu (wu ) (y; + I) +c- 5u)~
u€level(z),1<i<k w€Null with parentv ugNull
This is at mosh(z') — w' - 2’ 4+ gA*w' - 2’ < h(2') sincew" < Mw! for any scenaria. andg < 7. =

We can use the above lemma to convert a guarantee of the/fGEn< (1 + c;7y) - OPT + cge into
a purely multiplicative(1 + x)-guarantee. We perform the above sampling step, and after this if we detect
that OPT > o/A\F wherep = ﬁ then we can set = k/(2c1) ande = rg/(2c2AF) to obtain a
(1 + k)-guarantee.
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8 Applications

We consider a number df-stage stochastic optimization problems, whens a constant, for which we

prove the first known performance guarantees. Our algorithms do not assume anything about the distribution
or the cost structure of the input. Previously, algorithms for these problems were known only in the 2-stage
setting initially with restrictions on the distribution or input [11, 9, 6], and later without any restrictions [14].

For ak-stage integer optimization problem, we obtain a near-optimal solution to its linear relaxation by
solving the sample average problem as argued in Section 7, and round this solution using an extension of
the rounding scheme in [14].

Multicommodity flow We consider a stochastic version of the concurrent multicommaodity flow problem
where we have to buy capacity to install on the edges so that one can concurrently ship demand of each
commodity: from its sources; to its sinkt;. The demand is uncertain and is revealed-istages. We can

buy capacity on edgein any stage outcomeu at a cost ot:¥; and the total amount of capacity that we can
install on an edge is limited by its capacify. The goal is to minimize the expected capacity installation
cost. This problem can be formulated a-atage stochastic LPf,_; 11 ,(y») = minogyugp(cu Yy +

> wechild(u) Q' fi—iw (Yo, y)) for anon-leaf node: at leveli; for a leafu, fi..(yy) = ming<y, <r ¢* - yu

subject to the constraints that the total flow routed(fgrt;) is at least}, and the flow on edgeis at most

min(T., Eu/epath(u) Yu ). We can apply our algorithm to gét + €)-optimal solution to this program.

Covering problems We consider thé-stage versions of set cover, vertex cover and the multicut problem

on tree. In each of these problems, there are elements in some universe that need to covered by sets. In the
k-stage stochastic problem, the target set of elements to cover is determined by a probability distribution,
and becomes known after a sequencé sfages. In each outcome we can purchase a s§tat a price of

c¢. We have to determine which sets to buy in stage | so as to minimize the (expected) total cost of buying
sets. The LP relaxation for thestage problem has a variabjg s indicating if setS is bought in outcome

u, and constraints stating that for every leaf, and every elemenits corresponding target set, we must

buy some sef that containg along this root-leaf path.

We can generalize the rounding theorem of Shmoys and Swamy [14] to show that one cap-use a
approximation algorithm for the deterministic analogue, where the guarantee is with respect to its natural
LP relaxation, to round any fractional solution to theatage problem to an integer solution losing a factor
of kp; combined with the algorithm in Section 7, this yield$i + ¢)-approximation algorithm for the
k-stage problem. In general, to compute the decisions in a stageome, we solve & — i + 1)-stage
problem, and round the solution. We get a performance guarantédwfn + ¢) for the k-stage set cover
problem, and 2k + ¢) for the k-stage vertex cover problem and thestage multicut problem on trees.

Facility location problems In the k-stage uncapacitated facility location (UFL) problem, we are given a
set of candidate facility location®, a set of clients, and a probability distribution on the client demands that
evolves ovek-stages. In each stage, one can buy facilities paying a certain facility opening cost; ik,stage
we know the exact demands and we have to assign each client’s demand to an open facility incurring a client
assignment cost. The goal is to minimize the expected total cost. This is capturedibgtdue program
wheregy_iy1.u(yv) = ming,>0(>"; f*Yui + gk—i,w (Yo, yu)) for a stagei outcomeu, and for a stage
scenariou, g1,.(yw) is the minimum ofy >, ¥y + >, djcijzy,i; subject to the constraint that for every
clientj, 3, ,; is at leastl if &), > 0 and 0 otherwise, and for evetyj, z,;; < 2w epath(u) Yui- We

can obtain g1 + ¢)-optimal solution to this program. Adapting the rounding procedure in [14], we obtain a
1.71(k —1) + 1.52 4+ ¢ = O(k)-approximation algorithm fok-stage UFL. This rounding procedure extends
to give O(k)-approximation algorithms fak-stage UFL with penalties, or with soft capacities.
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